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A lot of operations have been defined over Intuitionistic Fuzzy Sets (see [1]). In this article 
we will define one new operation. 
 
(Throughout this article we will mark the class of all IFSs with IFS (in italic)) 
 
Definition 1: If we have an universe E and two IFSs over it A = {(x, µA(x), νA(x))| x ∈ E} and 
B = {(x, µB(x), νB(x)) | x ∈ E}, then we will assign the set 

C = {(x, µA(x)νB(x) + νA(x)µB(x), µA(x)µB(x) + νA(x)νB(x)) | x ∈ E} 
as a result of the operation between A and B: 

A ÷ B = C. 
Proposition 1: A ÷ B is an IFS. 
Proof: We will prove that the sum of the membership and non-membership of the result is not 
greater than 1. 

(µA(x)νB(x) + νA(x)µB(x)) + (µA(x)µB(x) + νA(x)νB(x)) =  
 = µA(x)µB(x) + µA(x)νB(x) + νA(x)µB(x) + νA(x)νB(x) = 
 = µA(x)(µB(x) + νB(x)) + νA(x)(µB(x) + νB(x)) =  
 = (µA(x) + νA(x))(µB(x) + νB(x)) 

From A, B ∈ IFS follows that µA(x) + νA(x) ≤ 1 and µB(x) + νB(x) ≤ 1. 
Therefore  (µA(x) + νA(x))(µB(x) + νB(x)) ≤ 1 so A ÷ B is an IFS. 
We will now examine some of the properties of the operation: 

Proposition 2: Operation ÷ is commutative. 
Proof: 

A ÷ B = {(x, µA(x)νB(x) + νA(x)µB(x), µA(x)µB(x) + νA(x)νB(x)) | x ∈ E}, 
B ÷ A = {(x, µB(x)νA(x) + νB(x)µA(x), µB(x)µA(x) + νB(x)νA(x)) | x ∈ E}. 

Therefore A ÷ B = B ÷ A. 
Proposition 3: Operation ÷ is associative. 
Proof: 
(A ÷ B) ÷ C = {(x, µA(x)νB(x) + νA(x)µB(x), µA(x)µB(x) + νA(x)νB(x)) | x ∈ E} ÷ C = 
= {(x, µA(x)νB(x)νC(x) + νA(x)µB(x)νC(x) + µA(x)µB(x)µC(x) + νA(x)νB(x)µC(x), 
µA(x)νB(x)µC(x) + νA(x)µB(x)µC(x) + µA(x)µB(x)νC(x) + νA(x)νB(x)νC(x)) | x ∈ E}, 
 
A ÷ (B ÷ C) = A ÷ {(x, µB(x)νC(x) + νB(x)µC(x), µB(x)µC(x) + νB(x)νC(x)) | x ∈ E} =  
= {(x, µA(x)µB(x)µC(x) + µA(x)νB(x)νC(x) + νA(x)µB(x)νC(x) + νA(x)νB(x)µC(x), 
µA(x)µB(x)νC(x) + µA(x)νB(x)µC(x) + νA(x)µB(x)µC(x) + νA(x)νB(x)νC(x)) | x ∈ E}. 
Therefore (A ÷ B) ÷ C = A ÷ (B ÷ C). 
 
Theorem 1: According to the set of all IFSs (or IFS) the operation ÷ forms a monoid. 
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Proof: From Proposition 1 it follows that (IFS, ÷) is a groupoid. From Proposition 2 it follows 
that (IFS, ÷) is a semi-group. From Propostion 2 it follows that ÷ is associative. 
We will show the existence of a neutral element: 
Let us suppose that X is a neutral element, i.e. 

A ÷ X = A. 
Therefore  
{(x, µA(x)νX(x) + νA(x)µX(x), µA(x)µX(x) + νA(x)νX(x)) | x ∈ E} = {(x, µA(x), νA(x)) | x  ∈ E} 
and we have the following system of equations: 
 | µA(x)νX(x) + νA(x)µX(x) = µA(x) 
 | µA(x)µX(x) + νA(x)νX(x) = νA(x) 
1st case: µA(x) = 0. Hence 
νA(x)νX(x) = νA(x) i.e. νX(x) = 1 and µX(x) = 0. 
 Therefore the neutral element X = {(x, 0, 1) | x ∈ E} ≡ 0  (of [1]). 
2nd case: µA(x) ≠ 0. Hence 

µX(x) = 
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νX(x) = 1 and µX(x) = 0. 
Hence the neutral element is again the above X = {(x, 0, 1) | x ∈ E} ≡ 0 , i.e. (IFS, ÷) 

is a monoid. 
Now we will show that there is no opposite element and thus so ÷ does not form a 

group. 
Let us suppose that X is the opposite element of the element A, i.e. 

A ÷ X = 0 , 
i.e.  

