Twelfth Int. Conf. on IFSs, Sofia, 17-18 May 2008

NIFS Vol. 14 (2008), 1, 33-37

Operation \div over Intuitionistic Fuzzy Sets

Anton Cholakov

Student of Sofia University, Bulgaria
A lot of operations have been defined over Intuitionistic Fuzzy Sets (see [1]). In this article we will define one new operation.
(Throughout this article we will mark the class of all IFSs with IFS (in italic))
Definition 1: If we have an universe E and two IFSs over it $\mathrm{A}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \nu_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}$ and $B=\left\{\left(x, \mu_{B}(x), v_{B}(x)\right) \mid x \in E\right\}$, then we will assign the set

$$
\mathrm{C}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}
$$

as a result of the operation between A and B :

$$
\mathrm{A} \div \mathrm{B}=\mathrm{C} .
$$

Proposition 1: $\mathrm{A} \div \mathrm{B}$ is an IFS.
Proof: We will prove that the sum of the membership and non-membership of the result is not greater than 1 .

$$
\begin{aligned}
& \left(\mu_{\mathrm{A}}(\mathrm{x}) \mathrm{v}_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right)+\left(\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mathrm{v}_{\mathrm{B}}(\mathrm{x})\right)= \\
& =\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})= \\
& =\mu_{\mathrm{A}}(\mathrm{x})\left(\mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x})\right)+v_{\mathrm{A}}(\mathrm{x})\left(\mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x})\right)= \\
& =\left(\mu_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x})\right)\left(\mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x})\right)
\end{aligned}
$$

From A, B $\in I F S$ follows that $\mu_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \leq 1$ and $\mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x}) \leq 1$.
Therefore $\left(\mu_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x})\right)\left(\mu_{\mathrm{B}}(\mathrm{x})+\nu_{\mathrm{B}}(\mathrm{x})\right) \leq 1$ so $\mathrm{A} \div \mathrm{B}$ is an IFS.
We will now examine some of the properties of the operation:
Proposition 2: Operation \div is commutative.

Proof:

$$
\begin{aligned}
& \mathrm{A} \div \mathrm{B}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}, \\
& \mathrm{B} \div \mathrm{A}=\left\{\left(\mathrm{x}, \mu_{\mathrm{B}}(\mathrm{x}) v_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x}) v_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\} .
\end{aligned}
$$

Therefore $\mathrm{A} \div \mathrm{B}=\mathrm{B} \div \mathrm{A}$.
Proposition 3: Operation \div is associative.

Proof:

$(\mathrm{A} \div \mathrm{B}) \div \mathrm{C}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\} \div \mathrm{C}=$ $=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x}) \nu_{\mathrm{C}}(\mathrm{x})+\nu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \nu_{\mathrm{C}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})\right.\right.$, $\left.\left.\mu_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \nu_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x}) v_{\mathrm{C}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}$,
$\mathrm{A} \div(\mathrm{B} \div \mathrm{C})=\mathrm{A} \div\left\{\left(\mathrm{x}, \mu_{\mathrm{B}}(\mathrm{x}) \nu_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x}) v_{\mathrm{C}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}=$ $=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x}) v_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) v_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})\right.\right.$, $\left.\left.\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \nu_{\mathrm{C}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \mu_{\mathrm{C}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x}) \nu_{\mathrm{C}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}$. Therefore $(A \div B) \div C=A \div(B \div C)$.

Theorem 1: According to the set of all IFSs (or IFS) the operation \div forms a monoid.

Proof: From Proposition 1 it follows that (IFS, \div) is a groupoid. From Proposition 2 it follows that (IFS, \div) is a semi-group. From Propostion 2 it follows that \div is associative.
We will show the existence of a neutral element:
Let us suppose that X is a neutral element, i.e.

$$
\mathrm{A} \div \mathrm{X}=\mathrm{A}
$$

Therefore
$\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}$ and we have the following system of equations:

$$
\begin{gathered}
\mid \mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})=\mu_{\mathrm{A}}(\mathrm{x}) \\
\mid \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})=v_{\mathrm{A}}(\mathrm{x}) \\
1^{\text {st }} \text { case: } \mu_{\mathrm{A}}(\mathrm{x})=0 . \text { Hence } \\
v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})=v_{\mathrm{A}}(\mathrm{x}) \text { i.e. } v_{\mathrm{X}}(\mathrm{x})=1 \text { and } \mu_{\mathrm{X}}(\mathrm{x})=0 .
\end{gathered}
$$

