Tenth Int. Conf. on IFSs, Sofia, 28-29 Oct. 2006
NIFS Vol. 12 (2006), No. 3, 15-19

A GENERALIZED NET DESCRIBING A PROCESS OF DECISION MAKING WITH INTUITIONISTIC FUZZY EXPERT SCORES

Krassimir T. Atanassov ${ }^{1}$, Eulalia Szmidt ${ }^{2}$ and Janusz Kacprzyk ${ }^{2}$
${ }^{1}$ CLBME - Bulgarian Academy of Sciences, P.O.Box 12, Sofia-1113, Bulgaria e-mail: krat@bas.bg
${ }^{2}$ Systems Research Institute, Polish Academy of Sciences, ul. Newelska 6, 01-447 Warsaw, Poland
E-mail: \{szmidt, kacprzyk\}@ibspan.waw.pl

Abstract

We propose a description of a decision making process via a Generalized Net.

1 Generalized Nets and Decision Making

Let us have k experts E_{1}, \ldots, E_{k} who are to evaluate some situation/object/event using given criteria. A Generalized net (GN, see [1]) describing their work is construced and discussed. The process of Descision Making (DM) of the experst is described in [3].

Initially, token α enters place a_{1} with initial characteristic
"situation/object/event for estimation",
token β enters place b_{1} with initial characteristic

$$
\text { "criteria for } D M " \text {, }
$$

and tokens $\gamma_{1}, \ldots \gamma_{k}(k \geq 1)$ enter place c_{1}, \ldots, c_{k} with initial characteristics

$$
"\left\langle E_{i}, \mu_{i}^{E}, \nu_{i}^{E}\right\rangle ",
$$

where $1 \leq i \leq k$ and for i-th expert $E_{i} \mu_{i}^{E}$ and ν_{i}^{E} are degrees of correctness and incorrectness, i.e., degrees of its score. These degrees generate intuitionistic fuzzy couples, because for each $i=1, \ldots, k$

$$
\mu_{i}^{E}+\nu_{i}^{E} \leq 1
$$

(for intuitionistic fuzziness see [2]).
The GN contains $k+4$ transitions that have the following forms.

$$
Z_{1}=<\left\{a_{1}, b_{1}, b_{2}, c_{1}, \ldots, c_{k}\right\},\left\{a_{2}, b_{2}, c_{k+1}, c_{2 k}\right\},
$$

	a_{2}	b_{2}	c_{k+1}	\ldots	$c_{2 k}$
a_{1}	true	false	false	\ldots	false
b_{1}	false	true	false	\ldots	false
b_{2}	false	true	false	\ldots	false,
c_{1}	false	false	true	\ldots	false
\vdots	\vdots	\vdots	\vdots	\ldots	\vdots
c_{k}	false false false	\ldots	true		
$\wedge\left(a_{1}, b_{1}, c_{1}, \ldots, c_{k}\right)>$					

Token α enters place a_{2}, without a new characteristic.
Token β enters place b_{2}, where it will unite with all next β-tokens and will enter the net, obtaining as a current characteristic
"list of all criteria for decision making".

Fig. 1 GN describing a process of decision making
The i-th token γ_{i} enters place c_{i} with a characteristic
"list of criterie for $D M$, that will be used by expert E_{i} ".

Below we shall describe the form of i-th transition Y_{i}, where $1 \leq i \leq k$.
We shall assume that each expert evaluates the given situation/object/event, using the criteria that he/she determine (as the characteristic from place c_{k+i} of the token that represents the respective expert's list of criteria). Therefore, the separate expert can use different list of criteria. We shall assume that each evaluation use one elementary GN-time-step. Hence, the number of tokens cycles in place l_{k+i} can be different.

$$
Y_{i}=<\left\{c_{k+i}, c_{2 k+3 i}\right\},\left\{c_{2 k+3 i-2}, c_{2 k+3 i-1}, c_{2 k+3 i}\right\}
$$

	$c_{2 k+3 i-2}$	$c_{2 k+3 i-1}$	$c_{2 k+3 i}$
c_{k+1}	false	false	true
$c_{2 k+3 i}$	$W_{2 k+3 i, 2 k+3 i-2}$	$W_{2 k+3 i, 2 k+3 i-1}$	$W_{2 k+3 i, 2 k+3 i}$

$$
\vee\left(c_{k+i}, c_{2 k+3 i}\right)>
$$

where
$W_{2 k+3 i, 2 k+3 i-2}=$ "the expert finishes his/her evaluation and token δ does not enter place d_{1} ",
$W_{2 k+3 i, 2 k+3 i-1}=$ "the expert finishes his/her evaluation or token δ enters place d_{1} ",
$W_{2 k+3 i, 2 k+3 i}=$ "the expert does not finish his/her evaluation and token δ does not enter place d_{1} ",
where $\neg P$ is the negation of predicate P.
The GN must be constructed so, that the place d_{1} has the higher priority than each one of places c_{1}, \ldots, c_{k}. Therefore, token δ will enters plaxce d_{1} before γ-tokens and we can calculate correctly the above three predicates.

