# Conditional probability on IF-events 

Veronika Valenčáková<br>Faculty of Natural Sciences<br>Matej Bel University<br>Tajovského 40<br>SK-974 01 Banská Bystrica<br>valencak@fpv.umb.sk


#### Abstract

Probability on collections of IF-sets can be considered as a generalization of the classical probability theory on $\sigma$-algebras of sets. The aim of this contribution is to formulate the version of the conditional probability on IF-events and show its properties. The paper is based on the idea for Łukasiewicz implication, but now there are a lot of different implications in the theory of IF-sets.


Keywords: IF-event, conditional probability.

## 1 Introduction

The theory of Intuitionistic Fuzzy Sets (IF-sets) was introduced by Atanassov. We recall that an IF-set is a couple of functions $(\mu, \nu)$ with values in the unit interval, such that $\mu+\nu \leq 1$.

We consider a Łukasiewicz tribe with product (denoted by $\mathcal{T}$ ), which is a non empty set of functions $f: \Omega \rightarrow[0,1]$ satisfying the following conditions:
(i) if $f \in \mathcal{T}$ then $1-f \in \mathcal{T}$,
(ii) if $f, g \in \mathcal{T}$ then $f \oplus g \in \mathcal{T}$,
(iii) if $f_{n} \in \mathcal{T}(n=1,2, \ldots), f_{n} \nearrow f$ then $f \in \mathcal{T}$,
(iv) if $f, g \in \mathcal{T}$ then $f . g \in \mathcal{T}$.

The well-known Łukasiewicz operations $\oplus, \odot$ on $\mathcal{T}$ are given by
$f \oplus g=\min (f+g, 1)=(f+g) \wedge 1, f \odot g=\max (f+g-1,0)=(f+g-1) \vee 0$.

Denote by $\mathcal{F}$ the family of IF-events: $\mathcal{F}=\{(f, g) ; f, g \in \mathcal{T}, f+g \leq 1\}$ together with the operations $\oplus, \odot$ :

$$
\begin{gathered}
\left(f_{1}, g_{1}\right) \oplus\left(f_{2}, g_{2}\right)=\left(f_{1} \oplus f_{2}, g_{1} \odot g_{2}\right)=\left(\left(f_{1}+f_{2}\right) \wedge 1,\left(g_{1}+g_{2}-1\right) \vee 0\right), \\
\left(f_{1}, g_{1}\right) \odot\left(f_{2}, g_{2}\right)=\left(f_{1} \odot f_{2}, g_{1} \oplus g_{2}\right)=\left(\left(f_{1}+f_{2}-1\right) \vee 0,\left(g_{1}+g_{2}\right) \wedge 1\right), \\
\neg(f, g)=(1-f, 1-g) .
\end{gathered}
$$

We define an order on $\mathcal{F}$ by $\left(f_{1}, g_{1}\right) \leq\left(f_{2}, g_{2}\right) \Longleftrightarrow f_{1} \leq f_{2}$ and $g_{1} \geq g_{2}$, and recall that

$$
\left(f_{n}, g_{n}\right) \nearrow(f, g) \Longleftrightarrow f_{n} \nearrow f, g_{n} \searrow g .
$$

The product operation on $\mathcal{F}$ is a binary operation $\cdot$ defined by

$$
\left(f_{1}, g_{1}\right) \cdot\left(f_{2}, g_{2}\right)=\left(f_{1} \cdot f_{2}, 1-\left(1-g_{1}\right) \cdot\left(1-g_{2}\right)\right)=\left(f_{1} \cdot f_{2}, g_{1}+g_{2}-g_{1} \cdot g_{2}\right)
$$

Proposition 1 (Lendelová [6]) The product operation defined of $\mathcal{F}$ satisfies following conditions:
(i) $(1,0) \cdot(f, g)=(f, g)$ for each $(f, g) \in \mathcal{F}$,
(ii) operation • is commutative and associative,
(iii) if $\left(f_{1}, g_{1}\right),\left(f_{2}, g_{2}\right) \in \mathcal{F}$ and $\left(f_{1}, g_{1}\right) \odot\left(f_{2}, g_{2}\right)=(0,1)$, then