{(x, µA(x)νX(x) + νA(x)µX(x), µA(x)µX(x) + νA(x)νX(x)) | x ∈ E} = {(x, 0, 1) | x ∈ E}. 
Therefore we have the following system of equations: 

µA(x)νX(x) + νA(x)µX(x) = 0 
µA(x)µX(x) + νA(x)νX(x) = 1 

1st case: µА(x) = 0. Hence 
  νA(x)µX(x) = 0 

 νA(x)νX(x) = 1, but νA(x) ≤ 1 and νX(x) ≤ 1 therefore νA(x) = νX(x) = 1 
and thus so µA(x) = µX(x) = 0. 
Therefore the opposite element of {(x, 0, 1) | x ∈ E } is {(x, 0, 1) | x ∈ E} (i.e. the same). 
2nd case: µA(x) ≠ 0. Hence 

νX(x) = – 
)(

)()(
x
xx

A
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µ
µν , but νX(x) ≥ 0 therefore νA(x)µX(x) = 0. 

2.1 νA(x) = 0 i.e. µA(x)µX(x) = 1, but µA(x) ≤ 1 and µX(x) ≤ 1, therefore µA(x) = µX(x) = 1. 
 Therefore νX(x) = 0 



35 

and so the opposite element of {(x, 1, 0 )| x ∈ E } is {(x, 1, 0) | x ∈ E} (e.i. the same). 
2.2 νA(x) ≠ 0 i.e. µX(x) = 0. 
 Therefore νA(x)νX(x) = 1, but νA(x) ≤ 1 and νX(x) ≤ 1so νA(x) = νX(x) = 1. 
 Therefore µA(x) = 0, which is contrary with the condition of 2nd case µA(x) ≠ 0. 
Therefore our supposition is wrong and so there is no opposite element in the common case. 
Therefore (IFS, ÷) is a monoid and not a group. 
 
Note: Actually, we can notice that the {(x, 0, 1) | x ∈ E} set, in ÷ operation with 
A = {(x, µA(x), νA(x)) | x ∈ E}, actually keeps the other set A intact. 
For example A ÷ {(x, 0, 1) | x ∈ E} = 
= {(x, µA(x), νA(x)) | x ∈ E} ÷ {(x, 0, 1) | x ∈ E} = {(x, µA(x), νA(x)) | x ∈ E}. 
 

On the contrary, the {(x, 1, 0) | x ∈ E} set, in ÷ operation with A = {(x, µA(x), νA(x)) | 
x ∈ E}, returns the opposite of A i.e. ¬A = {(x, νA(x), µA(x)) | x ∈ E}. 

Also notable sets are {(x, 0, 0) | x ∈ E}, which in ÷ operation with every set returns 
itself {(x, 0, 0) | x ∈ E}, and {(x, 0.5, 0.5) | x ∈ E}, which in ÷ operation with A = {(x, µA(x), 
νA(x)) | x ∈ E}, returns  

{(x, 
2

)()( xx AA νµ  + ,  
2

)()( xx AA νµ  + ) | x ∈ E}. 

 
Proposition 4: Operation ÷ is distributive only with the @ operation and specifically (A @ B) 
÷ C = (A ÷ C) @ (B ÷ C) and that (A ÷ B) @ C ≠ (A @ C) ÷ (B @ C). 
Proof: We will prove the first one: 

(A @ B) ÷ C = {(x, 
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(A ÷ C) @ (B ÷ C) = 
= {(x, µA(x)νC(x) + νA(x)µC(x), µA(x)µC(x) + νA(x)νC(x)) | x ∈ E} @ {(x, µB(x)νC(x) + 
νB(x)µC(x), µB(x)µC(x) + νB(x)νC(x)) | x ∈ E} =  
 

= {(x, 
2

)()()()()()()()( xxxxxxxx CBCBCACA µννµµννµ +++
, 

 

2
)()()()()()()()( xxxxxxxx CBCBCACA ννµµννµµ +++

) | x ∈ E}. 

The results are equal and therefore (A @ B) ÷ C = (A ÷ C) @ (B ÷ C). 
To prove that (A ÷ B) @ C ≠ (A @ C) ÷ (B @ C) it is sufficient to examine the case 
A = B = C = {(x, 1, 0) | x ∈ E}: 
(A ÷ B) @ C = {(x, 0.5, 0.5) | x ∈ E}, 
(A @ C) ÷ (B @ C) = {(x, 0, 1) | x ∈ E}. 
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There are no other distributive relations between ÷ and either of these: +, ., ∩, ∪. To prove 
that it is sufficient to check: 
({(x, 0.5, 0) | x ∈ E} ÷ {(x, 1, 0) | x ∈ E}) • {(x, 0.5, 0) | x ∈ E} ≠ 
≠ ({(x, 0.5, 0) | x ∈ E} • {(x, 0.5, 0) | x ∈ E}) ÷ ({(x, 0.5, 0) | x ∈ E} • {(x, 0.5, 0) | x ∈ E}) 
and: 
({(x, 0.5, 0) | x ∈ E} • {(x, 1, 0) | x ∈ E}) ÷ {(x, 0.5, 0) | x ∈ E} ≠ 
≠ ({(x, 0.5, 0) | x ∈ E} ÷ {(x, 0.5, 0) | x ∈ E}) • ({(x, 0.5, 0) | x ∈ E} ÷ {(x, 0.5, 0) | x ∈ E}), 
where in the place of the • operation is put either of these: +, ., ∩, ∪. 
 
