21st ICIFS, 22–23 May 2017, Burgas, Bulgaria Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 Vol. 23, 2017, No. 2, 24–31

On intuitionistic fuzzy hyperstructure with T-norm

Gökhan Çuvalcıoğlu¹, Mehmet Çitil² and Emine Demirbaş¹

¹ Department of Mathematics, Faculty of Arts and Sciences Mersin University, Mersin, Turkey e-mails: gcuvalcioglu@gmail.com, eminesdemirbas@gmail.com

² Department of Mathematics, Faculty of Arts and Sciences Kahramanmaraş Sütçü İmam University Kahramanmaraş, Turkey e-mail: citil@ksu.edu.tr

Received: 26 January 2017

Accepted: 4 April 2017

Abstract: In this paper, we redefine T-intuitionistic fuzzy H_{ν} -subring of R and investigate some related properties. Some fundamental relation properties are studied.

Keywords: H_{ν} -rings, Fuzzy H_{ν} -group, Fundamental definition of H_{ν} -rings, Intuitionistic fuzzy H_{ν} -ideal, T-norm.

AMS Classification: Primary 05C38, 15A15; Secondary 05A15, 15A18.

1 Introduction

Since the concept of a fuzzy subset of a non-empty set was first introduced by Zadeh [15] in 1965, there have been a number of generalizations of this fundamental concept. The notion of intuitionistic fuzzy sets, first introduced by Atanassov [1], is one among them.

The theory of hyperstructures was introduced by Marty [11] in 1934. Marty introduced the notion of a hypergroup and then many researchers have been working on this new field of modern

algebra and have been developing it. H_{ν} -rings first were introduced by Vougiouklis [14] in 1990. The largest class of algebraic systems satisfying ring-like axioms is the H_{ν} -ring. So, he defined the fundamental definition of H_{ν} -rings theory.

The concept of the fuzzy subhypergroup as well as of the fuzzy H_{ν} -group were introduced by Davvaz [3] in 1999. Davvaz [4] defined the concept of fuzzy H_{ν} -ideal of an H_{ν} -ring, which is a generalization of the concept of fuzzy ideal. The notion of intuitionistic fuzzy H_{ν} -ideal of an H_{ν} -ring were introduced by Davvaz, Dudek [5] in 2006.

Definition 1. [15] Let X be a nonempty set. A mapping $\mu : X \to [0,1]$ is called a fuzzy set in X. The complement of μ , denoted by μ^c , is the fuzzy set in X given by $\mu^c(x) = 1 - \mu(x)$ for all $x \in X$.

Definition 2. [1] An intuitionistic fuzzy set (shortly IFS) on a set X is an object of the form

$$A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \in X \},\$$

where $\mu_A(x), (\mu_A : X \to [0,1])$ is called the "degree of membership of x in A", $\nu_A(x), (\nu_A : X \to [0,1])$ is called the "degree of non-membership of x in A", and where μ_A and ν_A satisfy the following condition:

$$\mu_A(x) + \nu_A(x) \leq 1$$
, for all $x \in X$.

For the sake of simplicity, we shall use the symbol $A = (\mu_A, \nu_A)$ for the intuitionistic fuzzy set $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle : x \}.$

Definition 3. [?] Let $A = (\mu_A, \nu_A)$ and $B = (\mu_B, \nu_B)$ be intuitionistic fuzzy sets in X. Then

- *1.* $A \subseteq B$ iff $\mu_A(x) \leq \mu_B(x)$ and $\nu_A(x) \geq \nu_B(x)$ for all $x \in X$
- 2. $A^{c} = \{ \langle x, \nu_{A}(x), \mu_{A}(x) \rangle : x \in X \}$
- 3. $A \cap B = \{ \langle x, \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) \rangle : x \in X \}$
- 4. $A \cup B = \{ \langle x, \mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) \rangle : x \in X \}$
- 5. $A = B :\Leftrightarrow A \subseteq B \land B \subseteq A$

