21 ${ }^{\text {st }}$ ICIFS, 22-23 May 2017, Burgas, Bulgaria
 Notes on Intuitionistic Fuzzy Sets
 Print ISSN 1310-4926, Online ISSN 2367-8283
 Vol. 23, 2017, No. 2, 24-31
 On intuitionistic fuzzy hyperstructure with T-norm

Gökhan Çuvalcıoğlu ${ }^{1}$, Mehmet Çitill ${ }^{2}$ and Emine Demirbass ${ }^{1}$
${ }^{1}$ Department of Mathematics, Faculty of Arts and Sciences Mersin University, Mersin, Turkey
e-mails: gcuvalcioglu@gmail.com, eminesdemirbas@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Arts and Sciences
Kahramanmaraş Sütçü İmam University
Kahramanmaraş, Turkey
e-mail: citil@ksu.edu.tr

Abstract

In this paper, we redefine T-intuitionistic fuzzy H_{ν}-subring of R and investigate some related properties. Some fundamental relation properties are studied.

Keywords: H_{ν}-rings, Fuzzy H_{ν}-group, Fundamental definition of H_{ν}-rings, Intuitionistic fuzzy H_{ν}-ideal, T-norm.
AMS Classification: Primary 05C38, 15A15; Secondary 05A15, 15A18.

1 Introduction

Since the concept of a fuzzy subset of a non-empty set was first introduced by Zadeh [15] in 1965, there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets, first introduced by Atanassov [1], is one among them.

The theory of hyperstructures was introduced by Marty [11] in 1934. Marty introduced the notion of a hypergroup and then many researchers have been working on this new field of modern
algebra and have been developing it. H_{ν}-rings first were introduced by Vougiouklis [14] in 1990. The largest class of algebraic systems satisfying ring-like axioms is the H_{ν}-ring. So, he defined the fundamental definition of H_{ν}-rings theory.

The concept of the fuzzy subhypergroup as well as of the fuzzy H_{ν}-group were introduced by Davvaz [3] in 1999. Davvaz [4] defined the concept of fuzzy H_{ν}-ideal of an H_{ν}-ring, which is a generalization of the concept of fuzzy ideal. The notion of intuitionistic fuzzy H_{ν}-ideal of an H_{ν}-ring were introduced by Davvaz, Dudek [5] in 2006.

Definition 1. [15] Let X be a nonempty set. A mapping $\mu: X \rightarrow[0,1]$ is called a fuzzy set in X. The complement of μ, denoted by μ^{c}, is the fuzzy set in X given by $\mu^{c}(x)=1-\mu(x)$ for all $x \in X$.

Definition 2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x \in X\right\},
$$

where $\mu_{A}(x),\left(\mu_{A}: X \rightarrow[0,1]\right)$ is called the "degree of membership of x in A ", $\nu_{A}(x)$, $\left(\nu_{A}: X \rightarrow[0,1]\right)$ is called the "degree of non-membership of x in A ", and where μ_{A} and ν_{A} satisfy the following condition:

$$
\mu_{A}(x)+\nu_{A}(x) \leq 1, \text { for all } x \in X .
$$

For the sake of simplicity, we shall use the symbol $A=\left(\mu_{A}, \nu_{A}\right)$ for the intuitionistic fuzzy set $A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle: x\right\}$.

Definition 3. [?] Let $A=\left(\mu_{A}, \nu_{A}\right)$ and $B=\left(\mu_{B}, \nu_{B}\right)$ be intuitionistic fuzzy sets in X. Then

1. $A \subseteq B$ iff $\mu_{A}(x) \leq \mu_{B}(x)$ and $\nu_{A}(x) \geq \nu_{B}(x)$ for all $x \in X$
2. $A^{c}=\left\{\left\langle x, \nu_{A}(x), \mu_{A}(x)\right\rangle: x \in X\right\}$
3. $A \cap B=\left\{\left\langle x, \mu_{A}(x) \wedge \mu_{B}(x), \nu_{A}(x) \vee \nu_{B}(x)\right\rangle: x \in X\right\}$
4. $A \cup B=\left\{\left\langle x, \mu_{A}(x) \vee \mu_{B}(x), \nu_{A}(x) \wedge \nu_{B}(x)\right\rangle: x \in X\right\}$
5. $A=B: \Leftrightarrow A \subseteq B \wedge B \subseteq A$