Therefore the neutral element $X=\{(x, 0,1) \mid x \in E\} \equiv \overline{0}$ (of [1]).
$2^{\text {nd }}$ case: $\mu_{\mathrm{A}}(\mathrm{x}) \neq 0$. Hence

$$
\begin{gathered}
\mu_{\mathrm{X}}(\mathrm{x})=\frac{v_{A}(x)\left(1-v_{A}(x)\right)}{\mu_{A}(x)}, \\
\left.\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \frac{v_{A}(x)\left(1-v_{A}(x)\right)}{\mu_{A}(x)}=\mu_{\mathrm{A}}(\mathrm{x}) \right\rvert\, \cdot \mu_{\mathrm{A}}(\mathrm{x}), \\
\mu_{\mathrm{A}}^{2}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}^{2}(\mathrm{x})-v_{\mathrm{A}}^{2}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})=\mu_{\mathrm{A}}^{2}(\mathrm{x}), \\
v_{\mathrm{X}}(\mathrm{x})\left(\mu_{\mathrm{A}}^{2}(\mathrm{x})-v_{\mathrm{A}}^{2}(\mathrm{x})\right)=\mu_{\mathrm{A}}^{2}(\mathrm{x})-\mathrm{v}_{\mathrm{A}}^{2}(\mathrm{x}), \\
v_{\mathrm{X}}(\mathrm{x})=1 \text { and } \mu_{\mathrm{X}}(\mathrm{x})=0 .
\end{gathered}
$$

Hence the neutral element is again the above $\mathrm{X}=\{(\mathrm{x}, 0,1) \mid \mathrm{x} \in \mathrm{E}\} \equiv \overline{0}$, i.e. (IFS, $\div)$ is a monoid.

Now we will show that there is no opposite element and thus so \div does not form a group.

Let us suppose that X is the opposite element of the element A , i.e.

$$
\mathrm{A} \div \mathrm{X}=\overline{0}
$$

i.e.

$$
\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}=\{(\mathrm{x}, 0,1) \mid \mathrm{x} \in \mathrm{E}\}
$$

Therefore we have the following system of equations:

$$
\begin{array}{r}
\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})=0 \\
\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})=1
\end{array}
$$

$1^{\text {st }}$ case: $\mu_{\mathrm{A}}(\mathrm{x})=0$. Hence

$$
\begin{aligned}
& v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})=0 \\
& v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{X}}(\mathrm{x})=1 \text {, but } v_{\mathrm{A}}(\mathrm{x}) \leq 1 \text { and } v_{\mathrm{X}}(\mathrm{x}) \leq 1 \text { therefore } v_{\mathrm{A}}(\mathrm{x})=v_{\mathrm{X}}(\mathrm{x})=1
\end{aligned}
$$

and thus so $\mu_{\mathrm{A}}(\mathrm{x})=\mu_{\mathrm{x}}(\mathrm{x})=0$.
Therefore the opposite element of $\{(x, 0,1) \mid x \in E\}$ is $\{(x, 0,1) \mid x \in E\}$ (i.e. the same). $2^{\text {nd }}$ case: $\mu_{\mathrm{A}}(\mathrm{x}) \neq 0$. Hence
$v_{\mathrm{X}}(\mathrm{x})=-\frac{v_{A}(x) \mu_{X}(x)}{\mu_{A}(x)}$, but $v_{\mathrm{X}}(\mathrm{x}) \geq 0$ therefore $v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{X}}(\mathrm{x})=0$.
$2.1 v_{A}(x)=0$ i.e. $\mu_{A}(x) \mu_{X}(x)=1$, but $\mu_{A}(x) \leq 1$ and $\mu_{\mathrm{X}}(x) \leq 1$, therefore $\mu_{A}(x)=\mu_{\mathrm{X}}(x)=1$.
Therefore $\nu_{X}(x)=0$
and so the opposite element of $\{(x, 1,0) \mid x \in E\}$ is $\{(x, 1,0) \mid x \in E\}$ (e.i. the same). $2.2 v_{\mathrm{A}}(\mathrm{x}) \neq 0$ i.e. $\mu_{\mathrm{X}}(\mathrm{x})=0$.