Definition 4. [11] A hyperstructure is a non-empty set H together with a mapping $* : H \times H \rightarrow P^*(H)$ which is called hyperoperation, where $P^*(H)$ denotes the set of all non-empty subsets of H. The image of pair (x, y) is denoted by x * y. If $x \in H$ and $A, B \subseteq H$, then by A * B, A * x and x * B we mean, respectively,

$$A * B = \bigcup_{a \in A, b \in B} a * b, A * x = A * \{x\} \text{ and } x * B = \{x\} * B.$$

Definition 5. [3] A hyperstructure (H, *) is called a hypergroup if the following axioms hold: (i) (H, *) is a semihypergroup, that is, $\forall x, y, z \in H$, (x * (y * z)) = ((x * y) * z); (ii) x * H = H * x = H for all $x \in H$. **Definition 6.** [13] An H_{ν} -ring is a system $(R, +, \cdot)$ with two hyperoperations satisfying the following ring-like axioms:

(i) $(R, +, \cdot)$ is an H_{ν} -group, that is,

$$\forall a \in R, \ a + R = R + a = R$$

$$\forall x, y, z \in R, \ ((x + y) + z) \cap (x + (y + z)) \neq \emptyset;$$

(*ii*) (R, \cdot) is an H_{ν} -semigroup, that is,

 $\forall x, y, z \in R, \ ((x \cdot y) \cdot z) \cap (x \cdot (y \cdot z)) \neq \emptyset;$

(*iii*) (·) is weak distributive with respect to (+), that is, for all $x, y, z \in R$,

$$\begin{array}{rcl} ((x+y)\cdot z)\cap (x\cdot z+y\cdot z) & \neq & \varnothing \\ (x\cdot (y+z))\cap (x\cdot y+x\cdot z) & \neq & \varnothing. \end{array}$$

Definition 7. [3] Let (H, \cdot) be a hypergroup (or H_{ν} -group) and let μ be a fuzzy subset of H. Then, μ is said to be a fuzzy subhypergroup (or fuzzy H_{ν} -subgroup) of H if the following axioms hold: (i) min $\{\mu(x), \mu(y)\} \leq \inf_{\alpha \in x \cdot y} \{\mu(\alpha)\}, \forall x, y \in H;$

(*ii*) for all $x, a \in H$ there exists $y \in H$ such that $x \in a \cdot y$ and $\min \{\mu(a), \mu(x)\} \le \mu(y)$.

Definition 8. [3] Let (H, \cdot) be an H_{ν} -group and let μ be a fuzzy subset of H. Then, μ is said to be a T-fuzzy H_{ν} -subgroup of H with repect to T-norm T if the following axioms hold: (i) $T(\mu(x), \mu(y)) \leq \inf_{\alpha \in x \cdot y} {\{\mu(\alpha)\}, \forall x, y \in H;}$

(*ii*) for all $x, a \in H$ there exists $y \in H$ such that $x \in a \cdot y$ and $T(\mu(a), \mu(x)) \leq \mu(y)$.

Definition 9. [5] An intuitionistic fuzzy set $A = (\mu_A, \nu_A)$ in R is called a left (resp., right) intuitionistic fuzzy H_{ν} -ideal of R if

1) $\min \{\mu_A(x), \mu_A(y)\} \le \inf \{\mu_A(z) : z \in x + y\}$, for all $x, y \in R$;

2) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and

$$\min \left\{ \mu_A(a), \mu_A(x) \right\} \le \min \left\{ \mu_A(y), \mu_A(z) \right\};$$

3) $\mu_A(y) \le \inf \{\mu_A(z) : z \in x \cdot y\}$ (resp., $\mu_A(x) \le \inf \{\mu_A(z) : z \in x \cdot y\}$) for all $x, y \in R$;

- 4) $\sup \{\nu_A(z) : z \in x + y\} \le \max \{\nu_A(x), \nu_A(y)\}, \text{ for all } x, y \in R;$
- 5) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and

 $\max \left\{ \nu_A(y), \nu_A(z) \right\} \le \max \left\{ \nu_A(a), \nu_A(x) \right\};$

6) $\sup \{\nu_A(z) : z \in x \cdot y\} \le \nu_A(y)$ (resp., $\sup \{\nu_A(z) : z \in x \cdot y\} \le \nu_A(x)$) for all $x, y \in R$.

