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0. Introduction

Let X be a nonempty set. In [1] and [2], Atanassov introduced the idea of intuitionistic
fuzzy set A = {< x,pa(x),va(z) > x € X} where pg : X — I (the closed interval [0, 1])
and vy : X — [ are such that pa(z) +va(z) <1, Vo € X. Later on Atanassov himself
and many other authors including us did lot of works on intuitionistic fuzzy setting. For
references see [4], [6], [7], [8], [9] etc.

In the class of intuitionistic fuzzy sets (IFSs) we observe that for any IFS A = {<
xypa(x),va(x) >z € X}, 0< pa(x) Ava(z) <05, Vo e X. So it is interesting to study
the class of IFSs A = {< x, pua(z),va(x) >: © € X} having the property

ki < pa(z) Ava(z) <k, Vo e X

where ky, ko are two constants lying in [0, 0.5].
This problem is proposed by K. T. Atanassov in a personal communication with us.
In this paper, we study such a class of IFSs with the above property and establish some
results.

In Section 1, we define (ky, k2)-intuitionistic fuzzy sets ((k1, k2)-IFSs) and study some of
its properties.
In Section 2, we define (ki, k2)-intuitionistic fuzzy relations ((k1, k2)-IFRs) and study various
properties of (ki, ks)-TFRs.

1. (ky, ko)-Intuitionistic fuzzy sets

Definition 1.1 Let X be a nonempty set. A (ky, k2)-intuitionistic fuzzy set ((ky, k2)-1FS)

A={<z,uas(x),va(x) > 2 € X} (%)
is an IFS on X satisfying the property
ki < pa(z) Ava(z) <ks, Ve X (xx)

where ky, ko € [0,0.5] are two constants.
The property (**) will be called (k;, ko)-condition.
For simplicity, we shall use A = (ua,v4) in place of (*).
The collection of all (ki, k2)-IFSs on X is denoted by Cy(X).
Basic algebraic operations on Cy(X) :
Let A, B, A; € Co(X), Vi € I. Then inclusion, equality, complementation, arbitrary
union and arbitrary intersection on Cy(X) are defined as follows :
(1) AC B pa(x) < pp(z) and va(x) > vp(z), Vo e X,



A=B& ACBand BC A,
= (Va, 1a),

Uidi = (Vipta,, Aiva,),

NiAi = (ANita,, Viva, ).

Note 1.2 It is to be noted that the definitions given above are consistent as the (kq, ko)-
condition is satisfied where it is required.

Definition 1.3 The smallest and the greatest elements of Cy(X), denoted, respectively,
by S = (us,vs) and G = (ug, ve), are defined by ug(x) = ki, vs(x) =1—ky, Vo € X and
pe(z) =1—ki, ve(z) = ki, ¥ x € X, respectively.

Remark 1.4 Cy(X) is a complete sublattice of the lattice of all IFSs with S and G being,
respectively, its smallest and greatest element. }

Definition 1.5 We define 0 = (0,1) and 1 = (1,0).

Definition 1.6 An intuitionistic fuzzy point P on X is an IFS such that 3 an 2 € X
satisfying up(z) > 0 and pp(y) =0, vp(y) =1, Vy(#z) € X.

Remark 1.7 In order that 0 or 1 € Co(X), we must have k; = 0. Further, k; # 0 =
Npex(pa(x) Ava(x)) > k1 #0 = pa(z) #0 and va(z) #0, Vo € X.

So, if k; # 0, then no intuitionistic fuzzy point is a (ky, k2)-IF'S.

Definition 1.8 A (ky, k2)-IFS P on X is said to be a (ki, k2)- intuitionistic fuzzy point
((k1, k2)-IFP) on X if 3 2 € X such that
VP(JL‘) <1-— k?l
and
pp(y) = ki, vp(y) =1—ki, Vy(# z) € X.

Such a (kq, ko)-IFP is denoted by P,. If for a (ki, ko)-IFP P,, pp(z) = a and vp(z) = b,
then P, is also denoted by (a, b),.

Let A € Co(X). A (K1, ko)-IFP P, is said to belong to A if pp(x) < pa(z) and vp(x) >
va(x). This is denoted by P,EA.

Theorem 1.9 A = U{P, ; P,€A}, where A € Co(X).

