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0. Introduction
Let X be a nonempty set. In [1] and [2], Atanassov introduced the idea of intuitionistic

fuzzy set A = f< x; ¹A(x); ºA(x) >: x 2 Xg where ¹A : X ! I (the closed interval [0, 1])
and ºA : X ! I are such that ¹A(x) + ºA(x) · 1; 8 x 2 X. Later on Atanassov himself
and many other authors including us did lot of works on intuitionistic fuzzy setting. For
references see [4], [6], [7], [8], [9] etc.
In the class of intuitionistic fuzzy sets (IFSs) we observe that for any IFS A = f<

x; ¹A(x); ºA(x) >: x 2 Xg; 0 · ¹A(x) ^ ºA(x) · 0:5; 8 x 2 X. So it is interesting to study
the class of IFSs A = f< x; ¹A(x); ºA(x) >: x 2 Xg having the property

k1 · ¹A(x) ^ ºA(x) · k2; 8 x 2 X

where k1; k2 are two constants lying in [0, 0.5].
This problem is proposed by K. T. Atanassov in a personal communication with us.
In this paper, we study such a class of IFSs with the above property and establish some
results.
In Section 1, we de¯ne (k1; k2)-intuitionistic fuzzy sets ((k1; k2)-IFSs) and study some of

its properties.
In Section 2, we de¯ne (k1; k2)-intuitionistic fuzzy relations ((k1; k2)-IFRs) and study various
properties of (k1; k2)-IFRs.
1. (k1; k2)-Intuitionistic fuzzy sets
De¯nition 1.1 Let X be a nonempty set. A (k1; k2)-intuitionistic fuzzy set ((k1; k2)-IFS)

A = f< x; ¹A(x); ºA(x) >: x 2 Xg (¤)

is an IFS on X satisfying the property

k1 · ¹A(x) ^ ºA(x) · k2; 8 x 2 X (¤¤)

where k1; k2 2 [0; 0:5] are two constants.
The property (**) will be called (k1; k2)-condition.
For simplicity, we shall use A = (¹A; ºA) in place of (*).

The collection of all (k1; k2)-IFSs on X is denoted by C0(X).
Basic algebraic operations on C0(X) :
Let A;B;Ai 2 C0(X); 8 i 2 I. Then inclusion, equality, complementation, arbitrary

union and arbitrary intersection on C0(X) are de¯ned as follows :
(1) A ½ B , ¹A(x) · ¹B(x) and ºA(x) ¸ ºB(x); 8 x 2 X,



(2) A = B , A ½ B and B ½ A,
(3) ¹A = (ºA; ¹A),
(4) [iAi = (_i¹Ai ;^iºAi),
(5) \iAi = (^i¹Ai ;_iºAi).
Note 1.2 It is to be noted that the de¯nitions given above are consistent as the (k1; k2)-

condition is satis¯ed where it is required.
De¯nition 1.3 The smallest and the greatest elements of C0(X), denoted, respectively,

by S = (¹S; ºS) and G = (¹G; ºG), are de¯ned by ¹S(x) = k1; ºS(x) = 1¡ k1; 8 x 2 X and
¹G(x) = 1¡ k1; ºG(x) = k1; 8 x 2 X, respectively.
Remark 1.4 C0(X) is a complete sublattice of the lattice of all IFSs with S and G being,

respectively, its smallest and greatest element.
De¯nition 1.5 We de¯ne ~0 = ~(0; 1) and ~1 = ~(1; 0).
De¯nition 1.6 An intuitionistic fuzzy point P on X is an IFS such that 9 an x 2 X

satisfying ¹P (x) > 0 and ¹P (y) = 0; ºP (y) = 1; 8 y(6= x) 2 X.
Remark 1.7 In order that ~0 or ~1 2 C0(X), we must have k1 = 0. Further, k1 6= 0 )

^x2X(¹A(x) ^ ºA(x)) ¸ k1 6= 0) ¹A(x)6= 0 and ºA(x)6= 0; 8x 2 X.
So, if k1 6= 0, then no intuitionistic fuzzy point is a (k1; k2)-IFS.
De¯nition 1.8 A (k1; k2)-IFS P on X is said to be a (k1; k2)- intuitionistic fuzzy point