Definition 10. [10] By a t-norm T, we mean a function $T : [0,1] \times [0,1] \rightarrow [0,1]$ satisfying the following conditions:

1) T(x, 1) = x;2) $T(x, y) \le T(x, z)$ if $y \le z;$ 3) T(x, y) = T(y, x);4) T(x, T(y, z)) = T(T(x, y), z);for all $x, y, z \in [0, 1]$. For a t-norm T on [0, 1], denote by Δ_T the set of element $\alpha \in [0, 1]$ such that $T(\alpha, \alpha) = \alpha$, i.e., $\Delta_T := \{\alpha \in [0, 1] : T(\alpha, \alpha) = \alpha\}$.

Definition 11. [10] Let T be a t-norm. A fuzzy subset μ of R is said to satisfy the idempotent property if $\Im(\mu) \subseteq \Delta_T$.

2 Main results

Definition 12. Let $(R, +, \cdot)$ be an H_{ν} -ring and $A = (\mu_A, \nu_A)$ be an intuitionistic fuzzy subset of R. Then, $A = (\mu_A, \nu_A)$ is said to be a T-intuitionistic fuzzy H_{ν} -subring of R with respect to t-norm T if the following axioms hold:

1) $T(\mu_A(x), \mu_A(y)) \le \inf \{\mu_A(z) : z \in x + y\}, \text{ for all } x, y \in R;$

2) $\sup \{\nu_A(z) : z \in x + y\} \leq 1 - T(1 - \nu_A(x), 1 - \nu_A(y)), \text{ for all } x, y \in R;$

3) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and

 $T\left(\mu_{A}\left(a\right),\mu_{A}\left(x\right)\right) \leq T\left(\mu_{A}\left(y\right),\mu_{A}\left(z\right)\right);$

4) $T(\mu_A(x), \mu_A(y)) \le \inf \{\mu_A(z) : z \in x \cdot y\}, \text{ for all } x, y \in R;$

5) $\sup \{\nu_A(z) : z \in x \cdot y\} \le 1 - T(1 - \nu_A(x), 1 - \nu_A(y))$, for all $x, y \in R$;

6) for all $x, a \in R$ there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and

$$T(1 - \nu_A(a), 1 - \nu_A(x)) \le T(1 - \nu_A(y), 1 - \nu_A(z)).$$

Theorem 1. Let T be an t-norm and $A = (\mu_A, \nu_A)$ be an T-intuitionistic fuzzy H_ν -subring of R. Let μ_A , $1 - \nu_A$ have the idempotent property. Then, the following sets are H_ν -subring of R

$$R^{w} = \{x \in R : \mu_{A}(x) \ge \mu_{A}(w)\}, \ L^{w} = \{x \in R : \nu_{A}(x) \le \nu_{A}(w)\}.$$

Proposition 1. Let $x, y \in \mathbb{R}^{w}$. Then, $\mu_{A}(x) \geq \mu_{A}(w)$ and $\mu_{A}(y) \geq \mu_{A}(w)$.

Since $A = (\mu_A, \nu_A)$ be a *T*-intuitionistic fuzzy H_{ν} -subring of *R* and μ_A have the idempotent property, it follows that

$$\inf \{\mu_A(z) : z \in x + y\} \geq T(\mu_A(x), \mu_A(y))$$
$$\geq T(\mu_A(x), \mu_A(w))$$
$$\geq T(\mu_A(w), \mu_A(w)) = \mu_A(w)$$

Hence, $x + y \subseteq R^w$ implies $x + y \in P^*(R^w)$. Similarly, we have $x \cdot y \subseteq R^w$ and $x \cdot y \in P^*(R^w)$. Hence, $a + R^w \subseteq R^w$ and $R^w + a \subseteq R^w$ for all $a \in R^w$.

Now, let $x \in R^w$. *Then, there exist* $y, z \in R$ *such that* $x \in (a + y) \cap (z + a)$ *and*

$$T\left(\mu_{A}\left(a\right),\mu_{A}\left(x\right)\right) \leq T\left(\mu_{A}\left(y\right),\mu_{A}\left(z\right)\right).$$

Since $a, x \in \mathbb{R}^w$, we have

$$\mu_A(w) = T(\mu_A(w), \mu_A(w)) \le T(\mu_A(a), \mu_A(x))$$

and so

$$\mu_A(w) \le T(\mu_A(y), \mu_A(z)) \le \min \{\mu_A(y), \mu_A(z)\},\$$

which implies $y \in R^w$ and $z \in R^w$.