Therefore $v_{A}(x) v_{X}(x)=1$, but $v_{A}(x) \leq 1$ and $v_{X}(x) \leq 1$ so $v_{A}(x)=v_{X}(x)=1$.
Therefore $\mu_{\mathrm{A}}(\mathrm{x})=0$, which is contrary with the condition of $2^{\text {nd }}$ case $\mu_{\mathrm{A}}(\mathrm{x}) \neq 0$. Therefore our supposition is wrong and so there is no opposite element in the common case. Therefore (IFS, \div) is a monoid and not a group.

Note: Actually, we can notice that the $\{(x, 0,1) \mid x \in E\}$ set, in \div operation with $\mathrm{A}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}$, actually keeps the other set A intact.
For example $\mathrm{A} \div\{(\mathrm{x}, 0,1) \mid \mathrm{x} \in \mathrm{E}\}=$
$=\left\{\left(x, \mu_{A}(x), v_{A}(x)\right) \mid x \in E\right\} \div\{(x, 0,1) \mid x \in E\}=\left\{\left(x, \mu_{A}(x), v_{A}(x)\right) \mid x \in E\right\}$.
On the contrary, the $\{(x, 1,0) \mid x \in E\}$ set, in \div operation with $A=\left\{\left(x, \mu_{A}(x), v_{A}(x)\right) \mid\right.$ $x \in E\}$, returns the opposite of A i.e. $\neg A=\left\{\left(x, v_{A}(x), \mu_{A}(x)\right) \mid x \in E\right\}$.

Also notable sets are $\{(x, 0,0) \mid x \in E\}$, which in \div operation with every set returns itself $\{(x, 0,0) \mid x \in E\}$, and $\{(x, 0.5,0.5) \mid x \in E\}$, which in \div operation with $A=\left\{\left(x, \mu_{A}(x)\right.\right.$, $\left.\left.v_{A}(x)\right) \mid x \in E\right\}$, returns

$$
\left\{\left.\left(\mathrm{x}, \frac{\mu_{A}(x)+v_{A}(x)}{2}, \frac{\mu_{A}(x)+v_{A}(x)}{2}\right) \right\rvert\, \mathrm{x} \in \mathrm{E}\right\}
$$

Proposition 4: Operation \div is distributive only with the @ operation and specifically (A@ B) $\div \mathrm{C}=(\mathrm{A} \div \mathrm{C}) @(\mathrm{~B} \div \mathrm{C})$ and that $(\mathrm{A} \div \mathrm{B}) @ \mathrm{C} \neq(\mathrm{A} @ \mathrm{C}) \div(\mathrm{B} @ \mathrm{C})$.
Proof: We will prove the first one:
$(\mathrm{A} @ \mathrm{~B}) \div \mathrm{C}=\left\{\left.\left(\mathrm{x}, \frac{\mu_{A}(x), \mu_{B}(x)}{2}, \frac{v_{A}(x), v_{B}(x)}{2}\right) \right\rvert\, \mathrm{x} \in \mathrm{E}\right\} \div \mathrm{C}=$
$=\left\{\left.\left(\mathrm{x}, \frac{\mu_{A}(x), \mu_{B}(x)}{2} v_{C}(\mathrm{x})+\frac{v_{A}(x), v_{B}(x)}{2} \mu_{\mathrm{C}}(\mathrm{x}), \frac{\mu_{A}(x), \mu_{B}(x)}{2} \mu_{\mathrm{C}}(\mathrm{x})+\frac{v_{A}(x), v_{B}(x)}{2} v_{C}(\mathrm{x})\right) \right\rvert\, \mathrm{x}\right.$
$\in \mathrm{E}\}$
$(\mathrm{A} \div \mathrm{C}) @(\mathrm{~B} \div \mathrm{C})=$
$=\left\{\left(x, \mu_{A}(x) v_{C}(x)+v_{A}(x) \mu_{C}(x), \mu_{A}(x) \mu_{C}(x)+v_{A}(x) v_{C}(x)\right) \mid x \in E\right\} @\left\{\left(x, \mu_{B}(x) v_{C}(x)+\right.\right.$ $\left.\left.v_{B}(x) \mu_{C}(x), \mu_{B}(x) \mu_{C}(x)+v_{B}(x) v_{C}(x)\right) \mid x \in E\right\}=$
$=\left\{\left(\mathrm{x}, \frac{\mu_{A}(x) \nu_{C}(x)+v_{A}(x) \mu_{C}(x)+\mu_{B}(x) \nu_{C}(x)+v_{B}(x) \mu_{C}(x)}{2}\right.\right.$,
$\left.\left.\frac{\mu_{A}(x) \mu_{C}(x)+v_{A}(x) v_{C}(x)+\mu_{B}(x) \mu_{C}(x)+v_{B}(x) v_{C}(x)}{2}\right) \mid \mathrm{x} \in \mathrm{E}\right\}$.
The results are equal and therefore $(A @ B) \div C=(A \div C) @(B \div C)$.
To prove that $(\mathrm{A} \div \mathrm{B}) @ \mathrm{C} \neq(\mathrm{A} @ \mathrm{C}) \div(\mathrm{B} @ \mathrm{C})$ it is sufficient to examine the case
$A=B=C=\{(x, 1,0) \mid x \in E\}:$
$(\mathrm{A} \div \mathrm{B}) @ \mathrm{C}=\{(\mathrm{x}, 0.5,0.5) \mid \mathrm{x} \in \mathrm{E}\}$,
$(\mathrm{A} @ \mathrm{C}) \div(\mathrm{B} @ \mathrm{C})=\{(\mathrm{x}, 0,1) \mid \mathrm{x} \in \mathrm{E}\}$.