Definition 4. [11] A hyperstructure is a non-empty set H together with a mapping $*: H \times H \rightarrow$ $P^{*}(H)$ which is called hyperoperation, where $P^{*}(H)$ denotes the set of all non-empty subsets of H. The image of pair (x, y) is denoted by $x * y$. If $x \in H$ and $A, B \subseteq H$, then by $A * B, A * x$ and $x * B$ we mean, respectively,

$$
A * B=\underset{a \in A, b \in B}{\cup} a * b, A * x=A *\{x\} \text { and } x * B=\{x\} * B \text {. }
$$

Definition 5. [3] A hyperstructure $(H, *)$ is called a hypergroup if the following axioms hold:
(i) $(H, *)$ is a semihypergroup, that is, $\forall x, y, z \in H,(x *(y * z))=((x * y) * z)$;
(ii) $x * H=H * x=H$ for all $x \in H$.

Definition 6. [13] An H_{ν}-ring is a system $(R,+, \cdot)$ with two hyperoperations satisfying the following ring-like axioms:
(i) $(R,+, \cdot)$ is an $H_{\nu^{-}}$-group, that is,

$$
\begin{aligned}
& \forall a \in R, a+R=R+a=R \\
& \forall x, y, z \in R,((x+y)+z) \cap(x+(y+z)) \neq \varnothing
\end{aligned}
$$

(ii) (R, \cdot) is an H_{ν}-semigroup, that is,

$$
\forall x, y, z \in R,((x \cdot y) \cdot z) \cap(x \cdot(y \cdot z)) \neq \varnothing
$$

(iii) (\cdot) is weak distributive with respect to $(+)$, that is, for all $x, y, z \in R$,

$$
\begin{aligned}
((x+y) \cdot z) \cap(x \cdot z+y \cdot z) & \neq \varnothing \\
(x \cdot(y+z)) \cap(x \cdot y+x \cdot z) & \neq \varnothing
\end{aligned}
$$

Definition 7. [3] Let (H, \cdot) be a hypergroup (or H_{ν}-group) and let μ be a fuzzy subset of H. Then, μ is said to be a fuzzy subhypergroup (or fuzzy H_{ν}-subgroup) of H if the following axioms hold:
(i) $\min \{\mu(x), \mu(y)\} \leq \inf _{\alpha \in x \cdot y}\{\mu(\alpha)\}, \forall x, y \in H$;
(ii) for all $x, a \in H$ there exists $y \in H$ such that $x \in a \cdot y$ and $\min \{\mu(a), \mu(x)\} \leq \mu(y)$.

Definition 8. [3] Let (H, \cdot) be an H_{ν}-group and let μ be a fuzzy subset of H. Then, μ is said to be a T-fuzzy H_{ν}-subgroup of H with repect to T-norm T if the following axioms hold:
(i) $T(\mu(x), \mu(y)) \leq \inf _{\alpha \in x \cdot y}\{\mu(\alpha)\}, \forall x, y \in H$;
(ii) for all $x, a \in H$ there exists $y \in H$ such that $x \in a \cdot y$ and $T(\mu(a), \mu(x)) \leq \mu(y)$.

Definition 9. [5] An intuitionistic fuzzy set $A=\left(\mu_{A}, \nu_{A}\right)$ in R is called a left (resp., right) intuitionistic fuzzy H_{ν}-ideal of R if

1) $\min \left\{\mu_{A}(x), \mu_{A}(y)\right\} \leq \inf \left\{\mu_{A}(z): z \in x+y\right\}$, for all $x, y \in R$;
2) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
\min \left\{\mu_{A}(a), \mu_{A}(x)\right\} \leq \min \left\{\mu_{A}(y), \mu_{A}(z)\right\} ;
$$

3) $\mu_{A}(y) \leq \inf \left\{\mu_{A}(z): z \in x \cdot y\right\}\left(r e s p ., \mu_{A}(x) \leq \inf \left\{\mu_{A}(z): z \in x \cdot y\right\}\right)$ for all $x, y \in R$;
4) $\sup \left\{\nu_{A}(z): z \in x+y\right\} \leq \max \left\{\nu_{A}(x), \nu_{A}(y)\right\}$, for all $x, y \in R$;
5) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
\max \left\{\nu_{A}(y), \nu_{A}(z)\right\} \leq \max \left\{\nu_{A}(a), \nu_{A}(x)\right\} ;
$$

6) $\sup \left\{\nu_{A}(z): z \in x \cdot y\right\} \leq \nu_{A}(y)\left(\right.$ resp., $\left.\sup \left\{\nu_{A}(z): z \in x \cdot y\right\} \leq \nu_{A}(x)\right)$ for all $x, y \in R$.