This proves that $R^w \subseteq a + R^w$ and $R^w \subseteq R^w + a$. Since $(R, +, \cdot)$ is an H_{ν} -group and $R^w \subseteq R$ then for all $x, y, z \in R^w$,

$$\begin{aligned} &((x+y)+z)\cap(x+(y+z))\neq\varnothing;\\ &((x+y)\cdot z)\cap(x\cdot z+y\cdot z)\neq\varnothing;\\ &(x\cdot(y+z))\cap(x\cdot y+x\cdot z)\neq\varnothing;\\ &((x\cdot y)\cdot z)\cap(x\cdot(y\cdot z))\neq\varnothing.\end{aligned}$$

Consequently, R^w is an H_{ν} -subring of R.

If $x, y \in L^w$, then $\nu_A(x) \leq \nu_A(w)$ and $\nu_A(y) \leq \nu_A(w)$. Since $A = (\mu_A, \nu_A)$ is a *T*-intuitionistic fuzzy H_{ν} -subring of *R* and $1 - \nu_A$ has the idempotent property, it follows that

$$\sup \{\nu_A(z) : z \in x + y\} \le 1 - T(1 - \nu_A(x), 1 - \nu_A(y))$$
$$\le 1 - T(1 - \nu_A(w), 1 - \nu_A(w)) = \nu_A(w)$$

Hence, $x + y \subseteq L^w$. *Similarly, we have* $x \cdot y \subseteq L^w$. *Hence,* $a + L^w \subseteq L^w$ *and* $L^w + a \subseteq L^w$ *for all* $a \in L^w$.

Let $x \in L^w$. Then, there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and

$$T(1 - \nu_A(a), 1 - \nu_A(x)) \le T(1 - \nu_A(y), 1 - \nu_A(z))$$

Since $a, x \in L^w$, we have

$$1 - \nu_A(w) = T(1 - \nu_A(w), 1 - \nu_A(w)) \\ \leq T(1 - \nu_A(w), 1 - \nu_A(x)) \leq T(1 - \nu_A(a), 1 - \nu_A(x)),$$

and so

$$1 - \nu_A(w) \le T(1 - \nu_A(y), 1 - \nu_A(z)) \le \min\{1 - \nu_A(y), 1 - \nu_A(z)\}$$

which implies $y \in L^w$ and $z \in L^w$.

This proves that $L^w \subseteq a + L^w$ and $L^w \subseteq L^w + a$. Since $(R, +, \cdot)$ is an H_{ν} -group and $L^w \subseteq R$, then for all $x, y, z \in L^w$,

> $((x+y)+z) \cap (x+(y+z)) \neq \emptyset;$ $((x+y) \cdot z) \cap (x \cdot z + y \cdot z) \neq \emptyset;$ $(x \cdot (y+z)) \cap (x \cdot y + x \cdot z) \neq \emptyset;$ $((x \cdot y) \cdot z) \cap (x \cdot (y \cdot z)) \neq \emptyset.$

Consequently, L^w be an H_{ν} -subring of R.

Proposition 2. Let H be a non-empty subset of an H_{ν} -ring R and let the fuzzy sets μ, ν in R be defined by

$$\mu(x) = \begin{cases} \alpha_0, & x \in H \\ \alpha_1, \text{ otherwise} \end{cases}, \quad \nu(x) = \begin{cases} \beta_0, x \in H \\ \beta_1, \text{ otherwise} \end{cases}$$

,

where $0 \leq \alpha_1 < \alpha_0$, $0 \leq \beta_0 < \beta_1$ and $\alpha_i + \beta_i \leq 1$ for i = 0, 1.

Let $\mu, 1 - \nu$ have the idempotent property. Then, $A = (\mu, \nu)$ is a T-intuitionistic fuzzy H_{ν} -subring of $R \Leftrightarrow H$ is an H_{ν} -subring of R.