$$
\left(f_{3}, g_{3}\right) \cdot\left(\left(f_{1}, g_{1}\right) \oplus\left(f_{2}, g_{2}\right)\right)=\left(\left(f_{3}, g_{3}\right) \cdot\left(f_{1}, g_{1}\right)\right) \oplus\left(\left(f_{3}, g_{3}\right) \cdot\left(f_{2}, g_{2}\right)\right)
$$

and

$$
\left(\left(f_{3}, g_{3}\right) \cdot\left(f_{1}, g_{1}\right)\right) \odot\left(\left(f_{3}, g_{3}\right) \cdot\left(f_{2}, g_{2}\right)\right)=(0,1)
$$

for each $\left(f_{3}, g_{3}\right) \in \mathcal{M}$,
(iv) if $\left(f_{1 n}, g_{1 n}\right),\left(f_{2 n}, g_{2 n}\right) \in \mathcal{F}$ and $\left(f_{1 n}, g_{1 n}\right) \searrow(0,1),\left(f_{2 n}, g_{2 n}\right) \searrow(0,1)$, then $\left(f_{1 n}, g_{1 n}\right) \cdot\left(f_{2 n}, g_{2 n}\right) \searrow(0,1)$.

Proof. See [6], Theorem 1.

## 2 Conditional probability

Definition $1 A$ state on $\mathcal{F}$ is a mapping $m: \mathcal{F} \longrightarrow[0,1]$, which satisfies the following conditions:

1. $m(1,0)=1$,
2. if $\left(f_{1}, g_{1}\right) \oplus\left(f_{2}, g_{2}\right) \leq(1,0)$ then $m\left(\left(f_{1}, g_{1}\right) \oplus\left(f_{2}, g_{2}\right)\right)=m\left(f_{1}, g_{1}\right)+m\left(f_{2}, g_{2}\right)$,
3. if $\left(f_{n}, g_{n}\right) \nearrow(f, g)$ then $m\left(f_{n}, g_{n}\right) \nearrow m(f, g)$.

Remark The condition 2. in previous Definition can be equivalently written as follows:

$$
\text { if }\left(f_{1}, g_{1}\right) \leq \neg\left(f_{2}, g_{2}\right) \text { then } m\left(\left(f_{1}, g_{1}\right) \oplus\left(f_{2}, g_{2}\right)\right)=m\left(f_{1}, g_{1}\right)+m\left(f_{2}, g_{2}\right) \text {. }
$$

By induction is easy to prove that

$$
\text { if } \bigoplus_{n=1}^{k}\left(f_{n}, g_{n}\right) \leq(1,0) \text { then } m\left(\bigoplus_{n=1}^{k}\left(f_{n}, g_{n}\right)\right)=\sum_{n=1}^{k} m\left(f_{n}, g_{n}\right) \text {. }
$$

Definition 2 Denote by $\mathcal{B}(R)$ the Borel $\sigma$-algebra. An observable on $\mathcal{F}$ is a mapping $y: \mathcal{B}(R) \longrightarrow \mathcal{F}$ satisfying the following conditions:

1. $y(R)=(1,0)$,
2. if $A \cap B=\emptyset$ then $y(A) \odot y(B)=(0,1)$ and $y(A \cup B)=y(A) \oplus y(B)$,
3. if $A_{n} \nearrow A$ then $y\left(A_{n}\right) \nearrow y(A)$.

Definition 3 If $m$ is a state and $y$ is an observable on $\mathcal{F}$, then the probability distribution of $\boldsymbol{y}$ is the mapping $m_{y}: \mathcal{B}(R) \longrightarrow[0,1]$ given by the formula

$$
m_{y}(A)=m(y(A)) .
$$

Theorem 1 There exists an integrable function $\varphi: R \rightarrow R$ such that

$$
\int_{a}^{b} \varphi d \mu_{\mathcal{F}}=m((f, g) \cdot y([a, b)))
$$

holds for any interval $[a, b)$.
Proof.
Existence of function $\varphi$ will be proved by with help of embedding $\mathcal{F}$ into MV-algebra. Existence of function $p: R \rightarrow R$ satisfying the condition

$$
\int_{B} p d m_{y}=m((f, g) \cdot y(B))
$$

(for $(f, g) \in \mathcal{M}, m: \mathcal{M} \rightarrow[0,1], y: \mathcal{B}(R) \rightarrow \mathcal{M})$ was proved in [9].
The considered MV-algebra induced by IF-events was $(\mathcal{M}, \oplus, \odot, \neg, \mathbf{0}, u)$, where