Definition 10. [10] By a t-norm T, we mean a function $T:[0,1] \times[0,1] \rightarrow[0,1]$ satisfying the following conditions:

1) $T(x, 1)=x$;
2) $T(x, y) \leq T(x, z)$ if $y \leq z$;
3) $T(x, y)=T(y, x)$;
4) $T(x, T(y, z))=T(T(x, y), z)$;
for all $x, y, z \in[0,1]$.

For a t-norm T on $[0,1]$, denote by Δ_{T} the set of element $\alpha \in[0,1]$ such that $T(\alpha, \alpha)=\alpha$, i.e., $\Delta_{T}:=\{\alpha \in[0,1]: T(\alpha, \alpha)=\alpha\}$.

Definition 11. [10] Let T be a t-norm. A fuzzy subset μ of R is said to satisfy the idempotent property if $\Im(\mu) \subseteq \Delta_{T}$.

2 Main results

Definition 12. Let $(R,+, \cdot)$ be an H_{ν}-ring and $A=\left(\mu_{A}, \nu_{A}\right)$ be an intuitionistic fuzzy subset of R. Then, $A=\left(\mu_{A}, \nu_{A}\right)$ is said to be a T-intuitionistic fuzzy H_{ν}-subring of R with respect to t-norm T if the following axioms hold:

1) $T\left(\mu_{A}(x), \mu_{A}(y)\right) \leq \inf \left\{\mu_{A}(z): z \in x+y\right\}$, for all $x, y \in R$;
2) $\sup \left\{\nu_{A}(z): z \in x+y\right\} \leq 1-T\left(1-\nu_{A}(x), 1-\nu_{A}(y)\right)$, for all $x, y \in R$;
3) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
T\left(\mu_{A}(a), \mu_{A}(x)\right) \leq T\left(\mu_{A}(y), \mu_{A}(z)\right) ;
$$

4) $T\left(\mu_{A}(x), \mu_{A}(y)\right) \leq \inf \left\{\mu_{A}(z): z \in x \cdot y\right\}$, for all $x, y \in R$;
5) $\sup \left\{\nu_{A}(z): z \in x \cdot y\right\} \leq 1-T\left(1-\nu_{A}(x), 1-\nu_{A}(y)\right)$, for all $x, y \in R$;
6) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
T\left(1-\nu_{A}(a), 1-\nu_{A}(x)\right) \leq T\left(1-\nu_{A}(y), 1-\nu_{A}(z)\right) .
$$

Theorem 1. Let T be an t-norm and $A=\left(\mu_{A}, \nu_{A}\right)$ be an T-intuitionistic fuzzy H_{ν}-subring of R. Let $\mu_{A}, 1-\nu_{A}$ have the idempotent property. Then, the following sets are H_{ν}-subring of R

$$
R^{w}=\left\{x \in R: \mu_{A}(x) \geq \mu_{A}(w)\right\}, L^{w}=\left\{x \in R: \nu_{A}(x) \leq \nu_{A}(w)\right\} .
$$

Proposition 1. Let $x, y \in R^{w}$. Then, $\mu_{A}(x) \geq \mu_{A}(w)$ and $\mu_{A}(y) \geq \mu_{A}(w)$.
Since $A=\left(\mu_{A}, \nu_{A}\right)$ be a T-intuitionistic fuzzy H_{ν}-subring of R and μ_{A} have the idempotent property, it follows that

$$
\begin{aligned}
\inf \left\{\mu_{A}(z): z \in x+y\right\} & \geq T\left(\mu_{A}(x), \mu_{A}(y)\right) \\
& \geq T\left(\mu_{A}(x), \mu_{A}(w)\right) \\
& \geq T\left(\mu_{A}(w), \mu_{A}(w)\right)=\mu_{A}(w)
\end{aligned}
$$

Hence, $x+y \subseteq R^{w}$ implies $x+y \in P^{*}\left(R^{w}\right)$. Similarly, we have $x \cdot y \subseteq R^{w}$ and $x \cdot y \in P^{*}\left(R^{w}\right)$. Hence, $a+R^{w} \subseteq R^{w}$ and $R^{w}+a \subseteq R^{w}$ for all $a \in R^{w}$.