Token γ_{i} obtains the following characteristics. In place $c_{2 k+3 i}$ it is

```
"current evaluation of situation/object/event on the basis of the current used criterion".
```

When the expert finishes evaluation of the situation/object/event using all the criteria that he/she wishes to use, and when there is not a token in place d_{1}, then the token γ_{i}, representing the expert splits to two tokens γ_{i}^{\prime} and $\gamma_{i}^{\prime \prime}$ that, respectively, enter places $c_{2 k+3 i-2}$ and $c_{2 k+3 i-1}$ obtaining characteristics
"aggregated evaluation of situation/object/event on the basis of all used criteria by

$$
\text { the } i \text {-th expert' }
$$

and
$\begin{cases}\text { "the } i \text {-th expert is not ready } & \text { if the expert does not finish } \\ \text { with his/her evaluation" } & \text { his/her evaluation or token } \delta \text { enters place } d_{1} \\ \text { "the } i \text {-th expert is ready } & \text { if the expert finishes } \\ \text { with his/her evaluation" } & \text { his/her evaluation and token } \delta \text { is not enters place } d_{1}\end{cases}$

In some moment token α^{\prime} enters place a_{3} with initial characteristic
"information for changings of the situation/object/event".

When the process of experts' evaluation must stop, token δ enters place d_{1} without an initial characteristic.

$$
\begin{aligned}
& Z_{2}=<\left\{a_{2}, a_{3}, c_{2 k+1}, \ldots, c_{5 k-2}, d_{1}, d_{3}\right\},\left\{a_{4}, d_{2}, d_{3}\right\}, \\
& \begin{array}{c|ccc}
& a_{4} & d_{2} & d_{3} \\
\hline a_{2} & W_{2,4} & \text { false } & \text { false }
\end{array} \\
& a_{3} \quad W_{3,4} \text { false false } \\
& c_{2 k+1} \text { false false true } \\
& \begin{array}{c|lcc}
c_{5 k-2} & \text { false } & \text { false } & \text { true } \\
d_{1} & \text { false } & \text { true } & \text { false } \\
d_{3} & \text { false } & W_{3,2} & W_{3,3}
\end{array} \\
& \vee\left(\wedge\left(a_{2}, a_{3}\right), \vee\left(c_{2 k+1}, \ldots, c_{5 k-2}, d_{3}\right), \wedge\left(d_{1}, d_{3}\right)\right)>,
\end{aligned}
$$

where
$W_{2,4}=$ "there is a token in place a_{3} ",
$W_{3,4}=$ "there is a token in place a_{2} ",
$W_{3,2}=$ "there is a token in place d_{1} ",
$W_{3,3}=\neg W_{3,2}$.
Tokens α and α^{\prime} unite in place a_{4} to token α, that obtain characteristic
"final form of the situation/object/event".
Each γ-token that is in the input place of transition Z_{2} (therefore, this is before the moment in which token δ enters place d_{1}) enters place d_{3} and all these tokens unite in one token γ with characteristic
"current aggregation of the evaluations of the situation/object/event on the basis of the aggregated estimations of the experts, who finished his/her research".
Token δ enters place a_{2} where it unites with token γ obtaining the characteristic "final aggregated evaluation of the situation/object/event on the basis of the aggregated estimations of all experts, who finished his/her research".
In some moment tokens (one or more) ε enter place e_{1} with initial characteristic "criterion for comparison of the experts' evaluations and the real informations for the situation/object/event".

$$
\begin{aligned}
& Z_{3}=<\left\{a_{4}, d_{2}, e_{1}, e_{2}\right\},\left\{a_{5}, e_{2}\right\}, \\
& a_{5}
\end{aligned} \quad e_{2}, ~ \begin{array}{l|ll}
a_{4} & \text { true } & \text { false } \\
d_{2} & \text { true } & \text { false } \\
e_{1} & \text { false } & \text { true } \\
e_{2} & \text { false } & \text { true }
\end{array}
$$

$$
\vee\left(\wedge\left(a_{4}, d_{2}\right), e_{1}, e_{2}\right)>
$$

Tokens α and δ enter place a_{5} and unite in token α with a characteristic
"results of the comparison of the experts' evaluations and the real informations for the situation/object/event'.

Token(s) ε are united in place e_{2} with a characteristic
"list of criteria for comparison of the experts' evaluations and the real informations for the situation/object/event'".

$$
\begin{aligned}
& Z_{4}=<\left\{a_{5}, c_{2 k+2}, \ldots, c_{5 k-1}\right\},\left\{a_{6}, c_{5 k+1}, c_{6 k}\right\}, \\
& \begin{array}{c|cccc}
& a_{6} & c_{k+1} & \ldots & c_{2 k} \\
\hline a_{1} & \text { true } & \text { false } & \ldots & \text { false } \\
c_{1} & \text { false } & \text { true } & \ldots & \text { false }, \\
\vdots & \vdots & \vdots & \ldots & \vdots \\
c_{k} & \text { false } & \text { false } & \ldots & \text { true }
\end{array} \\
& \wedge\left(a_{5}, c_{2 k+2}, \ldots, c_{5 k-1}\right)>.
\end{aligned}
$$

Token α go out GN through place a_{6} without a new characteristic, while token γ_{i} ($1 \leq i \leq k$) enters place $c_{5 k+i}$ with characteristic
"new expert's score on the basis of the comparison of the expert evaluation and the real status of the situation/object/event'.

2 Conclusions

We have shown the possibilities of Generalized Nets as far as description of the decision making processes is concerned.

References

[1] Atanassov K. Generalized Nets. Singapore, New Jersey, London, World Scientific, 1991.
[2] Atanassov K. Intuitionistic Fuzzy Sets, Springer-Verlag, Heidelberg, 1999.
[3] Atanassov, K., G. Pasi and R. Yager. Intuitionistic fuzzy interpretations of multicriteria multi-person and multi-measurement tool decision making. International Journal of Systems Research, Vol. 36, 2005, No. 14,