((k1; k2)-IFP) on X if 9 x 2 X such that
ºP (x) < 1¡ k1
and
¹P (y) = k1; ºP (y) = 1¡ k1; 8 y(6= x) 2 X.
Such a (k1; k2)-IFP is denoted by Px. If for a (k1; k2)-IFP Px; ¹P (x) = a and ºP (x) = b,

then Px is also denoted by (a; b)x.
Let A 2 C0(X). A (k1; k2)-IFP Px is said to belong to A if ¹P (x) · ¹A(x) and ºP (x) ¸

ºA(x). This is denoted by Px~2A.
Theorem 1.9 A = [fPx ; Px~2Ag, where A 2 C0(X).
Proof. If fPx ; Px~2Ag = Á, then ¹A(x) = k1 and ºA(x) = 1¡k1; 8 x 2 X; for, otherwise

9 » 2 X such that ºA(») < 1¡k1. De¯ning a (k1; k2)-IFP P» by ¹P (») = ¹A(»); ºP (») = ºA(»),
we see that P» ~2A, a contradiction.
So, if fPx ; Px~2Ag = Á, then [fPx ; Px~2Ag = S = A.
Next, suppose fPx ; Px~2Ag 6= Á. Put [fPx ; Px~2Ag = Q. Clearly Q ¾ S. Take » 2 X.
Consider the following two cases :
Case I : ºA(») = 1¡ k1,
Case II : ºA(») < 1¡ k1.
In case I, ¹A(») = k1. So, ¹A(») = ¹S(») · ¹Q(») and ºA(») = ºS(») ¸ ºQ(») i.e., ¹A(») ·
¹Q(») and ºA(») ¸ ºQ(»).
In case II, choose a (k1; k2)-IFP P» such that ¹P (») = ¹A(»); ºP (») = ºA(»). Then P» ~2A
and ¹A(») = ¹P (») · ¹Q(») and ºA(») = ºP (») ¸ ºQ(»).
Thus considering both the cases I and II we see that
¹A(») · ¹Q(») and ºA(») ¸ ºQ(»); 8 » 2 X.
Thus A ½ Q = [fPx ; Px~2Ag. Obviously Q ½ A.
Hence A = Q = [fPx ; Px~2Ag.
Corollary 1.10 For two (k1; k2)-IFSs A and B; A = B i® Px~2A, Px~2B.
Theorem 1.11 For all A;B;C;Bi 2 C0(X); i 2 I, we have

(1) S ½ A ½ G;
(2) ¹S = G; ¹G = S;
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(3) A ½ B and B ½ C ) A ½ C;
(4) A;B ½ A [B; A;B ¾ A \B;
(5) A [B = B [A; A \B = B \A;
(6) A [ (B [ C) = (A [B) [ C; A \ (B \ C) = (A \B) \ C;
(7) A [ (\iBi) = \i(A [Bi); A \ ([iBi) = [i(A \Bi);
(8) A ½ B , ¹A ¾ ¹B;
(9) ([iBi) = \i ¹Bi; (\iBi) = [i ¹Bi;
(10) ¹¹A = A:
The proof is straightforward.
De¯nition 1.12 Let X and Y be two nonempty sets and f : X ! Y be a mapping. Let

A 2 C0(X). Then the image of A, under f , denoted by f(A) = (¹f(A); ºf(A)), is de¯ned by

¹f(A)(y) =

½
_f¹A(x) : x 2 f¡1(y)g; if f¡1(y)6= Á
k1; otherwise

ºf(A)(y) =

½
^fºA(x) : x 2 f¡1(y)g; if f¡1(y)6= Á
1¡ k1; otherwise

Let B 2 C0(Y ). Then the preimage of B, under f , denoted by f¡1(B) = (¹f¡1(B); ºf¡1(B)),
is de¯ned by
¹f¡1(B)(x) = ¹B(f(x)); ºf¡1(B)(x) = ºB(f(x)).
Theorem 1.13 Let A;Ai 2 C0(X) and B;Bj 2 C0(Y ); i 2 I; j 2 J and f : X ! Y be a