There are no other distributive relations between \div and either of these: $+, ., \cap, \cup$. To prove that it is sufficient to check:
$(\{(x, 0.5,0) \mid x \in E\} \div\{(x, 1,0) \mid x \in E\}) \bullet\{(x, 0.5,0) \mid x \in E\} \neq$
$\neq(\{(x, 0.5,0) \mid x \in E\} \bullet\{(x, 0.5,0) \mid x \in E\}) \div(\{(x, 0.5,0) \mid x \in E\} \bullet\{(x, 0.5,0) \mid x \in E\})$
and:
$(\{(x, 0.5,0) \mid x \in E\} \bullet\{(x, 1,0) \mid x \in E\}) \div\{(x, 0.5,0) \mid x \in E\} \neq$
$\neq(\{(x, 0.5,0) \mid x \in E\} \div\{(x, 0.5,0) \mid x \in E\}) \bullet(\{(x, 0.5,0) \mid x \in E\} \div\{(x, 0.5,0) \mid x \in E\})$,
where in the place of the \bullet operation is put either of these: $+, ., \cap, \cup$.
Proposition 5: The \div operation has the following distributive properties in relation with modal operators \square (necessity) and \diamond (possibility):

$$
\begin{aligned}
& \square(\mathrm{A} \div \mathrm{B}) \subset \square \mathrm{A} \div \square \mathrm{B} \\
& \diamond(\mathrm{~A} \div \mathrm{B}) \supset \diamond \mathrm{A} \div \diamond \mathrm{B}
\end{aligned}
$$

Proof:

$$
\begin{aligned}
& \square(\mathrm{A} \div \mathrm{B})=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}){\left.\left.v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}), 1-\left(\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right)\right) \mid \mathrm{x} \in \mathrm{E}\right\},}_{\square \mathrm{A} \div \square \mathrm{B}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), 1-\mu_{\mathrm{A}}(\mathrm{x})\right\} \div\left\{\mathrm{x}, \mu_{\mathrm{B}}(\mathrm{x}), 1-\mu_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}=}^{=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+\mu_{\mathrm{B}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+1-\mu_{\mathrm{B}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right)\right.}\right.\right.
\end{aligned}
$$

$$
\mid x \in E\} .
$$

We will subtract the membership and non-membership of the second result from the first and compare it with 0 to see which one is greater:

$$
\begin{aligned}
& \left(\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right)-\left(\mu_{\mathrm{A}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+\mu_{\mathrm{B}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right)= \\
& =\mu_{\mathrm{A}}(\mathrm{x})\left(\mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x})-1\right)+\mu_{\mathrm{B}}(\mathrm{x})\left(\mu_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x})-1\right) \leq 0, \\
& \left(1-\left(\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right)\right)-\left(\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+1-\mu_{\mathrm{B}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right)= \\
& \left.=-\mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})-v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+\mu_{\mathrm{B}}(\mathrm{x})+\mu_{\mathrm{A}}(\mathrm{x})-\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})=\right) \\
& =\mu_{\mathrm{A}}(\mathrm{x})\left(1-\left(\mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{B}}(\mathrm{x})\right)\right)+\mu_{\mathrm{B}}(\mathrm{x})\left(1-\left(\mu_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x})\right)\right) \geq 0 . \\
& \quad \text { This proves that } \square(\mathrm{A} \div \mathrm{B}) \subset \square \mathrm{A} \div \square \mathrm{B} .
\end{aligned}
$$