Now, let $x \in R^{w}$. Then, there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
T\left(\mu_{A}(a), \mu_{A}(x)\right) \leq T\left(\mu_{A}(y), \mu_{A}(z)\right) .
$$

Since $a, x \in R^{w}$, we have

$$
\mu_{A}(w)=T\left(\mu_{A}(w), \mu_{A}(w)\right) \leq T\left(\mu_{A}(a), \mu_{A}(x)\right)
$$

and so

$$
\mu_{A}(w) \leq T\left(\mu_{A}(y), \mu_{A}(z)\right) \leq \min \left\{\mu_{A}(y), \mu_{A}(z)\right\},
$$

which implies $y \in R^{w}$ and $z \in R^{w}$.
This proves that $R^{w} \subseteq a+R^{w}$ and $R^{w} \subseteq R^{w}+a$.
Since $(R,+, \cdot)$ is an H_{ν}-group and $R^{w} \subseteq R$ then for all $x, y, z \in R^{w}$,

$$
\begin{aligned}
& ((x+y)+z) \cap(x+(y+z)) \neq \varnothing ; \\
& ((x+y) \cdot z) \cap(x \cdot z+y \cdot z) \neq \varnothing ; \\
& (x \cdot(y+z)) \cap(x \cdot y+x \cdot z) \neq \varnothing ; \\
& ((x \cdot y) \cdot z) \cap(x \cdot(y \cdot z)) \neq \varnothing .
\end{aligned}
$$

Consequently, R^{w} is an H_{ν}-subring of R.
If $x, y \in L^{w}$, then $\nu_{A}(x) \leq \nu_{A}(w)$ and $\nu_{A}(y) \leq \nu_{A}(w)$. Since $A=\left(\mu_{A}, \nu_{A}\right)$ is a T-intuitionistic fuzzy H_{ν}-subring of R and $1-\nu_{A}$ has the idempotent property, it follows that

$$
\begin{aligned}
\sup \left\{\nu_{A}(z): z \in x+y\right\} & \leq 1-T\left(1-\nu_{A}(x), 1-\nu_{A}(y)\right) \\
& \leq 1-T\left(1-\nu_{A}(w), 1-\nu_{A}(w)\right)=\nu_{A}(w) .
\end{aligned}
$$

Hence, $x+y \subseteq L^{w}$. Similarly, we have $x \cdot y \subseteq L^{w}$. Hence, $a+L^{w} \subseteq L^{w}$ and $L^{w}+a \subseteq L^{w}$ for all $a \in L^{w}$.

Let $x \in L^{w}$. Then, there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
T\left(1-\nu_{A}(a), 1-\nu_{A}(x)\right) \leq T\left(1-\nu_{A}(y), 1-\nu_{A}(z)\right) .
$$

Since $a, x \in L^{w}$, we have

$$
\begin{aligned}
1-\nu_{A}(w)=T & \left(1-\nu_{A}(w), 1-\nu_{A}(w)\right) \\
& \leq T\left(1-\nu_{A}(w), 1-\nu_{A}(x)\right) \leq T\left(1-\nu_{A}(a), 1-\nu_{A}(x)\right)
\end{aligned}
$$

and so

$$
1-\nu_{A}(w) \leq T\left(1-\nu_{A}(y), 1-\nu_{A}(z)\right) \leq \min \left\{1-\nu_{A}(y), 1-\nu_{A}(z)\right\},
$$

which implies $y \in L^{w}$ and $z \in L^{w}$.
This proves that $L^{w} \subseteq a+L^{w}$ and $L^{w} \subseteq L^{w}+a$. Since $(R,+, \cdot)$ is an $H_{\nu^{-}}$group and $L^{w} \subseteq R$, then for all $x, y, z \in L^{w}$,

$$
\begin{aligned}
& ((x+y)+z) \cap(x+(y+z)) \neq \varnothing ; \\
& ((x+y) \cdot z) \cap(x \cdot z+y \cdot z) \neq \varnothing ; \\
& (x \cdot(y+z)) \cap(x \cdot y+x \cdot z) \neq \varnothing ; \\
& ((x \cdot y) \cdot z) \cap(x \cdot(y \cdot z)) \neq \varnothing .
\end{aligned}
$$

Consequently, L^{w} be an H_{ν}-subring of R.

