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1 Introduction

The Intuitionistic Fuzzy Sets (IFSs, see [2, 5]) were defined as extensions of the ordinary fuzzy
sets, but during the last 25 years they have also been object of extensions and applications.
Exactly 20 years ago, Anthony Shannon and the author introduced the concept of an Intu-
itionistic Fuzzy Graph (IFG) [9]. The definition from [2, 5] is the following.
Let V be a set of vertices. For a fixed Cartesian product o over IFSs (see [2, 5]), the set

G* = {((:E,y),ug(x,y),yg(x,y)) <{L‘7y> eV x V}

is called o-IFG (or briefly, an IFG) if the functions pg : V x V — [0, 1] and vg : V x V — [0, 1]
define the degree of membership and the degree of non-membership, respectively, of the arc
(r,y) € V x Vtotheset G C V x V, where x is a standard set-theoretical Cartesian product
and the functions ¢ and v have the forms of the corresponding components of the o-Cartesian
product over IFSs and for all (z,y) € V x V,
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0< MG(x7y) + Vg<l’,y) <L

For simplicity, we write GG instead of G*.

2 Short remarks on index matrix, intuitionistic fuzzy
index matrix and extended intuitionistic fuzzy index matrix

The concept of Index Matrix (IM) was introduced in [1] and discusssed in more details in [3, 4].
Here, following [3], the basic definitions and properties related to IMs are given.

Let  be a fixed set of indices and R be the set of all real numbers. By IM with index sets K
and L (K, L C I), we mean the object,

1 Iy ly

ki | agygy Qrygy oo Qi
(K, L {ar,, }] = k2 | Gy Gholy - Qo
km | Gty Qs -0 Qg 1,

where K = {ki,ky, ...k}, L ={l1,l2,....;[n},andfor 1 <i<m,and 1 < j <n:ap, €R.
On the basis of the above definition, in [4] the new object — the Intuitionistic Fuzzy IM (IFIM)
— was introduced in the form

[Kv L7 {<:U'ki,lj> Vki>lj>}]

ll l2 e ln
k| (s Vi) (Hikados Vo) o (Hikea s Vi 1)
= k2 <:uk2,117 Vk27l1> <Nk27l27 Vk2,12> s </’l’k27ln7 Vk2,ln> s
km </‘Lkm7l1 ’ Vkal) <Mkm7l2’ Vk7n7l2> st <Mk‘m7ln’ ]/km7ln>

where forevery 1 <i <m,1 < j <n: 0 < pug, 15, Vit Bkit; + Vigt, < 1

The Extended IFIM (EIFIM) has defined in [6] by:

[K*a L*v {(,uki,lja Vkivlj>}]

ll7<al17ﬁi> lja<aé’>5]l'> ln7<afwﬂ7lz>
ki, <0/f7 5f> <:uk1,lla Vk1,11> ce <Mk1,lj, Vkl,lj> ce <Mk1,ln, Vk1,1n>
ok (al B | (ke Vi) o kit Veity) e (s Vi)
Koy (QE,, BEY | (s Vi) - Moy s Vionidy) =+ Bkt s Vi)
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where for every 1 < i <m,1 < j < ni g, 1, Vg ;s ki l; T Vial; € [0, 1],
k ok _k k
alaﬁlaal + 51 € [07 1]7

oy, By, 01 + By € [0,1]

and here and below,
K* = {<k‘“0zf,61k>‘k‘z € K} = {(k,,af,@fﬂl S i S m}v

L = {{l;, 05, B)ll; € L} = {(I;, 05, )1 < j < m}.

Let
K* C P*iff (K C P) & (Vk; = p; € K)((of < ab) & (8F > 7).

K* C P iff (K C P) & (Vk; = p; € K)((af < o) & (BF > 67)).

All operations and relations over EIFIM must be re-defined, because they have different forms
from the above ones. Obviously, the hierarchical operators are not applicable now.

3 Standard operations over EIFIMs

For the EIFIMs A = [K*, L*, {{ttk; 1, Yk, 1;) }, B = [P, Q*, {{Pp,.qs> Op..q,) }]- Operations that
are analogous to the usual matrix operations of addition and multiplication are defined, as well as

other specific ones.