Proof. If {P, ; P,.€A} = ¢, then pa(x) = ky and va(x) = 1—ky, V2 € X; for, otherwise
3¢ € X such that v4(§) < 1—Fky. Defining a (ky, k2)-IFP Pe by up(§) = pa(§), vp(€) = va(§),
we see that P.€A, a contradiction.

So, if {P, ; P,eA} = ¢, then U{P, ; P,eA} =5 = A.

Next, suppose {P, ; P,€A} # ¢. Put U{P, ; P,€A} = Q. Clearly @ D S. Take { € X.
Consider the following two cases :

Case I : v4(§) =1 — ky,

Case IT : v4(§) < 1 — k.

In case L, 14(§) = k1. So, pa(§) = ps(§) < po(§) and va(§) = vs(§) = vo(§) ie., pa(f) <
1Q(§) and va(§) = vo(§).

In case II, choose a (ki, k2)-IFP Pe such that pup(&) = pa(§), vp(§) = va(€). Then PcA

and pa(§) = pp(§) < po(§) and va(§) = vp(§) = vo(§)-
Thus considering both the cases I and II we see that

pa(§) < pg(§) and va(§) > vg(§), VE € X.

Thus A C Q = U{P, ; P,€A}. Obviously Q C A.

Hence A =Q = U{P, ; P,€A}.
Corollary 1.10 For two (ky, ks)-IFSs A and B, A= B iff P,€A < P,EB.
Theorem 1.11 For all A, B,C, B; € Co(X), i € I, we have

(1) SCACG,

2)S=G; G=38,

PN
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JACBand BCC= ACC,

) A, BCAUB; A,BD ANB,

) AUB=BUA; ANB=DBnNA,

) AU(BUC)=(AUB)UC; Am(BmC):(AmB)mC,
) AU (M;B;) =Ni(AU By); An(U;B;) = U; (AN B;),
)ACB@ADB
) (Ui )—ﬁ&ﬂi&ﬁwﬁm
0

(3
(4
(5
(6
(7
(8
(9
(1

) A

The proof is straightforward.
Definition 1.12 Let X and Y be two nonempty sets and f : X — Y be a mapping. Let
A € Cy(X). Then the image of A, under f, denoted by f(A) = (tf(a), Vfa)), is defined by

pra(y) = {v{“f“() ve f Y} if ) #¢

k1, otherwise

via(y) = {A{”A(x) xe [T y)), i Ny # e

1 — Ky, otherwise

Let B € Co(Y'). Then the preimage of B, under f, denoted by f~'(B) = (ps-1(g), Vs-1(p)),
is defined by
bp10)(@) = (@), 1) () = s (f(@):
Theorem 1.13 Let A, A; € Co(X) and B,B; € Co(Y), i€ l,jeJand f: X =Y bea
mapping. Then
) AL C Ay = f(A)) C f(Ay),
b) By C By = [Y(By) C f1(By),

(a

(

(c) f(A) D[f(A)], if f is surjective,

(d) f1(B) = [f1(B)].

(e) AC f Y(f(A)), the equality holds if f is injective,
(f) f(f~ ( )) C B the equality holds if f is surjective,
(9) f7H(U;B)) = (Bj),

(h) f~ 1( B;j) =n;if~(B)),

(i) F(UA) = Uif (A );

(7) f(M;A;) € Nif(A;), the equality holds sz is injective,

(k) If g : Y — Z be a mapping then (gof) 1 (C) = f~1(g71(C)), for any C € Co(Z), where
gof 1is the composition of g and f.

The proof is straightforward.

2. (ki, k2)-Intuitionistic fuzzy relations

Intuitionistic fuzzy relation was studied by Atanassov himself in [3] and then by Bustince
et al. in [5]. In this Section, we give the definition of (ki, k2)-intuitionistic fuzzy relation and
study some of its properties.
Let X, Y and Z be three ordinary nonempty sets.
Definition 2.1 A (ky, ko)-intuitionistic fuzzy relation R = {< (z,v), ur(z,y),vr(x,y) >
re X, yeY}where up: X XY — 1, vg: X XY — [is an IFS on X X Y satisfying the
property

k1 < pr(z,y) ANve(z,y) < ks, V(z,y) € X XY

where ki, ko € [0,0.5], k1 < ko, are two constants.
The collection of all (ki, k2)-IFRs on X x Y is denoted by Co(X X Y).
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Definition 2.2 Let R € Co(X x Y'). Then we define inverse relation of R, denoted by

R~ by
pr-1(y,z) = pr(x,y), vp-1(y,z) = vr(x,y), V (z,y) € X x Y.

