Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 27, 2021, No. 4, 78–81 DOI: 10.7546/nifs.2021.27.4.78-81

Note on one inequality and its application in intuitionistic fuzzy sets theory. Part 2

Mladen V. Vassilev-Missana

5 Victor Hugo Str., Sofia, Bulgaria e-mail: statiamath@abv.bg

Received: 21 June 2021

Accepted: 30 November 2021

Abstract: In the paper, the inequality $\frac{\mu^{\frac{1}{\nu}}}{\nu} + \frac{\nu^{\frac{1}{\mu}}}{\mu} \leq \frac{1}{2\mu\nu} - 1$ is introduced and proved. The same inequality is valid for $\mu = \mu_A(x), \nu = \nu_A(x)$, where μ_A and ν_A are the membership and the non-membership functions of an arbitrary intuitionistic fuzzy set A over a fixed universe E and $x \in E$.

Keywords: Inequality, Intuitionistic fuzzy set.2020 Mathematics Subject Classification: 03E72.

1 Introduction

The Intuitionistic Fuzzy Sets (IFSs) are introduced by K. Atanassov in [1,2] as follows. Let E be a universal set, $\mu_A, \nu_A : E \to I := [0,1]$ be mappings and for each $x \in E$:

$$\mu_A(x) + \nu_A(x) \le 1.$$

Then the set

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle | x \in E \}$$

is called an IFS.

Mappings μ_A and ν_A are called membership and non-membership functions for the element $x \in E$ to the set $A \subseteq E$.

When for each $x \in E$, it holds that $\mu_A(x) + \nu_A(x) = 1$, then the set A is transformed to the ordinary fuzzy (Zadeh's) set [4].

2 Main result

We formulate and prove the following statement.

Theorem. Let $\mu, \nu \in (0, 1)$ be real numbers satisfying inequality

$$\mu + \nu \le 1.$$

Then the inequality

$$\frac{\mu^{\frac{1}{\nu}}}{\nu} + \frac{\nu^{\frac{1}{\mu}}}{\mu} \le \frac{1}{2\mu\nu} - 1 \tag{1}$$

holds and in it the equality is possible only when $\mu = \nu = \frac{1}{2}$.

We recall that in [3] the inequality

$$\mu^{\frac{1}{\nu}}+\nu^{\frac{1}{\mu}}\leq \frac{1}{2}$$

was proved under the same conditions as in the above Theorem. We recall also the well-known Young's inequality

$$\frac{A^p}{p} + \frac{B^q}{q} \ge AB,\tag{2}$$

which is valid when A, B, p, q are positive real numbers and $\frac{1}{p} + \frac{1}{q} = 1$. The equality is possible if and only if (iff) A = B.

In the paper, we shall use a particular case of (2), when $\frac{1}{p} = 1 - x$, $\frac{1}{q} = x$, A = x, B = 1 - x, where $x \in (0, 1)$. In this case, (2) yields

$$(1-x)x^{\frac{1}{1-x}} + x(1-x)^{\frac{1}{x}} \ge x(1-x).$$
(3)

3 Proof of the Theorem

From (3) we obtain

$$x^{\frac{1}{1-x}} - x \cdot x^{\frac{1}{1-x}} - (1-x)(1-x)^{\frac{1}{x}} + (1-x)^{\frac{1}{x}} \ge x(1-x).$$

Hence,

$$x(1-x) + x \cdot x^{\frac{1}{1-x}} + (1-x)(1-x)^{\frac{1}{x}} \le x^{\frac{1}{1-x}} + (1-x)^{\frac{1}{x}}.$$
(4)

But in [3], the inequality

$$x^{\frac{1}{1-x}} + (1-x)^{\frac{1}{x}} \le \frac{1}{2}$$

was proved and the equality is possible iff $x = \frac{1}{2}$.

From the above inequality and (4) we obtain

$$x(1-x) + x \cdot x^{\frac{1}{1-x}} + (1-x)(1-x)^{\frac{1}{x}} \le \frac{1}{2}$$

Dividing the both sides of the last inequility by x(1-x), we obtain

$$\frac{x^{\frac{1}{1-x}}}{1-x} + \frac{(1-x)^{\frac{1}{x}}}{x} \le \frac{1}{2x(1-x)} - 1.$$
(5)

The right-hand side of (5) may be represent in each one of the following forms:

$$\frac{x^2 + (1-x)^2}{2x(1-x)}; \quad \frac{\frac{x}{1-x} + \frac{1-x}{x}}{2}; \quad \frac{\frac{1}{x} + \frac{1}{1-x}}{2} - 1.$$

Therefore, the following inequalities are true:

$$\frac{x^{\frac{1}{1-x}}}{1-x} + \frac{(1-x)^{\frac{1}{x}}}{x} \le \frac{1}{2x(1-x)} - 1,$$
(6)

$$\frac{x^{\frac{1}{1-x}}}{1-x} + \frac{(1-x)^{\frac{1}{x}}}{x} \le \frac{x^2 + (1-x)^2}{2x(1-x)},\tag{7}$$

$$\frac{x^{\frac{1}{1-x}}}{1-x} + \frac{(1-x)^{\frac{1}{x}}}{x} \le \frac{\frac{x}{1-x} + \frac{1-x}{x}}{2},\tag{8}$$

$$\frac{x^{\frac{1}{1-x}}}{1-x} + \frac{(1-x)^{\frac{1}{x}}}{x} \le \frac{\frac{1}{x} + \frac{1}{1-x}}{2} - 1.$$
(9)