Proof. Suppose that $A = (\mu, \nu)$ is a T-intuitionistic fuzzy H_{ν} -subring of R. Let $x, y \in H$. Then,

$$\inf \{\mu(z) : z \in x + y\} \ge T(\mu(x), \mu(y)) = T(\alpha_0, \alpha_0) = \alpha_0.$$

It follows that $x + y \subseteq H$. Similarly, we have $x \cdot y \subseteq H$.

Hence, $a + H \subseteq H$ and $H + a \subseteq H$ for all $a \in H$. Let $x \in H$. Then, there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and

$$T(\mu(a), \mu(x)) \le T(\mu(y), \mu(z)).$$

Since $a, x \in H$, we have

$$\alpha_{0} = T\left(\mu\left(a\right), \mu\left(x\right)\right) \leq T\left(\mu\left(y\right), \mu\left(z\right)\right) \leq \min\left\{\mu\left(y\right), \mu\left(z\right)\right\},$$

which implies $y \in H$ and $z \in H$.

This proves that $H \subseteq a + H$ and $H \subseteq H + a$. Since $(R, +, \cdot)$ is an H_{ν} -group and $H \subseteq R$ then for all $x, y, z \in H$,

$$((x+y)+z) \cap (x+(y+z)) \neq \emptyset;$$

$$((x+y) \cdot z) \cap (x \cdot z + y \cdot z) \neq \emptyset;$$

$$(x \cdot (y+z)) \cap (x \cdot y + x \cdot z) \neq \emptyset;$$

$$((x \cdot y) \cdot z) \cap (x \cdot (y \cdot z)) \neq \emptyset.$$

Therefore H is an H_{ν} -subring of R.

Conversely suppose that H is an H_{ν} -subring of R. Let $x, y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\mu(x) = \alpha_1$ or $\mu(y) = \alpha_1$ and so

$$\inf \{\mu(z) : z \in x + y\} \ge \min \{\mu(x), \mu(y)\} = \alpha_1 \ge T(\mu(x), \mu(y)).$$

Assume that $x \in H$ and $y \in H$. Then, $x + y \subseteq H$ and hence

$$\inf \{\mu(z) : z \in x + y\} \ge \min \{\mu(x), \mu(y)\} = \alpha_0 \ge T(\mu(x), \mu(y)).$$

Let $x, y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\nu(x) = \beta_1$ or $\nu(y) = \beta_1$ and so

 $\sup \{\nu(z) : z \in x + y\} \le \beta_1 = \max \{\nu(x), \nu(y)\} \\= 1 - \min \{1 - \nu(x), 1 - \nu(y)\} \le 1 - T(1 - \nu(x), 1 - \nu(y)).$

Assume that $x \in H$ and $y \in H$. Then, $x + y \subseteq H$ and hence

 $\sup \{\nu(z) : z \in x + y\} \le \beta_0 = \max \{\nu(x), \nu(y)\}$ = 1 - min \{1 - \nu(x), 1 - \nu(y)\} \le 1 - T(1 - \nu(x), 1 - \nu(y)).

Let $x, y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\mu(x) = \alpha_1$ or $\mu(y) = \alpha_1$ and so

$$\inf \left\{ \mu \left(z \right) : z \in x \cdot y \right\} \ge \min \left\{ \mu \left(x \right), \mu \left(y \right) \right\} = \alpha_1 \ge T \left(\mu \left(x \right), \mu \left(y \right) \right).$$

Assume that $x \in H$ and $y \in H$. Then, $x + y \subseteq H$ and hence

$$\inf \left\{ \mu \left(z \right) : z \in x \cdot y \right\} \ge \min \left\{ \mu \left(x \right), \mu \left(y \right) \right\} = \alpha_0 \ge T \left(\mu \left(x \right), \mu \left(y \right) \right).$$

Let $x, y \in R$. If $x \in R \setminus H$ or $y \in R \setminus H$, then $\nu(x) = \beta_1$ or $\nu(y) = \beta_1$ and so

 $\sup \{\nu(z) : z \in x \cdot y\} \le \beta_1 = \max \{\nu(x), \nu(y)\} \\= 1 - \min \{1 - \nu(x), 1 - \nu(y)\} \le 1 - T(1 - \nu(x), 1 - \nu(y)).$