Definition 2.3 Let P,Q, P; € Co(X x Y),i € I. Then for every (z,y) € X x Y we define
) P<Q & pp(z,y) < polz,y) and vp(z,y) = vo(z,y),
) P <Q < pp(z,y) < po(z,y) and vp(z,y) < vo(z,y),
) Ui P ={< Viup (x,y), Nivp,(z,y) > (z,y) € X x Y},
) N Pr={< Npp(x,y), Vivp, (z,y) > (z,y) € X X Y},
) P = {< vp(w,p).pplz,y) > : (2.y) € X x Y},
Theorem24LetPQ RECO(XXY) Then
P<Q=P'<Q " P<Q=P'<Q"
P<Q:>Q<P P<Q=P=<Q,
(RUP)™' =R~ 1UP L
(RmP) =R'NnP- 1
(P =P
PN(QUR)=(PNQR)U(PNR); PU@NR)=(PUQ)N(PUR),
PUQ>PQ;. PNQ<PQand P.Q £ PUQ, PNQ £ P,Q,
P>Q, P>R=P>QUR; P<Q, P<R=P<QNR,
i)P>~Q, P-R=P>QUR;, P<Q, P<R=P<QNR.

The proof is straightforward.

Note 2.5 Let R € Co(X x Y) and P € Co(Y x Z). Then

(a
(b
(c
(d
(

(a)
(b)
(c)
(d)
(e)
(f)
(9)
(h)
(

by < [Vy{ur(z,y) A pe(y, 2) A INAVR(2,y) Vvp(y, 2)}] < k.

Proof. We have,
Vy{ur(z,y ) A pp(y', 2) Y A [vr(z,y) V vp(y, 2)]
> [ur(x,y) A pp(y, 2)] A ve(e,y) Vve(y, 2)]
= [ur(z,y) A pp(y, 2) Ave(z,y)] V pr(z,y) A pe(y, 2) A vp(y, 2)
= [{ur(z,y) Avr(z, y)(} A up(y, 2)1 V [ur(@,y) AMpe(y, 2) Ave(y, 2)}]

> k1 A pp(y, 2)] V [pr(@,y) A ki
= k1 V ky, since k1 < up(y,2) Avp(y,z) < pp(y, 2); similarly &y < pgr(z,y)
=k, VyeY.
Hence
Vo{wr(@,y) A ey, 2) 3 A [NAve(z,y) vV vp(y, 2)} = ki (1)

lr(z,y) A pp(y, 2)] A [N Ave(z,y') Vvp(y, 2) }]
< [ur(z,y) A pup(y, 2)] A [vr(z,y) V vp(y, 2)]
= [ur(z,y) A pp(y, 2) Avr(z,y)] V [pr(z,y) A pe(y, 2) A vp(y, 2)
= [{ur(z,y) Ave(z,y)} A pe(y, 2)]V pe(z,y) AMup(y, 2) Ave(y, 2)}]
< [k A pp(y, 2)] V [ur(2, y) A ko]
< ko V ko
=ky, Vyev.
Hence
Vy{pr(z,y) A pe(y, 2)H A INAVR(2,Y) Vvp(y, 2)}] < k. (2)

(1) and (2) give the required result.
Note 2.6 Let R € Co(X xY) and P € Cy(Y x Z). Then

by < [Ndur(z,y) V pe(y, 2) A Vy{ve(z, y) Ave(y, 2)}] < k.
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The proof is analogous to that of Note 2.5.

Now we shall define two kinds of composition of (ky, ks)-IFRs.
Definition 2.7 Let R € Co(X x Y) and P € Cy(Y x Z). Then we define composed relation
on X x Z, denoted by PoR, by

PoR = {< (z,2), ppor(,2),vpor(z,2) >:x € X, 2 € Z}.

where
1por(, 2) = Vylpr(x,y) A pp(y, 2)}, veor(w, 2) = Ny{vr(z,y) vV ve(y, 2)}.