$$
\begin{aligned}
\mathcal{M} & =\{(f, g) ; f, g \in \mathcal{T}, \mathcal{T}\}, \\
\left(f_{1}, g_{1}\right) \oplus\left(f_{2}, g_{2}\right) & =\left(\left(f_{1}+f_{2}\right) \wedge 1,\left(g_{1}+g_{2}-1\right) \vee 0\right), \\
\left(f_{1}, g_{1}\right) \odot\left(f_{2}, g_{2}\right) & =\left(\left(f_{1}+f_{2}-1\right) \vee 0,\left(g_{1}+g_{2}\right) \wedge 1\right), \\
\neg(f, g) & =(1-f, 1-g), \\
\mathbf{0} & =(0,1), \\
u & =(1,0) .
\end{aligned}
$$

From the facts:

- family $\mathcal{F}$ can be embedded into $\mathcal{M}$,
- there exists one-to-one correspondence between state (probability) on $\mathcal{M}$ and state (probability) on $\mathcal{F}$,
is clear, that the existence of the function $\varphi$ follows from the existence of version of the conditional probability on MV-algebra $\mathcal{M}$ induced by IF-events.

Definition 4 Let $(f, g) \in \mathcal{F}$ and $y: \mathcal{B}(R) \rightarrow \mathcal{F}$ be an observable. A function $p((f, g) \mid y): R \rightarrow R$ is a version of the conditional probability of $(f, g)$ with respect to $y$, if

$$
\int_{B} p((f, g) \mid y) d m_{y}=m((f, g) \cdot y(B))
$$

for every $B \in \mathcal{B}(R)$.
Properties of conditional probability (listed in next Proposition) follow immediately from the properties of conditional probability defined on MV-algebra $\mathcal{M}$.

Proposition 2 Let $y$ be an observable, $(f, g) \in \mathcal{F}$. Then $p((f, g) \mid y)$ has the following properties:

1. $p((0,1) \mid y)=0, p((1,0) \mid y)=1 \quad m_{y}$-almost everywhere,
2. $0 \leq p((f, g) \mid y) \leq 1 \quad m_{y}$-almost everywhere,
3. if $\widehat{+}_{n=1}^{k}\left(f_{n}, g_{n}\right) \leq(1,0)$ then $p\left(\left[\hat{+}_{n=1}^{k}\left(f_{n}, g_{n}\right)\right] \mid y\right)=\sum_{n=1}^{k} p\left(\left(f_{n}, g_{n}\right) \mid y\right) \quad m_{y}$-almost everywhere,
4. if $\left(f_{n}, g_{n}\right) \nearrow(f, g)$ then $p\left(\left(f_{n}, g_{n}\right) \mid y\right) \nearrow p((f, g) \mid y) \quad m_{y}$-almost everywhere.

Acknowledgements: This paper was supported by Grant VEGA 1/2002/05.

## References

[1] Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. In Physica Verlag, New York.
[2] Atanassov, K. (2001). Remarks on the conjuctions, disjunctions and implications of the intuitionistic fuzzy logic. Int. J. of Uncertainty, Fuzziness and Knowledge-Based Systems Vol. 9, No. 1, 55-65.
[3] Atanassov, K. (2006). On eight new intuitionistic fuzzy implications. Proc. of 3rd Int. IEEE Conf. "Intelligent Systems" IS06, London, 4-6 Sept. 2006, 741-746.
[4] Cignoli, R. L. O., D'Ottaviano, I. M. L., Mundici, D. (2000). Algebraic Foudations of Many-valued Reasoning. In Kluwer Academic Publishers, Dordrecht.
[5] Dvurečenskij, A., Pulmannová, S. (2000). New Trends in Quantum Structures. In Kluwer Academic Publishers, Dordrecht.
[6] Lendelová, K. (2006). Conditional IF-probability. In Soft Methods for Integrated Uncertainty Modelling, Advances in Soft Computing, Springer.
[7] Riečan, B., Mundici, D. (2002). Probability on MV-algebras. In Handbook of Measure Theory (E. Pap. ed.), Elsevier, Amsterdam, 869-909.
[8] Riečan, B., Neubrunn, T. (1997). Integral, Measure and Ordering. In Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.
[9] Valenčáková, V. Conditional probability on the product MV algebras induced by IF-events. Submitted in Mathematica Slovaca.