Let $\mu, \nu > 0$ be real numbers and $\mu + \nu = 1$. Then from (6)–(9) we obtain the following inequalities:

$$\frac{\mu^{\frac{1}{\nu}}}{\nu} + \frac{\nu^{\frac{1}{\mu}}}{\mu} \le \frac{1}{2\mu\nu} - 1$$

(i.e., (1)),

$$\frac{\mu^{\frac{1}{\nu}}}{\nu} + \frac{\nu^{\frac{1}{\mu}}}{\mu} \le \frac{\mu^2 + \nu^2}{2\mu\nu},\tag{10}$$

$$\frac{\mu^{\frac{1}{\nu}}}{\nu} + \frac{\nu^{\frac{1}{\mu}}}{\mu} \le \frac{\frac{\mu}{\nu} + \frac{\nu}{\mu}}{2},\tag{11}$$

$$\frac{\mu^{\frac{1}{\nu}}}{\nu} + \frac{\nu^{\frac{1}{\mu}}}{\mu} \le \frac{\frac{1}{\mu} + \frac{1}{\nu}}{2} - 1.$$
(12)

We note that (1) and (10)–(12) become to equalities iff $\mu = \nu = \frac{1}{2}$.

Also, the right-hand sides of (1) and (10)–(12) coincides, since $\mu + \nu = 1$.

Therefore, the Theorem is proved for the case, when $\mu + \nu = 1$. Now, we shall prove it for the case $\mu + \nu < 1$. In this case, the right-hand sides of (1) and (10)–(12) do not coincide. Really, when $\mu + \nu < 1$, (1) takes the form

$$\frac{\mu^{\frac{1}{\nu}}}{\nu} + \frac{\nu^{\frac{1}{\mu}}}{\mu} \le \frac{1}{2\mu\nu} - 1,\tag{13}$$

i.e., the equality in (1) is impossible.

To prove (13), we first re-write it in the form

$$\mu^{1+\frac{1}{\nu}} + \nu^{1+\frac{1}{\mu}} \le \frac{1}{2} - \mu\nu.$$
(14)

Second, we choose such $\nu^* \in (0,1)$ that $\mu + \nu^* = 1$. Hence, $\nu < \nu^*$, $\frac{1}{\nu^*} < \frac{1}{\nu}$ and the inequality

$$\mu^{1+\frac{1}{\nu^*}} + (\nu^*)^{1+\frac{1}{\mu}} \le \frac{1}{2} - \mu\nu^*$$

holds.

To prove (14) (and therefore, the Theorem), it is enough to establish the inequalities:

$$\mu^{1+\frac{1}{\nu}} + \nu^{1+\frac{1}{\mu}} < \mu^{1+\frac{1}{\nu^*}} + (\nu^*)^{1+\frac{1}{\mu}}$$
(15)

and

$$\frac{1}{2} - \mu \nu^* < \frac{1}{2} - \mu \nu.$$
(16)

Using the fact that $\mu \in (0,1)$ and $\frac{1}{\nu^*} < \frac{1}{\nu}$, we obtain

$$\mu^{1+\frac{1}{\nu}} < \mu^{1+\frac{1}{\nu^*}}.$$
(17)

From $\nu < \nu^*$ we obtain

$$\nu^{1+\frac{1}{\mu}} < (\nu^*)^{1+\frac{1}{\mu}}.$$
(18)

Then, adding (17) and (18), we prove (15). The inequality (16) is obvious, since it is equivalent to $-\nu^* < -\nu$, i.e., to $\nu^* > \nu$ that is true.

Inequality (1) admits the intuitionistic fuzzy set's interpretation. Namely, let E be a universe, $\mu: E \to (0, 1), \nu: E \to (0, 1)$ are mappings and

$$A = \{ \langle x, \mu(x) + \nu(x) \rangle | x \in E \}$$

be an intuitionistic fuzzy set see [1, 2] with μ being the membership function and ν being the non-membership function. Then setting $\mu = \mu(x), \nu = \nu(x)$ for any fixed $x \in E$, we obtain that functions μ and ν satisfy (1).

4 Conclusion

In the present paper, we represented a new inequality which has an intuitionistic fuzzy set interpretation. It can be seen easily, that the case $\mu + \nu = 1$ has an interpretation for Zadeh's fuzzy sets [4].

References

- [1] Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Heidelberg: Springer.
- [2] Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory, Berlin: Springer.
- [3] Vassilev-Missana, M. (2021). Note on one inequality and its application in intuitionistic fuzzy sets theory. Part 1. *Notes on Intuitionistic Fuzzy Sets*, 27(1), 53–59.
- [4] Zadeh, L. (1965). Fuzzy sets. Information and Control, 8, 338–353.