Proposition 2. Let H be a non-empty subset of an H_{ν}-ring R and let the fuzzy sets μ, ν in R be defined by

$$
\mu(x)=\left\{\begin{array}{l}
\alpha_{0}, \quad x \in H \\
\alpha_{1}, \text { otherwise }
\end{array} \quad, \quad \nu(x)=\left\{\begin{array}{l}
\beta_{0}, x \in H \\
\beta_{1}, \text { otherwise }
\end{array},\right.\right.
$$

where $0 \leq \alpha_{1}<\alpha_{0}, 0 \leq \beta_{0}<\beta_{1}$ and $\alpha_{i}+\beta_{i} \leq 1$ for $i=0,1$.
Let $\mu, 1-\nu$ have the idempotent property. Then, $A=(\mu, \nu)$ is a T-intuitionistic fuzzy H_{ν}-subring of $R \Leftrightarrow H$ is an H_{ν}-subring of R.

Proof. Suppose that $A=(\mu, \nu)$ is a T-intuitionistic fuzzy H_{ν}-subring of R. Let $x, y \in H$. Then,

$$
\inf \{\mu(z): z \in x+y\} \geq T(\mu(x), \mu(y))=T\left(\alpha_{0}, \alpha_{0}\right)=\alpha_{0}
$$

It follows that $x+y \subseteq H$. Similarly, we have $x \cdot y \subseteq H$.
Hence, $a+H \subseteq H$ and $H+a \subseteq H$ for all $a \in H$. Let $x \in H$. Then, there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
T(\mu(a), \mu(x)) \leq T(\mu(y), \mu(z))
$$

Since $a, x \in H$, we have

$$
\alpha_{0}=T(\mu(a), \mu(x)) \leq T(\mu(y), \mu(z)) \leq \min \{\mu(y), \mu(z)\}
$$

which implies $y \in H$ and $z \in H$.
This proves that $H \subseteq a+H$ and $H \subseteq H+a$. Since $(R,+, \cdot)$ is an H_{ν}-group and $H \subseteq R$ then for all $x, y, z \in H$,

$$
\begin{aligned}
& ((x+y)+z) \cap(x+(y+z)) \neq \varnothing \\
& ((x+y) \cdot z) \cap(x \cdot z+y \cdot z) \neq \varnothing \\
& (x \cdot(y+z)) \cap(x \cdot y+x \cdot z) \neq \varnothing \\
& ((x \cdot y) \cdot z) \cap(x \cdot(y \cdot z)) \neq \varnothing
\end{aligned}
$$

Therefore H is an H_{ν}-subring of R.
Conversely suppose that H is an H_{ν}-subring of R. Let $x, y \in R$. If $x \in R \backslash H$ or $y \in R \backslash H$, then $\mu(x)=\alpha_{1}$ or $\mu(y)=\alpha_{1}$ and so

$$
\inf \{\mu(z): z \in x+y\} \geq \min \{\mu(x), \mu(y)\}=\alpha_{1} \geq T(\mu(x), \mu(y))
$$

Assume that $x \in H$ and $y \in H$. Then, $x+y \subseteq H$ and hence

$$
\inf \{\mu(z): z \in x+y\} \geq \min \{\mu(x), \mu(y)\}=\alpha_{0} \geq T(\mu(x), \mu(y))
$$

Let $x, y \in R$. If $x \in R \backslash H$ or $y \in R \backslash H$, then $\nu(x)=\beta_{1}$ or $\nu(y)=\beta_{1}$ and so

$$
\begin{aligned}
\sup \{\nu(z): z \in x+y\} \leq \beta_{1} & =\max \{\nu(x), \nu(y)\} \\
& =1-\min \{1-\nu(x), 1-\nu(y)\} \leq 1-T(1-\nu(x), 1-\nu(y)) .
\end{aligned}
$$

Assume that $x \in H$ and $y \in H$. Then, $x+y \subseteq H$ and hence

$$
\begin{aligned}
\sup \{\nu(z): z \in x+y\} \leq \beta_{0} & =\max \{\nu(x), \nu(y)\} \\
& =1-\min \{1-\nu(x), 1-\nu(y)\} \leq 1-T(1-\nu(x), 1-\nu(y)) .
\end{aligned}
$$

Let $x, y \in R$. If $x \in R \backslash H$ or $y \in R \backslash H$, then $\mu(x)=\alpha_{1}$ or $\mu(y)=\alpha_{1}$ and so

$$
\inf \{\mu(z): z \in x \cdot y\} \geq \min \{\mu(x), \mu(y)\}=\alpha_{1} \geq T(\mu(x), \mu(y)) .
$$

Assume that $x \in H$ and $y \in H$. Then, $x+y \subseteq H$ and hence

$$
\inf \{\mu(z): z \in x \cdot y\} \geq \min \{\mu(x), \mu(y)\}=\alpha_{0} \geq T(\mu(x), \mu(y)) .
$$