mapping. Then
(a) A1 ½ A2 ) f(A1) ½ f(A2);
(b) B1 ½ B2 ) f¡1(B1) ½ f¡1(B2);
(c) f( ¹A) ¾ [f(A)]; if f is surjective,
(d) f¡1( ¹B) = [f¡1(B)];
(e) A ½ f¡1(f(A)), the equality holds if f is injective,
(f) f(f¡1(B)) ½ B; the equality holds if f is surjective,
(g) f¡1([jBj) = [jf¡1(Bj);
(h) f¡1(\jBj) = \jf¡1(Bj);
(i) f([iAi) = [if(Ai);
(j) f(\iAi) ½ \if(Ai), the equality holds if f is injective,
(k) If g : Y ! Z be a mapping then (gof)¡1(C) = f¡1(g¡1(C)), for any C 2 C0(Z), where
gof is the composition of g and f .
The proof is straightforward.
2. (k1; k2)-Intuitionistic fuzzy relations
Intuitionistic fuzzy relation was studied by Atanassov himself in [3] and then by Bustince

et al. in [5]. In this Section, we give the de¯nition of (k1; k2)-intuitionistic fuzzy relation and
study some of its properties.
Let X; Y and Z be three ordinary nonempty sets.
De¯nition 2.1 A (k1; k2)-intuitionistic fuzzy relation R = f< (x; y); ¹R(x; y); ºR(x; y) > :
x 2 X; y 2 Y g where ¹R : X £ Y ! I; ºR : X £ Y ! I is an IFS on X £ Y satisfying the
property

k1 · ¹R(x; y) ^ ºR(x; y) · k2; 8 (x; y) 2 X £ Y
where k1; k2 2 [0; 0:5]; k1 · k2, are two constants.
The collection of all (k1; k2)-IFRs on X £ Y is denoted by C0(X £ Y ).
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De¯nition 2.2 Let R 2 C0(X £ Y ). Then we de¯ne inverse relation of R, denoted by
R¡1, by

¹R¡1(y; x) = ¹R(x; y); ºR¡1(y; x) = ºR(x; y); 8 (x; y) 2 X £ Y:
De¯nition 2.3 Let P;Q; Pi 2 C0(X £ Y ); i 2 I. Then for every (x; y) 2 X £ Y we de¯ne
(a) P · Q, ¹P (x; y) · ¹Q(x; y) and ºP (x; y) ¸ ºQ(x; y);
(b) P Á Q, ¹P (x; y) · ¹Q(x; y) and ºP (x; y) · ºQ(x; y);
(c) [i Pi = f< _i¹Pi(x; y);^iºPi(x; y) > : (x; y) 2 X £ Y g;
(d) \i Pi = f< ^i¹Pi(x; y);_iºPi(x; y) > : (x; y) 2 X £ Y g;
(e) ¹P = f< ºP (x; y); ¹P (x; y) > : (x; y) 2 X £ Y g:
Theorem 2.4 Let P;Q;R 2 C0(X £ Y ): Then

(a) P · Q) P¡1 · Q¡1; P Á Q) P¡1 Á Q¡1;
(b) P · Q) ¹Q · ¹P ; P Á Q) ¹P Á ¹Q;
(c) (R [ P )¡1 = R¡1 [ P¡1;
(d) (R \ P )¡1 = R¡1 \ P¡1;
(e) (P¡1)¡1 = P;
(f) P \ (Q [R) = (P \Q) [ (P \R); P [ (Q \R) = (P [Q) \ (P [R);
(g) P [Q ¸ P;Q; P \Q · P;Q and P;Q6Á P [Q; P \Q6Á P;Q;
(h) P ¸ Q; P ¸ R) P ¸ Q [R; P · Q; P · R) P · Q \R;
(i) P Â Q; P Â R) P Â Q [R; P Á Q; P Á R) P Á Q \R.
The proof is straightforward.
Note 2.5 Let R 2 C0(X £ Y ) and P 2 C0(Y £ Z). Then

k1 · [_yf¹R(x; y) ^ ¹P (y; z)g] ^ [^yfºR(x; y) _ ºP (y; z)g] · k2:

Proof. We have,
[_y0f¹R(x; y0) ^ ¹P (y0; z)g] ^ [ºR(x; y) _ ºP (y; z)]

¸ [¹R(x; y) ^ ¹P (y; z)] ^ [ºR(x; y) _ ºP (y; z)]
= [¹R(x; y) ^ ¹P (y; z) ^ ºR(x; y)] _ [¹R(x; y) ^ ¹P (y; z) ^ ºp(y; z)]
= [f¹R(x; y) ^ ºR(x; y)g ^ ¹P (y; z)] _ [¹R(x; y) ^ f¹P (y; z) ^ ºP (y; z)g]
¸ [k1 ^ ¹P (y; z)] _ [¹R(x; y) ^ k1]
= k1 _ k1, since k1 · ¹P (y; z) ^ ºP (y; z) · ¹P (y; z); similarly k1 · ¹R(x; y)
= k1; 8 y 2 Y:

Hence
[_yf¹R(x; y) ^ ¹P (y; z)g] ^ [^yfºR(x; y) _ ºP (y; z)g] ¸ k1: (1)

[¹R(x; y) ^ ¹P (y; z)] ^ [^y0fºR(x; y0) _ ºP (y0; z)g]
· [¹R(x; y) ^ ¹P (y; z)] ^ [ºR(x; y) _ ºP (y; z)]
= [¹R(x; y) ^ ¹P (y; z) ^ ºR(x; y)] _ [¹R(x; y) ^ ¹P (y; z) ^ ºp(y; z)]
= [f¹R(x; y) ^ ºR(x; y)g ^ ¹P (y; z)] _ [¹R(x; y) ^ f¹P (y; z) ^ ºP (y; z)g]
· [k2 ^ ¹P (y; z)] _ [¹R(x; y) ^ k2]
· k2 _ k2
= k2; 8 y 2 Y:

Hence
[_yf¹R(x; y) ^ ¹P (y; z)g] ^ [^yfºR(x; y) _ ºP (y; z)g] · k2: (2)

(1) and (2) give the required result.
Note 2.6 Let R 2 C0(X £ Y ) and P 2 C0(Y £ Z). Then

k1 · [^yf¹R(x; y) _ ¹P (y; z)g] ^ [_yfºR(x; y) ^ ºP (y; z)g] · k2:
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The proof is analogous to that of Note 2.5.
Now we shall de¯ne two kinds of composition of (k1; k2)-IFRs.

De¯nition 2.7 Let R 2 C0(X £ Y ) and P 2 C0(Y £ Z). Then we de¯ne composed relation
on X £ Z, denoted by PoR, by

PoR = f< (x; z); ¹PoR(x; z); ºPoR(x; z) >: x 2 X; z 2 Zg:

where
¹PoR(x; z) = _yf¹R(x; y) ^ ¹P (y; z)g; ºPoR(x; z) = ^yfºR(x; y) _ ºP (y; z)g:
De¯nition 2.8 Let R 2 C0(X£Y ) and P 2 C0(Y £Z). Then we de¯ne another composed

relation on X £ Z, denoted by P ¤R, by

P ¤R = f< (x; z); ¹P¤R(x; z); ºP¤R(x; z) >: x 2 X; z 2 Zg:

where
¹P¤R(x; z) = ^yf¹R(x; y) _ ¹P (y; z)g; ºP¤R(x; z) = _yfºR(x; y) ^ ºP (y; z)g:
De¯nition 2.9 Let P;R 2 C0(X£X): Then P and R are said to commute if PoR = RoP:
We now give the following Theorems 2.10 - 2.12, whose proofs are similar to the corre-

sponding Theorems in [5].
Theorem 2.10 For R 2 C0(X £ Y ); P 2 C0(Y £ Z); (PoR)¡1 = R¡1oP¡1 holds.
Theorem 2.11 If R;Ri 2 C0(X £ Y ) and P; Pi 2 C0(Y £ Z); i = 1; 2; then

(a) P1 · P2 ) P1oR · P2oR;
(b) R1 · R2 ) PoR1 · PoR2;
(c) P1 Á P2 ) P1oR Á P2oR;
(d) R1 Á R2 ) PoR1 Á PoR2;
(e) If R; P 2 GR(X £X) and P · R then PoP · RoR:
Theorem 2.12 For R 2 C0(X £ Y ); Q 2 C0(Y £ Z) and P 2 C0(Z £ U)

(PoQ)oR = Po(QoR) holds.
Theorem 2.13 For each R 2 C0(X £ Y ) and Pi 2 C0(Y £ Z); i 2 I;

(a) ([iPi)oR = [i(PioR);
(b) (\iPi)oR = \i(PioR)
holds.
Proof.

¹(([iPi)oR)(x; z) = _yf¹R(x; y) ^ ¹_iPi(y; z)g
= _yf¹R(x; y) ^ (_i¹Pi(y; z))g
= _yf_i(¹R(x; y) ^ ¹Pi(y; z))g
= _if_y(¹R(x; y) ^ ¹Pi(y; z))g
= _i¹PioR(x; z); 8 (x; z) 2 X £ Z:

Similarly, it can be shown that º(([iPi)oR)(x; z) = _iºPioR(x; z); 8 (x; z) 2 X £ Z:
Hence ([iPi)oR = [i(PioR):
(b) The proof is analogous to that of (a).
Here we shall de¯ne re°exivity, antire°exivity and study some of their properties.