Proposition 5: The ÷ operation has the following distributive properties in relation with modal 
operators □ (necessity) and ◊ (possibility): 

□(A ÷ B) ⊂ □A ÷ □B 
◊(A ÷ B) ⊃ ◊A ÷ ◊B 

Proof: 
□(A ÷ B) = {(x, µA(x)νB(x) + νA(x)µB(x),  1 – (µA(x)νB(x) + νA(x)µB(x))) | x ∈ E}, 
□A ÷ □B = {(x, µA(x), 1 – µA(x)} ÷ {x, µB(x), 1 – µB(x)) | x ∈ E} = 
= {(x, µA(x) – µA(x)µB(x) + µB(x) – µA(x)µB(x), µA(x)µB(x) + 1 – µB(x) – µA(x) + µA(x)µB(x)) 
| x ∈ E}. 
We will subtract the membership and non-membership of the second result from the first and 
compare it with 0 to see which one is greater: 
(µA(x)νB(x) + νA(x)µB(x)) – (µA(x) – µA(x)µB(x) + µB(x) - µA(x)µB(x)) = 
= µA(x)( µB(x) + νB(x) – 1) + µB(x)( µA(x) + νA(x) – 1) ≤ 0, 
 
(1 – (µA(x)νB(x) + νA(x)µB(x))) – (µA(x)µB(x) + 1 - µB(x) - µA(x) + µA(x)µB(x)) = 
= – µA(x)νB(x) – νA(x)µB(x) – µA(x)µB(x) + µB(x) + µA(x) – µA(x)µB(x) = 
= µA(x)(1 – (µB(x) + νB(x))) + µB(x)(1 – (µA(x) + νA(x))) ≥ 0. 

This proves that □(A ÷ B) ⊂ □A ÷ □B. 
 
◊(A ÷ B) = {(x, 1 – (µA(x)µB(x) + νA(x)νB(x)), µA(x)µB(x) + νA(x)νB(x)) | x ∈ E}, 
◊A ÷ ◊B = {(x, 1 – νA(x), νA(x)} ÷ {x, 1 – νB(x), νB(x)) | x ∈ E} = 
= {(x, νB(x) – νA(x)νB(x) + νA(x) – νA(x)νB(x), 1 – νB(x) – νA(x) + νA(x)νB(x) + νA(x)νB(x)) | 
x ∈ E}. 

Again we will subtract the membership and non-membership of the second result from 
the first and compare it with 0: 
(1 – (µA(x)µB(x) + νA(x)νB(x))) – (νB(x) – νA(x)νB(x) + νA(x) – νA(x)νB(x)) = 
= 1 – µA(x)µB(x) – νB(x) – νA(x) + νA(x)νB(x) = νB(x)(νA(x) –1) – (νA(x) –1) – µA(x)µB(x) = 
= (1 – νA(x))(1 – νB(x)) – µA(x)µB(x) ≥ 0 
 
(µA(x)µB(x) + νA(x)νB(x)) – (1 – νB(x) – νA(x) + νA(x)νB(x) + νA(x)νB(x)) = 
= µA(x)µB(x) – 1 + νB(x) + νA(x) – νA(x)νB(x) = 
= – (1 – µA(x)µB(x) – νB(x) – νA(x) + νA(x)νB(x)) ≤ 0 (from the previous inequality) 
 
Therefore ◊(A ÷ B) ⊃ ◊A ÷ ◊B. 
 
Finally, we will check some interesting results, using the negation of 
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A = {(x, µA(x), νA(x)) | x ∈ E}: 
¬A = {(x, νA(x), µA(x)) | x ∈ E}. 
 
Proposition 6: A ÷ B = ¬A ÷ ¬B. 
Proof: 
¬A ÷ ¬B = {(x, νA(x), µA(x)} ÷ {x, νB(x), µB(x)) | x ∈ E} = 
= {(x, νA(x)µB(x) + µA(x)νB(x), νA(x)νB(x) + µA(x)µB(x)) | x ∈ E}. 
It is obvious, that this is equal to A ÷ B. 
 
Proposition 7: ¬(A ÷ B) ≠ ¬A ÷ ¬B. 
Proof: 
¬(A ÷ B) = {(x, µA(x)µB(x) + νA(x)νB(x), µA(x)νB(x) + νA(x)µB(x)) | x ∈ E} 
It is obvious that the two are not , therefore ¬(A ÷ B) ≠ ¬A ÷ ¬B. 
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