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1 Introduction

In 1983, K. Atanassov laid the foundation for the development of the theory of intuitionistic fuzzy
sets [1-3]. This concept is a generalization of fuzzy theory introduced by L. Zadeh in 1965 [12].

In [6], O. Kaleva gave the existence and uniqueness for a solution of the fuzzy differential
equation

(1) = f(t,2(t)),

In [5], S. Melliani et al. discussed the existence and uniqueness for a solution of the intuition-
istic fuzzy differential equation

2(t) = f(t, z(t)), x(0) = xo.

Several works made in the study of the averaging of fuzzy differential equations [7,8, 11].
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In this paper, we establish averaging of intuitionistic fuzzy differential equations in order to
generalize the results stated for fuzzy differential equations.
Consider the following problem with a small parameter ¢:

w)= 1 (L)
u(0) = uo € IF,

o))

where f : RT x U — IF, U C IF is an open subset and £ > 0 is a small parameter.

2 Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which are used through-
out this paper.

Definition 1. We denote
IF = {(u,v) : R = [0,1]* V2 € R /0 < u(z) +v(z) < 1}

where

1. (u,v) is normal i.e there exists xq, x1 € R such that u(zo) = 1 and v(z,) = 1.

2. w is fuzzy convex and v is fuzzy concave.

3. w is upper semicontinuous and v is lower semicontinuous

4. supp(u,v) = cl({x € R:v(z) < 1}) is bounded.
For a € [0,1] and (u,v) € IF, we define

[(u,0)]* ={z eR|v(z) <1-aj}

and
[(w,v)]a ={z € R |u(z) = a}

Remark 1. We can consider [(u,v)], as [u]* and [(u,v)]* as [1 — v]* in the fuzzy case.

Definition 2. The intuitionistic fuzzy zero is intuitionistic fuzzy set defined by

) (1,0), =0
O.0)() _{ (0,1), %0

Definition 3. Let (u,v),(u/',v") € IF and X\ € R, we define the addition by :

((u,0) & (u',0)) (2) = (Sup min(u(z), u'(y)); inf maX(v(l’),v’(y)))

z=x+y z=z+Yy

) Qu,dv) if AF£D
M“’“)_{ 001 ifA=0
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According to Zadeh’s extension principle, we have addition and scalar multiplication in intu-
itionistic fuzzy number space [ F' as follows:

[(u,0) & (z,w)]* = [(u,v)]* + [(z, w)]"
[)\(U, v)]a = )‘[(u7 U)]a
[(u,0) ® (z,w)]a = [(u,v)]a + [(2, w)]a

[A(w, v)]a = Al(u,v)]a
where (u,v), (z,w) € [F and A € R.

We denote
[(w, )]} (@) = inf{z € R [ u(z) > o}
[(w, )]} (@) = sup{z € R u(z) = o}
[(u,v)]; (o) =inf{zx e R|v(z) <1-—a}
[(u,0)]; (@) = supfa € R | v(z) < 1 - a}
Remark 2.

Theorem 1. ( [10]) let M = {M,, M* : « € [0,1]} be a family of subsets in R satisfying
Conditions (i) — (iv)

i) a <pB= MsgC M, and MPB c M~
ii) M, and M* are nonempty compact convex sets in R for each o € [0, 1].

iii) for any nondecreasing sequence a; — « on [0,1], we have M, = (), M,, and M* =

M M.
iv) For each o € |0, 1], M, C M* and define u and v, by
u(x) = ,
sup{a € [0,1] : z € M,} ifz e M,
v(z) =

Then (u,v) € IF.

1 if v¢ M°
1—sup{a€e|0,1] : x € M*} ifxe M

The space [ F' is metrizable by the distance of the following form:

dee ((u,0), (2, 0)) = 7 sup [[(w,v)]5 (@) = (2, w)}f ()

4 0<a<l

+2 p 00)f @) ~ [ ) @)
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+ E sup |[(u,v)], (@) = [(z, w)], ()]

4 0<a<l

2 s 0] @) ~ (e ) @)

where |.| denotes the usual Euclidean norm in R.
Theorem 2. ( [10]) (I F,d,) is a complete metric space.

On [ F', we define the H-difference [9] as follows: © © v has sense if there exists w € I such
that
UOUV=wESUu=v+w.

Definition 4. A function f : I — [F is continuous at a point ty € I if,

Ve>0,3n>0, tel |t—t] <n=dx(f(t),f(tr)) <e.
f continuous on I if it is continuous at every point ty € 1.
Definition 5. A function f : I x I[F — IF is continuous at a point (ty,ug) € I x IF' if,
Ve>0,3n >0, (t,u) €l xXIF |t—to] <nand ds(u,up) <n= d(f(t,u), f(to,u)) < €.
f continuous on I x IF if it is continuous at every point (to, ug) € I.