De¯nition 2.14 Let R 2 C0(X £X). Then
(a) R is re°exive of type-1 if

¹R(x; x) = 1¡ k1; 8 x 2 X:
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(b) R is re°exive of type-2 if

¹R(x; x) ^ ¹R(y; y) ¸ k2 _ ¹R(x; y); 8 x; y 2 X; ºR(x; x) = k1; 8 x 2 X:

(c) R is re°exive of type-3 if

¹R(x; x) ^ ¹R(y; y) ¸ ¹R(x; y); ºR(x; x) _ ºR(y; y) · ºR(x; y); 8 x; y 2 X:

De¯nition 2.15 Let R 2 C0(X £X). Then
(a) R is antire°exive of type-1 if

ºR(x; x) = 1¡ k1; 8 x 2 X:

(b) R is antire°exive of type-2 if

¹R(x; x) = k1; 8 x 2 X; ºR(x; x) ^ ºR(y; y) ¸ k2 _ ºR(x; y); 8 x; y 2 X:

(c) R is antire°exive of type-3 if

¹R(x; x) _ ¹R(y; y) · ¹R(x; y); ºR(x; x) ^ ºR(y; y) ¸ ºR(x; y); 8 x; y 2 X:

Remark 2.16
(a) Re°exivity (antire°exivity) of type-1) re°exivity (antire°exivity) of type-2) re°exivity
(antire°exivity) of type-3. It can be easily shown by constructing examples that the reverse
implication does not hold.
Theorem 2.17

(a) If R 2 C0(X £X) is re°exive of any type then R · RoR,
(b) If R 2 C0(X £X) is antire°exive of any type then R ¸ R ¤R.
Proof. (a)

¹RoR(x; z) = _yf¹R(x; y) ^ ¹R(y; z)g
= (¹R(x; x) ^ ¹R(x; z)) _ (_y6=x(¹R(x; y) ^ ¹R(y; z)))
= ¹R(x; z) _ (_y6=x(¹R(x; y) ^ ¹R(y; z))); for any type of re°exivity R
¸ ¹R(x; z):

ºRoR(x; z) = ^yfºR(x; y) _ ºR(y; z)g
= (ºR(x; x) _ ºR(x; z)) ^ (^y6=x(ºR(x; y) _ ºR(y; z)))
= ºR(x; z) ^ (^y6=x(ºR(x; y) _ ºR(y; z))); for any type of re°exivity R
· ºR(x; z):

Hence R · RoR.
(b) The proof is similar to that of (a).
Next we give examples of (k1; k2)-IFRs which satisfy the property R · RoR (R ¸ R ¤R),

but R is not re°exive (antire°exive) of any type.
Example 2.18 (a) Let X = fa; b; cg and R 2 C0(X £X) with k1 = 0; k2 = 0:4 is given by

¹R =

0BB@
a b c

a 0:4 0:6 0:1
b 0:6 0:7 0:6
c 0:1 0 0:3

1CCA ; ºR =

0BB@
a b c

a 0:3 0:4 0:9
b 0:3 0:3 0:3
c 0:5 0:3 0:6

1CCA
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Therefore RoR 2 C0(X £X) is given by

¹RoR =

0BB@
a b c

a 0:6 0:6 0:6
b 0:6 0:7 0:6
c 0:1 0:1 0:3

1CCA ; ºRoR =

0BB@
a b c

a 0:3 0:4 0:4
b 0:3 0:3 0:3
c 0:3 0:3 0:3

1CCA
This gives that R · RoR, but R is not re°exive of any type.
(b) Let X = fa; b; cg and R 2 C0(X £X) with k1 = 0:3; k2 = 0:4 is given by

¹R =

0BB@
a b c

a 0:4 0:6 0:3
b 0:6 0:7 0:6
c 0:3 0:4 0:3

1CCA ; ºR =

0BB@
a b c

a 0:3 0:3 0:6
b 0:3 0:3 0:3
c 0:5 0:5 0:6

1CCA
Therefore R ¤R 2 C0(X £X) is given by

¹R¤R =

0BB@
a b c

a 0:3 0:4 0:3
b 0:6 0:6 0:6
c 0:3 0:4 0:3

1CCA ; ºR¤R =

0BB@
a b c

a 0:5 0:5 0:6
b 0:3 0:3 0:3
c 0:5 0:5 0:6

1CCA
This gives that R ¸ R ¤R, but R is not antire°exive of any type.
Theorem 2.19 Let R;R1; R2 2 C0(X £X). Then