Let $x, y \in R$. If $x \in R \backslash H$ or $y \in R \backslash H$, then $\nu(x)=\beta_{1}$ or $\nu(y)=\beta_{1}$ and so

$$
\begin{aligned}
\sup \{\nu(z): z \in x \cdot y\} \leq \beta_{1} & =\max \{\nu(x), \nu(y)\} \\
& =1-\min \{1-\nu(x), 1-\nu(y)\} \leq 1-T(1-\nu(x), 1-\nu(y)) .
\end{aligned}
$$

Assume that $x \in H$ and $y \in H$. Then, $x+y \subseteq H$ and hence

$$
\begin{aligned}
\sup \{\nu(z): z \in x \cdot y\} \leq \beta_{0} & =\max \{\nu(x), \nu(y)\} \\
& =1-\min \{1-\nu(x), 1-\nu(y)\} \leq 1-T(1-\nu(x), 1-\nu(y)) .
\end{aligned}
$$

Let $x, a \in R$. Since R is an H_{ν}-ring, then there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$. If $x \in R \backslash H$ or $a \in R \backslash H$, then $\mu(x)=\alpha_{1}$ or $\mu(a)=\alpha_{1}$ and hence $\mu(x) \leq \mu(y), \mu(a) \leq \mu(z)$. And so

$$
T(\mu(a), \mu(x)) \leq T(\mu(y), \mu(z))
$$

Assume that $x \in H$ and $a \in H$. Since H is an H_{ν}-subring of R, then there exist $y, z \in H$ such that $x \in(a+y) \cap(z+a)$. Then, $\mu(x)=\mu(y)=\mu(a)=\mu(z)=\alpha_{0}$ and so

$$
T(\mu(a), \mu(x)) \leq T(\mu(y), \mu(z)) .
$$

Similarly, we have for all $x, a \in R$ there exist $y, z \in R$ such that $x \in(a+y) \cap(z+a)$ and

$$
T(1-\nu(a), 1-\nu(x)) \leq T(1-\nu(y), 1-\nu(z)) .
$$

Consequently $A=(\mu, \nu)$ be a T-intuitionistic fuzzy H_{ν}-subring of R.

References

[1] Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6.
[2] Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets, Theory and Applications, Spinger, Heidelberg.
[3] Davvaz, B. (1999). Fuzzy H ${ }_{\nu}$-groups, Fuzzy Sets and Systems, 101, 191-195.
[4] Davvaz, B. (1998). On H_{ν}-rings and fuzzy H_{ν}-ideals. Journal of Fuzzy Mathematics (1998), 6, 33-42.
[5] Davvaz, B., \& Dudek, W. A. (2006). Intuitionistic fuzzy H_{ν}-ideals, International Journal of Mathematics and Mathematical Sciences, Vol. 2006, Article ID 65921, 11 pages.
[6] Davvaz, B. (2001). Fuzzy H ${ }_{\nu}$-submodules, Fuzzy Sets and Systems, 117, 477-484.
[7] Davvaz, B., Dudek, W.A., \& Jun, Y. B. (2005). On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, Information Sciences, 170, 251-262.
[8] Davvaz, B. (2003). T-fuzzy H_{ν}-subrings of an H_{ν}-ring, The Journal of Fuzzy Mathematics, 11, 215-224.
[9] Klement, E. P., Mesiar, R., \& Pap, E. (2000). Triangular Norms, Kluwer Academic Publishers, Dordrecht.
[10] Lee, J. G., \& Kim, K. H. (2010). On fuzzy subhypernear-rings of hypernear-rings with t-norms, Journal of the Chungcheong Mathematical Society, 23(2), 237-243.
[11] Marty, F. (1934). Sur une generalization de la notion de groupe, Congres Math. Skandinaves, Stockholm, 45-49.
[12] Spartalis, S., \& Vougiouklis, T. (1994). The fundamental relations of H_{ν}-rings, Riv. Mat. Pura Apply. 14, 7-20.
[13] Vougiouklis, T. (1999). On H_{ν}-ring and H_{ν}-representations, Discrete Math., 208/209, 615620.
[14] Vougiouklis, T. (1990). The Fundamental relation in hyperrings. The general hyperfield, in Algebraic Hyperstructures and Applications, World Sci. Pulb., Teaneck, NJ, pp. 203-211.
[15] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338-353.