Assume that $x \in H$ and $y \in H$. Then, $x + y \subseteq H$ and hence

$$\sup \{\nu(z) : z \in x \cdot y\} \le \beta_0 = \max \{\nu(x), \nu(y)\} \\= 1 - \min \{1 - \nu(x), 1 - \nu(y)\} \le 1 - T(1 - \nu(x), 1 - \nu(y)).$$

Let $x, a \in R$. Since R is an H_{ν} -ring, then there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$. If $x \in R \setminus H$ or $a \in R \setminus H$, then $\mu(x) = \alpha_1$ or $\mu(a) = \alpha_1$ and hence $\mu(x) \le \mu(y), \mu(a) \le \mu(z)$. And so

$$T\left(\mu\left(a\right),\mu\left(x\right)\right) \leq T\left(\mu\left(y\right),\mu\left(z\right)\right).$$

Assume that $x \in H$ and $a \in H$. Since H is an H_{ν} -subring of R, then there exist $y, z \in H$ such that $x \in (a + y) \cap (z + a)$. Then, $\mu(x) = \mu(y) = \mu(a) = \mu(z) = \alpha_0$ and so

$$T\left(\mu\left(a\right),\mu\left(x\right)\right) \leq T\left(\mu\left(y\right),\mu\left(z\right)\right).$$

Similarly, we have for all $x, a \in R$ there exist $y, z \in R$ such that $x \in (a + y) \cap (z + a)$ and

$$T(1 - \nu(a), 1 - \nu(x)) \le T(1 - \nu(y), 1 - \nu(z)).$$

Consequently $A = (\mu, \nu)$ be a *T*-intuitionistic fuzzy H_{ν} -subring of *R*.

References

- Atanassov K. T. (1983). Intuitionistic Fuzzy Sets, *VII ITKR Session*, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: *Int. J. Bioautomation*, 2016, 20(S1), S1–S6.
- [2] Atanassov, K. T. (1999). *Intuitionistic Fuzzy Sets, Theory and Applications*, Spinger, Heidelberg.

- [3] Davvaz, B. (1999). Fuzzy H_{ν} -groups, Fuzzy Sets and Systems, 101, 191–195.
- [4] Davvaz, B. (1998). On H_{ν} -rings and fuzzy H_{ν} -ideals. Journal of Fuzzy Mathematics (1998), 6, 33–42.
- [5] Davvaz, B., & Dudek, W. A. (2006). Intuitionistic fuzzy H_ν-ideals, *International Journal of Mathematics and Mathematical Sciences*, Vol. 2006, Article ID 65921, 11 pages.
- [6] Davvaz, B. (2001). Fuzzy H_{ν} -submodules, *Fuzzy Sets and Systems*, 117, 477–484.
- [7] Davvaz, B., Dudek, W.A., & Jun, Y. B. (2005). On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups, *Information Sciences*, 170, 251–262.
- [8] Davvaz, B. (2003). T-fuzzy H_{ν} -subrings of an H_{ν} -ring, *The Journal of Fuzzy Mathematics*, 11, 215–224.
- [9] Klement, E. P., Mesiar, R., & Pap, E. (2000). *Triangular Norms*, Kluwer Academic Publishers, Dordrecht.
- [10] Lee, J. G., & Kim, K. H. (2010). On fuzzy subhypernear-rings of hypernear-rings with t-norms, *Journal of the Chungcheong Mathematical Society*, 23(2), 237–243.
- [11] Marty, F. (1934). Sur une generalization de la notion de groupe, *Congres Math. Skandinaves*, Stockholm, 45–49.
- [12] Spartalis, S., & Vougiouklis, T. (1994). The fundamental relations of H_{ν} -rings, *Riv. Mat. Pura Apply.* 14, 7–20.
- [13] Vougiouklis, T. (1999). On H_{ν} -ring and H_{ν} -representations, *Discrete Math.*, 208/209, 615–620.
- [14] Vougiouklis, T. (1990). The Fundamental relation in hyperrings. The general hyperfield, in *Algebraic Hyperstructures and Applications*, World Sci. Pulb., Teaneck, NJ, pp. 203–211.
- [15] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, 338–353.