Definition 6. A function f : [ x IF — [ F is continuous in uy € I F uniformly with respect to
telif, foranyu e I[F

Ve>0,3dn >0, u€lF, dy(u,ug) <n=doo(f(t,u), f(to,u)) < e, vVt e I.

Definition 7. A mapping f : |a,b] — IF is said to be differentiable at 1, if there exist f’(ty) €
I F such that the following limits:

lim f(to+h) o f(to) and lim f(to) © f(to — h)
h—0+ h h—0+ h

exist and they are equal to f'(1).

Theorem 3. ( [5]) Let f : I —> IF be differentiable and f' is integrable over I. Let a € I,
then, for eacht € I, we have

£(t) = f(a) + / f'(s)ds.

3 Main results

Definition 8. A mapping v : [0,a) — U, 0 < a < o0, is called a solution of problem (1) if it is
continuous, for all t € [0, a) and satisfies the integral equation

ult) = uo + /Ot f (S u(s)) ds.

47



Definition 9. A mapping v is called a maximal solution of problem (1) if there exists a maximal

positive interval of definition I of u, such that u is a solution of (1) on I.

We associate Eq.(1) with the averaging equation
2)
Where the function f : U — IF, is such that,

f(u) :llm—/fsus Yu € U,

T—+o00 T

with the metric d..
To establish our results, we introduce the following assumptions:

(i) the function f : R* x U — [F is continuous;
(ii) the function f is continuous in u € U uniformly with respect to ¢ € R™;
(iii) there exists a locally integrable function ¢ : Rt — R* and M > 0 such that
deo (f(t, 1), 001,0)) < (1), VteR", VYuel,

and

to
/ o(t)dt < M(ty —t1), Vit bt € R

t1

(iv) the limit

exists for all v € U;

(v) there exists a constant N > 0 such that, for all continuous fuctions v,v : Rt — U and

t>0,
o S, [ Fotsnas) < v ' dalu(s), (5))ds.

To establish our main result we will prove the following lemmas:

Lemma 1. Let assumptions (i1), (iii) and (iv) be satisfied. Then the function f is continuous
and

doo(f (1), 01,0)) < M, Vu e U.

48



Proof. Let u; € U, From the assumption (ii), we get, for all € > 0, there exists 6 > 0 such that,
Yue U

doo(uaul) <o = doo(f<8>u)7f(s7ul)) < %7 Vs € R+'

And, by assumption (iv), we have, for all > 0, there exists 7 > 0 such that

I .
vT > T, doo (T/o f(s,u)ds,f(u)) <n, YueU.

< dy f(u),% OT (s,u)ds) + doo (% /OTf(s,u)ds,%/oT f(s,ul)ds)
+do (1 /OT f(s,ul)ds,f(ul)) < 277+%/Tdoo(f(s,u),f(s,ul))ds
+

0

dw(f(u)a f(ul)) <e.

Then, f is continuous at u;.
From the assumption (iv), we have for all > 0, there exists 7y > 0 such that V1" > T

doo (f(u),%/Tf(s,u)ds> <n, Vu e U.
0
Therefore,
T T
doo(f(u)a 0(170)) S doo (f(u), %/0 f(S,U)dS) + doo <%/0 f(S,U)dS, 0(1,0))

1 [T
774_?/0 doo(f(s,u)ds,0(1,0))
< n+M.

IN

Since 7 is arbitrary, hence the result is proved. [

Lemma 2. Let assumption (iv) be satisfied. Then for all b > 0 and o > 0, we have

t+e _
lim sup dy (E/ f(s,u)ds,f(u)) =0, Yu € U.

=0 1e00,8] «

IES

Proof. Letu € U,b > 0and « > 0. It is easy to note that from (iv), if ¢ = 0, we have

li_l)%doo (2 /06 f(s,u)ds,f(u)) =0, Vu e U.
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Now, for ¢ € (0, b], we have that

c £+2 c t c t,a
S s =2 [T s S [T fs s
(0% 0 a 0 o i
since
e 1 Lf+1
- = o = t a’
a T T
Thus,

1 ete 1 t+g
/ f(s,u)ds + +— / f(s,u)ds
0 -t <2 Jo

[

_t «

acte
t1 [f e

=23 [ rads+ S [T s
O[g 0 « ﬁ

Therefore, from (3), we have

I ﬁ"!‘% —
o (5 / f<s,u>ds,f<u>>

3)

te(0,b] é +
1 t
+ — sup doo (?/ f(S,U)dS, f(U)>
A e(0,b] z Jo

Now, from (iv), we get that

lim sup dy < ! — /E+€ f(s,u)ds,f(u)) =0,
0

£=04e(0,5] s T2

and

lim sup du (% : f(s,u)ds,f(u)) = 0.