Definition 2.8 Let R € Co(X xY) and P € Cy(Y x Z). Then we define another composed
relation on X x Z, denoted by P * R, by

Px R={<(z,2), up«r(z,2),vpur(z,2) > 2 € X, 2 € Z}.

where
pper(@, 2) = Ny{pr(z, y) V up(y, 2)}, veer(e, 2) = Vy{vr(z,y) Ave(y, )}
Definition 2.9 Let P, R € Cy(X x X). Then P and R are said to commute if PoR = RoP.
We now give the following Theorems 2.10 - 2.12, whose proofs are similar to the corre-
sponding Theorems in [5].
Theorem 2.10 For R€ Co(X xY), P € Cy(Y x Z), (PoR)™ = R~ 'oP™! holds.
Theorem 2.11 If R, R; € Co(X X Y) and P, P, € Co(Y x Z), i = 1,2, then
CL) P1§P2:>P10RSPQOR,
)R1§R2$POR1§POR2,
) P < P, = PioR < PyoR,
d) R1<R2:>POR1<POR2,
e)If R,P € GR(X x X) and P < R then PoP < RoR.
Theorem 2.12 For R € Co(X xY), Q € Co(Y x Z) and P € Co(Z x U)
(PoQ)oR = Po(QoR) holds.
Theorem 2.13 For each R € Co(X x Y) and P, € Co(Y x Z),i € 1,
(a) (U;P)oR = U;(PoR),
(b) (N;P)oR = N;(PioR)
holds.
Proof.

M((uipi)oR)(%Z) = \/y{MR(ﬂfay) A v (Y 2) )
Vylur(z,y) A (Vipe, (y,2))}

\/y{\/i(/LR(ZE, y) A :uPi(y7 Z))}

Vi{Vy(ur(z,y) A pp,(y, 2))}

= Vippor(r,2), V(2,2) € X X Z.

Similarly, it can be shown that v, pyor) (T, 2) = Vilpor(®, 2), ¥V (z,2) € X x Z.
Hence (U;P;)oR = U;(PoR).

(b) The proof is analogous to that of (a).

Here we shall define reflexivity, antireflexivity and study some of their properties.
Definition 2.14 Let R € Cy(X x X). Then
(a) R is reflexive of type-1 if

pr(z,x)=1—k, Vo e X.
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(b) R is reflexive of type-2 if

pr(T, ) A pur(y,y) > ke V pr(z,y), Yo,y € X, vp(r,r) =k, Ve X

(c) R is reflexive of type-3 if

/LR(CIZ,CL’) /\/JJR(yuy) 2 MR<x7y)7 I/R<SC7CIZ‘) \% VR(y7y> S VR(CC,y), v T,y € X.

Definition 2.15 Let R € Cyp(X x X). Then
(a) R is antireflexive of type-1 if

vp(z,z)=1—Fk;, Vo e X.
(b) R is antireflexive of type-2 if
MR(xvx) = kla Ve X7 VR(ZE,(L’) N ’/R(yay) > k2 \ VR(l‘ay% v T,y € X.

(¢) R is antireflexive of type-3 if

pr(z,2) V ur(y,y) < pr(z,y), ve(e,z) Ave(y,y) > ve(e,y), ¥V o,y € X.

Remark 2.16
(a) Reflexivity (antireflexivity) of type-1 = reflexivity (antireflexivity) of type-2 = reflexivity
(antireflexivity) of type-3. It can be easily shown by constructing examples that the reverse
implication does not hold.

Theorem 2.17
(a) If R € Co(X x X) is reflexive of any type then R < RoR,
(b) If R € Co(X x X) is antireflexive of any type then R > R * R.

Proof. (a)

fror(%,2) = Vy{ur(z,y) A pr(y,2)}

= (ur(2,2) A pr(r, 2)) V (Vyza(pr(2,9) A pr(y, 2)))
,uREx, Z; V (Vyze(r(z,y) A pr(y, 2))), for any type of reflexivity R
pr(z, z).

AVANI

UROR(xv Z) - /\y{VR(x> y) \ VR(ya Z)}

- (VR(.%',.T) \ I/R(ZE, Z)) A (/\y;éx(VR(ma y) \ VR(Q) Z)))
I/RESC, z; A (Ayzo(Vr(2,y) V vR(Y, 2))), for any type of reflexivity R
VR\T,Z).