(a) If R is re°exive (antire°exive) of any type, then RoR (R ¤ R) is re°exive (antire°exive)
of the same type,
(b) If R is re°exive (antire°exive) of any type, then R¡1 is re°exive (antire°exive) of the
same type.
(c) If both Rj ; j 2 J is re°exive (antire°exive) of any type, then \jRj ([jRj) is re°exive
(antire°exive) of the same type.
(d) If Rj is re°exive (antire°exive) of the type-1 for some j = j0 2 Jthen [jRj (\jRj)
is so. If Rj; j 2 J is re°exive (antire°exive) of the type-i, then [jRj (\jRj) is re°exive
(antire°exive) of the type-i, i = 2 and 3.
Proof. (a) If R is re°exive of any type, then

¹RoR(x; x) = _yf¹R(x; y) ^ ¹R(y; x)g
= f¹R(x; x) ^ ¹R(x; x)g _ f_y6=x(¹R(x; y) ^ ¹R(y; x))g
= ¹R(x; x) _ f_y6=x(¹R(x; y) ^ ¹R(y; x))g
= ¹R(x; x); 8 x 2 X (1)

Similarly, ºRoR(x; x) = ºR(x; x); 8 x 2 X (2)
If R is re°exive of the type-2 or 3, then we have, for y6= x

¹RoR(x; y) = _zf¹R(x; z) ^ ¹R(z; y)g
= f¹R(x; x) ^ ¹R(x; y)g _ f¹R(x; y) ^ ¹R(y; y)g _ f_z6=x;z6=y(¹R(x; z)

^¹R(z; y))g = ¹R(x; y) _ f¹R(x; y) ^ ¹R(y; y)g _ f_z6=x;z6=y(¹R(x; z) ^ ¹R(z; y))g
· ¹R(x; x) ^ ¹R(y; y); since ¹R(x; x) ^ ¹R(y; y) ¸ ¹R(x; y);8 x; y 2 X
= ¹RoR(x; x) ^ ¹RoR(y; y); by (1) (3)
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If R is re°exive of type-2, then
¹RoR(x; x) = ¹R(x; x) ¸ k2. Similarly ¹RoR(y; y) ¸ k2. So ¹RoR(x; x) ^ ¹RoR(y; y) ¸ k2.
Therefore,

k2 _ ¹RoR(x; y) · ¹RoR(x; x) ^ ¹RoR(y; y): (4)

If R is re°exive of type-3, then we have, for y6= x

ºRoR(x; y) = ^zfºR(x; z) _ ºR(z; y)g
= fºR(x; x) _ ºR(x; y)g ^ fºR(x; y) _ ºR(y; y)g ^ f^z6=x;z6=y(ºR(x; z)

_ºR(z; y))g
= ºR(x; y) ^ fºR(x; y) _ ºR(y; y)g ^ f^z6=x;z6=y(ºR(x; z) _ ºR(z; y))g
¸ ºR(x; x) _ ºR(y; y); since ºR(x; x) _ ºR(y; y) · ºR(x; y);8 x; y 2 X
= ºRoR(x; x) _ ºRoR(y; y); by (2) (5)

Hence by (1) - (5), RoR is re°exive of the type as that of R.
The proof for antire°exivity is similar to that of re°exivity.
(b) The proof is straightforward.
(c) Let P = \j2JRj. Then ¹P (x; x) = ^j¹Rj(x; x); 8 x 2 X: Hence, P is of type-1

re°exive if Rj is so, 8 j 2 J .
Next, for y6= x

¹P (x; y) = ^j¹Rj(x; y)
· ^j(¹Rj(x; x) ^ ¹Rj(y; y))
= (^j¹Rj(x; x)) ^ (^j¹Rj(y; y))
= ¹P (x; x) ^ ¹P (y; y):