€0 4e(0,5]

Then, the result is proved.
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Corollary 1. Let assumptions (i), (iii) and (iv) be satisfied. Let u. be a maximal solution of (1)
on[0,a.), 0 < a. < oo. Then for all b € [0, a.) and o > 0, we have

o i i
lim sup d / s,ug)ds, f(u:) | = 0.
i sup (a | s i >)

Proof. Tt is easy to prove that from (¢) and (iii), u. is well defined. Then the result follows
directly from Lemma 2. [

Lemma 3. Let assumptions (i) — (iv) be satisfied. Let u. be a maximal solution of (1) on [0, a.),
0 < a. < oo. Then for all b € |0, a.), we have

t t
lim sup de ( f <§,u5(s)> ds,/ f(ua(s))ds) = 0.
€0 4e(0,8] 0 € 0
Proof. Letb € [0,a.), We divide the segment [0, b] into n equal parts by the points ¢;,

to=0<t; <---<t,=0b, n €N,

lete. =t —t;, 0 =0,1,--- ,n—1with lime. = 0.
e—0

Fort € [t,, tp+1],p € {0,1,--- ,n — 1}, we have

/ttf G’“E(S)) ds’[ f(ua(S))ds> )

From ( ) and Lemma 1, we have

oo </ttf (g,u5(3)> ds,/tt f(ug(s))ds>
< ds (/ttf (g,us(s)> d3,0(1,0)> + ds ( ttf(us(s))ds,O(Lo))

P . P (5)

< /tt do <f (g,u5(8)> d8,0(1,0)> +/t doo (f(ua(s))dS’O(LO))

P

< 2M(t —t,)
S 2M(tp+1 — tp) S 2M€5.
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Fromi =0,1,--- ,nand s € [t;,1;11] and from (7ii), we have

oo (te(5), (1)) = ( ; / () o + / e um)df)

< d. (/otif(T’ UE(T))dT+LSf(T,ug(T)>dT, /Otif(T, ug(r))dT)

< ([ trnctraroun
< [ e (el O00) 7

< M(S —ti) < M@E.
Hence, by (i), we get
5 5 i . i
doo (f <g7us(5)) f <g;us(ti>)> < B, with ll—lg(l)ﬁf =0,
and from Lemma 1,
doc (f(us(s)) 7f_(u€(tz))) < 72, with limyg =0.
e—0

Then, from (4), (5), (6) and (7), it follows that

+;d°" (/tt ! (g’“a(m) ds, ttﬂ f(ua(tz))ds>
+ de ( /t - Flua(t:))ds, t; " Fun(s)) ds)

+ doo (/t f<§,u5(s)> ds, t f(ug(s))ds)

p—1 p t_1+% p
<3 e (5 /t : f(S,ue(tz))ds,f(ue(tz)))

i—0 e J—

p=1 g )
+ B4 ~1) ds + 2Me,

3 / (B + 1) ds + 2Me

t e.
e [e7e

< s d (; /é £ (s, u.(t)) ds, f(ue(t))) >
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—_ p—1
8 —
< sSup doo - tg c f(57ua(t)) d5>f(ue(t)> Zea
t€[0,b] € J_ =0
€
Pl iy
+  max (BL+7)) / ds + 2Me.
1€{0,1,--- ,p—1} o Jti
t e.
e [T ¢ : —
< sup dy —ﬁg [ (s,uc(t)) ds, f(uc(t)) (i1 — i)
te[0,b] € J_ i—0
€
p—1
! ! tiv1—1t; 2Me,
eomax (B ) Z-:o( 11— 1) +2Me
t e
<bswp du | = [ € (sun(t) ds, fu(0)
te[0,b] € J_
€

b "+ +2Me,.
+b max (BL+1L) +2Me.

Consequently, according to Corollary 1, (6), (7) and (8), the result is obtained.

Now, we are in the position to establish our result.

Theorem 4. Let assumptions (iii) — (v) be satisfied. Let ug € U, u. be a maximal solution of (1)
on [0,a.), 0 < a. < oo and v be the maximal solution of (2) on [0,a), 0 < a < oc. Then for all

b€ (0,a.) N (0,a) and & > 0, there exists k3, > 0 such that

doo (ue(t),v(t)) <& Ve (0,£], te]l0,b].

Proof. Fort € [0, b] and from (v), we have

Denote

e ) 00) = o (w04 [ 7 (S9)) dscua+ [ Tt

b= sup i ([ (B s, [ Fluntonas).

te[0,b]



From Lemma 3, we have lir% 0. = 0. By Gronwall Lemma, we get
e—>

doo (uc(t),v(t)) < 0.eNt < .M.

Finally, we obtain

lim sup du (ue(t), v(t)) = 0.

e=204¢(0,)
This completes the proof. []
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