IA

Hence R < RoR.

(b) The proof is similar to that of (a).

Next we give examples of (kq, k2)-IFRs which satisfy the property R < RoR (R > R R),
but R is not reflexive (antireflexive) of any type.
Example 2.18 (a) Let X = {a,b,c} and R € Cy(X x X) with k; =0, ky = 0.4 is given by

a b c a b c

[a 04 06 01 [a 03 04 09
FR=14 06 07 06"~ |b 03 03 03
¢c 01 0 0.3 ¢ 05 03 0.6
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Therefore RoR € Co(X x X) is given by

a b c a b c

[a 06 06 06 |a 03 04 04
HrRoR =\ 3 06 07 06| "E~ b 03 03 03
¢ 01 01 0.3 ¢ 03 03 0.3

This gives that R < RoR, but R is not reflexive of any type.
(b) Let X = {a,b,c} and R € Co(X x X) with ky = 0.3, ko = 0.4 is given by

a b c a b c

|a 04 06 03 [a 03 03 06
FR=14 06 07 06 "~ b 03 03 03
¢ 03 04 03 ¢ 05 05 0.6

Therefore R x R € Co(X x X) is given by

a b c a b c

|a 03 04 03 |a 05 05 06
FrReB=0 06 06 06| "R~ 5 03 03 03
¢ 03 04 0.3 ¢ 05 05 06

This gives that R > R R, but R is not antireflexive of any type.

Theorem 2.19 Let R, Ry, Ry € Co(X x X). Then
(a) If R is reflexive (antireflexive) of any type, then RoR (R * R) is reflexive (antireflexive)
of the same type,
(b) If R is reflexive (antireflexive) of any type, then R™' is reflevive (antireflexive) of the
same type.
(c) If both R;, j € J is reflexive (antireflexive) of any type, then N;R; (U;R;) is reflexive
(antireflexive) of the same type.
(d) If R; is reflexive (antireflexive) of the type-1 for some j = jo € Jthen U;R; (N;R;)
is so. If Rj, j € J is reflexive (antireflexive) of the type-i, then U;R; (N;R;) is reflexive
(antireflexive) of the type-i, i = 2 and 3.

Proof. (a) If R is reflexive of any type, then

,U/RoR<=T7x) = vy{:U’R<x7y)/\/JJR(y7x)}
= {ur(®,2) A pr(z,2)} V A{Vyse (ur(2,y) A pr(y, )}
= pr(®,7) VA{Vyra(pr(r,y) A pr(y, )}
= ILLR(x7x)7V$€X (1>

Similarly, vror(z,z) = vg(z,x),V 2 € X (2)
If R is reflexive of the type-2 or 3, then we have, for y # x

pror(T,y) = VoAur(z,2) A pr(z,y)}

= {:U/R(x> .T) A MR<I> y)} V {,UR(xa y) A MR(ya y)} V {vz;é:r,Z?éy(:uR(xa Z)
pr(z,y) VA{ur(@,y) A pr(y, v) VAV egepy(r(2, 2) A pir(2,9))}
pr(z,2) A pr(y,y), since pp(z,z) A pr(y,y) > pr(@,y),vV o,y € X
MROR(x7I) A #RoR(yv y)7 by (1) (3)

Aur(z,y))}

Al
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If R is reflexive of type-2, then
pror(T, ) = pr(x,2) > koo Similarly pror(y,y) > koo So piror(w, %) A tiror(y,y) > ka.
Therefore,

k2 V lror(7,Y) < Rror(T,7) A lror(Y, Y)- (4)

If R is reflexive of type-3, then we have, for y # x

Vror(z,y) = A Avr(z,2) Vg(z,y)}
= {vr(z,2) Vr(z,y)} ANMrr(z,y) Vr(y,y)} A {/\Z¢x,2¢y(VR($a z)
\/VPL(Z?Z/))}
VR(Z,y) AMVR(2,Y) V VR(Y, Y)} A { Ao sy (VR(2, 2) V VR(2,9)) }
vr(z,z) V vg(y,y), since vg(x,z) V vr(y,y) < vr(x,y),Vz,y € X
VRor(, %) V VRor (Y, ), by (2)