$\diamond(A \div B)=\left\{\left(x, 1-\left(\mu_{A}(x) \mu_{B}(x)+v_{A}(x) v_{B}(x)\right), \mu_{A}(x) \mu_{B}(x)+v_{A}(x) v_{B}(x)\right) \mid x \in E\right\}$,
$\diamond \mathrm{A} \div \Delta \mathrm{B}=\left\{\left(\mathrm{x}, 1-v_{\mathrm{A}}(\mathrm{x}), \nu_{\mathrm{A}}(\mathrm{x})\right\} \div\left\{\mathrm{x}, 1-\nu_{\mathrm{B}}(\mathrm{x}), \nu_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}=$
$=\left\{\left(x, v_{B}(x)-v_{A}(x) v_{B}(x)+v_{A}(x)-v_{A}(x) v_{B}(x), 1-v_{B}(x)-v_{A}(x)+v_{A}(x) v_{B}(x)+v_{A}(x) v_{B}(x)\right) \mid\right.$ $x \in E\}$.

Again we will subtract the membership and non-membership of the second result from the first and compare it with 0 :
$\left(1-\left(\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x})\right)\right)-\left(v_{\mathrm{B}}(\mathrm{x})-v_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x})-v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})\right)=$
$=1-\mu_{A}(x) \mu_{B}(x)-v_{B}(x)-v_{A}(x)+v_{A}(x) v_{B}(x)=v_{B}(x)\left(v_{A}(x)-1\right)-\left(v_{A}(x)-1\right)-\mu_{A}(x) \mu_{B}(x)=$ $=\left(1-v_{\mathrm{A}}(\mathrm{x})\right)\left(1-v_{\mathrm{B}}(\mathrm{x})\right)-\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x}) \geq 0$
$\left(\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x})\right)-\left(1-\nu_{\mathrm{B}}(\mathrm{x})-v_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x})+\nu_{\mathrm{A}}(\mathrm{x}) \nu_{\mathrm{B}}(\mathrm{x})\right)=$
$=\mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})-1+v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x})-v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})=$
$=-\left(1-\mu_{A}(x) \mu_{B}(x)-v_{B}(x)-v_{A}(x)+v_{A}(x) v_{B}(x)\right) \leq 0$ (from the previous inequality)
Therefore $\diamond(\mathrm{A} \div \mathrm{B}) \supset \diamond \mathrm{A} \div \diamond \mathrm{B}$.
Finally, we will check some interesting results, using the negation of
$\mathrm{A}=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), v_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}:$
$\neg \mathrm{A}=\left\{\left(\mathrm{x}, \mathrm{v}_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}$.
Proposition 6: $\mathrm{A} \div \mathrm{B}=\neg \mathrm{A} \div \neg \mathrm{B}$.
Proof:
$\neg \mathrm{A} \div \neg \mathrm{B}=\left\{\left(\mathrm{x}, \mathrm{v}_{\mathrm{A}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x})\right\} \div\left\{\mathrm{x}, \mathrm{v}_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}=$
$=\left\{\left(x, v_{A}(x) \mu_{B}(x)+\mu_{A}(x) v_{B}(x), v_{A}(x) v_{B}(x)+\mu_{A}(x) \mu_{B}(x)\right) \mid x \in E\right\}$.
It is obvious, that this is equal to $\mathrm{A} \div \mathrm{B}$.
Proposition 7: $\neg(\mathrm{A} \div \mathrm{B}) \neq \neg \mathrm{A} \div \neg \mathrm{B}$.

Proof:

$\neg(\mathrm{A} \div \mathrm{B})=\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x}), \mu_{\mathrm{A}}(\mathrm{x}) v_{\mathrm{B}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x}) \mu_{\mathrm{B}}(\mathrm{x})\right) \mid \mathrm{x} \in \mathrm{E}\right\}$
It is obvious that the two are not, therefore $\neg(A \div B) \neq \neg A \div \neg B$.

Reference

[1] Atanassov, K. Intuitionistic Fuzzy Sets, Springer Physica - Verlag, Heidelberg, 1999.