For re°exive of type-2,
¹P (x; x) = ^j¹Rj(x; x) ¸ k2; (since ¹Rj(x; x) ¸ k2; j 2 J). Similarly ¹P (y; y) ¸ k2. So
¹P (x; x) ^ ¹P (y; y) ¸ k2. Therefore, k2 _ ¹P (x; y) · ¹P (x; x) ^ ¹P (y; y).
Similarly, we can establish the properties of ºP .
Hence, from above, P is re°exive of the type as of Rj; j 2 J .
The proof for antire°exivity is similar to that of re°exivity.
(d) The proof is similar to that of (c) and is therefore omitted.
As regard to the Theorem 2.19(d), we give an example to show that for the re°exivity of

the type-2 and 3, the condition that only one of R1 and R2 is re°exive does not imply the
re°exivity of R1 [R2.
Example 2.20 Let X = fa; bg and R1; R2 2 C0(X £X) with k1 = 0; k2 = 0:5 are given

by

¹R1 =

0@ a b
a 0:5 0:4
b 0:5 0:7

1A ; ºR1 =
0@ a b
a 0 0:6
b 0:5 0

1A
and

¹R2 =

0@ a b
a 0:4 0:6
b 0:5 0:7

1A ; ºR2 =
0@ a b
a 0:6 0:3
b 0:5 0:3

1A
We see that R1 is re°exive of type-2 and type-3 but R2 is not so and R1 [R2 is not re°exive
of type-2 or type-3.
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Now we de¯ne symmetric relation and study some of its properties.
De¯nition 2.21 A relation R 2 C0(X £ X) is called symmetric if R = R¡1 i.e., if for all
(x; y) 2 X £X; ¹R(x; y) = ¹R(y; x); ºR(x; y) = ºR(y; x):
Theorem 2.22

(a) If P;R 2 C0(X £X) are symmetric, then PoR = (RoP )¡1;
(b) If R is symmetric then RoR is symmetric.
Proof. (a) Since R = R¡1 and P = P¡1, therefore, PoR = P¡1oR¡1 = (RoP )¡1:
(b) The proof is obvious.
Note 2.23 In general the composition of two symmetric relations may not be symmetric.

However, the composition of two symmetric relations is symmetric i® they commute.
Lastly, we de¯ne transitive and c-transitive (k1; k2)-IFRs and study some of their proper-

ties.
De¯nition 2.24 R 2 C0(X£X) is said to be transitive (c-transitive) if R ¸ RoR (R · R¤R).
De¯nition 2.25 Let R 2 C0(X £X).

(a) The transitive closure of R is de¯ned to be the minimum (k1; k2)-IFR R̂ on X£X which
contains R and it is transitive, that is to say
(1) R · R̂,
(2) R̂oR̂ · R̂,
(3) if P 2 C0(X £X); R · P and P is transitive, then R̂ · P .
(b) The c-transitive closure of R is de¯ned to be the biggest c-transitive relation Ŗ 2 C0(X£
X) contained in R.
Notation 2.26 We denote R1 = R; Rn = RoRo:::n times, n ¸ 2 and R¤1 = R; R¤n =

R ¤R ¤ :::n times, n ¸ 2.
Theorem 2.27 For every R 2 C0(X £X), it is veri¯ed that :

(a) R̂ = R1 [R2 [R3 [ ::: [Rn [ ::: = [1i=1Ri;
(b) Ŗ = R¤1 \R¤2 \R¤3 \ ::: \R¤n \ ::: = \1i=1R¤i:
Proof.

(a) (1) R · R̂ is evident.
(2) Now we will use the distributive property of the composition w.r.t. `['.
R̂oR̂ = ([1i=1Ri)o([1i=1Ri) = [1i=2Ri · [1i=1Ri = R̂:
(3) Now we will ¯nd the minimum transitive relation which contains R.
Let us take R · P; P being transitive, that is P 2 · P . Now using Theorem 2.11(e), we get
R · P ,
then, R2 · P 2 · P ,
similarly, R3 · P ,
: : :
therefore, [1n=1Rn · P ) R̂ · P .
Hence R̂ = [1i=1Ri.
(b) The proof is analogous to that of (a).
Theorem 2.28 Let R; P 2 C0(X £X). Then R · P ) R̂ · P̂ and Ŗ ¸P̧.
The proof is straightforward.
Corollary 2.29 For every R 2 C0(X £X), Ŗ · R · R̂ holds.
Corollary 2.30

(1) If R 2 C0(X £X) is re°exive of any type and transitive then R = RoR.
(2) If R 2 C0(X £X) is antire°exive of any type and c-transitive then R = R ¤R.
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