Hence by (1) - (5), RoR is reflexive of the type as that of R.
The proof for antireflexivity is similar to that of reflexivity.
(b) The proof is straightforward.
(c) Let P = NjesR;. Then pp(z,x) = Ajug,(z,2), V x € X. Hence, P is of type-1
reflexive if R; is so, V j € J.
Next, for y # «

v

(5)

Njtir; (7, y)

Nj(pr; (@, @) A pr; (Y, v))
(Ajpr;(z,2)) A (Njter, (Y, )
= pup(x,2) A pp(y, y).

pp(,y)

Al

For reflexive of type-2,

pp(z,x) = Ajpr,(x,2) > kg, (since ugr (v,x) > kg, j € J). Similarly pp(y,y) > ka. So
wp(x,x) A pp(y,y) > k. Therefore, ko V up(x,y) < pp(z,z) A pp(y,y).

Similarly, we can establish the properties of vp.

Hence, from above, P is reflexive of the type as of R;, j € J.

The proof for antireflexivity is similar to that of reflexivity.

(d) The proof is similar to that of (¢) and is therefore omitted.

As regard to the Theorem 2.19(d), we give an example to show that for the reflexivity of
the type-2 and 3, the condition that only one of R; and R is reflexive does not imply the
reflexivity of Ry U Rs.

Example 2.20 Let X = {a,b} and Ry, Ry € Co(X x X) with k; =0, ky = 0.5 are given

by
a b a b
pr, = a 05 04 ), vg=[a 0 06
b 05 0.7 b 05 0

and
a b a b
Hr,=|a 04 06|, vg=[a 06 03
b 05 0.7 b 05 0.3

We see that R; is reflexive of type-2 and type-3 but Rs is not so and Ry U Rs is not reflexive
of type-2 or type-3.
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Now we define symmetric relation and study some of its properties.
Definition 2.21 A relation R € Cy(X x X) is called symmetric if R = R™! i.e., if for all
(ZE,y) € X x X, MR(xvy) = MR(yaI)7 VR<x7y) = VR(y7x>‘
Theorem 2.22
(a) If PR € Co(X x X) are symmetric, then PoR = (RoP)™!,
(b) If R is symmetric then RoR is symmetric.
Proof. (a) Since R = R~! and P = P!, therefore, PoR = P~'oR™' = (RoP)™".
(b) The proof is obvious.
Note 2.23 In general the composition of two symmetric relations may not be symmetric.
However, the composition of two symmetric relations is symmetric iff they commute.
Lastly, we define transitive and c-transitive (ki, k2)-IFRs and study some of their proper-
ties.
Definition 2.24 R € Cy(X x X) is said to be transitive (c-transitive) if R > RoR (R < RxR).
Definition 2.25 Let R € Co(X x X).
(a) The transitive closure of R is defined to be the minimum (k;, k;)-IFR R on X x X which
contains R and it is transitive, that is to say
(1) R<R,
(2) RoR < R,
(3)if P € Co(X x X), R < P and P is transitive, then R < P.
(b) The c-transitive closure of R is defined to be the biggest c-transitive relation R € Co(X x
X) contained in R.
Notation 2.26 We denote R! = R, R" = RoRo...n times, n > 2 and R*' = R, R*" =
R+ R ...n times, n > 2.
Theorem 2.27 For every R € Co(X x X), it is verified that :
() R=R'UR*UR*U..UR"U...= U2 R,
(b)) R =R'NR2ARSN..AR™"N...=N2,R*.
Proof.
(a) (1) R < R is evident.
(2) Now we will use the distributive property of the composition w.r.t. ‘U’.
RoR = (U2, Ro(UX, R) = UX,R' < U®,R' = R.
(3) Now we will find the minimum transitive relation which contains R.
Let us take R < P, P being transitive, that is P? < P. Now using Theorem 2.11(e), we get
R<P,
then, R2 < P2 < P,
similarly, R < P,

therefore, Us® |R" < P = R < P.

Hence R = UX | RE.
(b) The proof is analogous to that of (a).
Theorem 2.28 Let R, P € Co(X x X). Then R< P= R< P and R >P.
The proof is straightforward.
Corollary 2.29 For every R € Co(X x X), R < R < R holds.
Corollary 2.30

(1) If R € Co(X x X) is reflexive of any type and transitive then R = RoR.

(2) If R € Co(X x X) is antireflexive of any type and c-transitive then R = R * R.
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