(1.a) Alddition-(max,min)

A @(max,min) B = [T*7 V*7 {<90tu,vw7 wtu,vw>}]7

where
T = K*UP* = {{t,,a’, ) |t, € KU P},

V*=L"UQ" = {{vy,ay, Bu)|vw € LUQY,

ak, ift,c K — P
afL: b, ift,e P— K,
max(af, a?), ift, e KNP
i ifv, € L—Q
By = 7, ift, e@Q—L,

min( ;,53), ift, e LNQ
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and

<,U/k2-,lj; Vki,lj>7 ift, =k € K
andv, =1l; € L —Q
ort,=k;e K—P
and v, = l; € L;

(Porstsr Toras)s ift,=p. €P
andv, =q, € Q — L
ort,=p. € P—K
and v, = q5 € Q;

<()0tu,vw ’ wtuﬂ}w> =

<maX(Mkivlj7 ppr:Qs)’ ift,=ki=p. € KNP
min(yki,lj,aphqs)% andv, =l =g, € LNQ

(0,1), otherwise
(1.b) Addition-(min,max)

A @(min,max) B = [T*a V*v {<(10tu,vw7 wtu,vw>}]7
where 7%, V* ol 3° . have the forms from (1.a), but

(Kkit; > Vi) ift,=k €K
andv, =l; € L —-Q
ort,=k;e K—P
and v, = l; € L;

(Porass Tpras)s ift,=p-€P
andv, =¢q, € Q — L
ort,=p. € P—K
and v, = ¢s € Q;

(%u,vw ) ¢tu,vw> =

(min(pr, i;, pp,g.),  iftu=ki=p, € KNP
max(yki,lj, Tprigs))s andv, =l;=¢;, € LNQ

(0,1), otherwise

(2.a) Termwise multiplication-(max,min)

A @ (max,min) B = [T*7 V*7 {<(ptuﬂ)w7 wtu,vw>}]7

where
T = K*N P* = {{t,, o', ) |t, € KN P},

V*=L"NQ" = {{vy,ap, Bu)|vw € LNQY,
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of = min(aF,a?), fort, = k; =p. € KNP,

B2 = min(B, BY), forv, =1, = ¢, € LNQ

and
<S0tu,'Uw7 wtuﬂ)w> - <max(luki,lj ) ppmq.s)? min(]/kiJj? UPT;QS)) .

(4.2.b) Termwise multiplication-(min,max)
A ®(min,max) B = [T*> V*7 {<90tu,vw7 ¢tu,vw>}]7
where T*, V* ol , BV have the forms from (2.a), but

<<ptu7'Uw7 ¢tu7vw> = <m1n(#k1,lj ) ppm%)’ ma'X(]/kulJ’ O-pmq.s))'

(3.a) Multiplication-(max,min)

A @(max,min) B = [T*a V*a <30tu,vw7 wtu,vw>}]7

where
T* = (K U(P— L))" = {{tu 0k, Bi)lt. € K U(P - L)},
V' =(QU (L~ P))" = {(vu, ay, By)|vw € QU (L — P)},
Oé?, lftu:kl c K
al = :
Oéf, lftu:prep_[f
L ifu,=leL—P
B = ,
37 iftw =(s € Q
and

<90tuﬂ)w ) wtu,vw> =

<:uki,lj7 yk‘i,lj>7 lf tu - kl - K
andv, =1, € L—-P—Q

(Pprigss Oprogs)» ift,=p,eP—L—K
and v, = ¢s € Q

o < max (min(luki,lj7ppr7QS))7 if tu = kl S K
lj:p7»ELﬁP
and v, = ¢ € Q

mln (maX<Vki,lj7 UPT,QS))>7
lj:preLﬂP

(0, 1), otherwise
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(3.b) Multiplication-(min,max)

A @(min,max) B = [T*a V*a <()0tu,vw7 wtu,vw>}]7

where 7%, V* ol , 5V have the forms from (3.a), but

<S0tu,'Uw ) wtu7Uw> =

<:uk¢,l]~a Vki,zj>, ift,=k € K
andv, =0, € L—P—Q

<ppr7q.s’0—pr7q\s>7 1f tu - pr € P - L — K
and v, = qs € Q)

— ) ( min (max(ukg,, ppg.)),  ifte=Fk €K
lj:prELﬂP
and v, = ¢, € @

max (min(yki,lj’ gpr#ls)»)
lj=preLNP

(0, 1), otherwise

(4) Structural subtraction

A @ B - [T*a V*7 {<§0tu,vw7wtu,vw>}]7

where
T" = (K — P)* = {(tu,al, B,)|t, € K — P},
V= (L - Q)* = {<Uw7afu7 Z;>|Uw €L— Q},
for the set—theoretic subtraction operation and
of =aF fort, =k € K — P,
B = ]l-, forv, =€ L —-Q

and
<S0tu,vw7wtu,'uw> = <,uki,lj,Vki,zj>, fort, =k; € K — Pand v, = lj eL-Q.

(5) Negation of an EIFIM
A= [TV {0y Vi) 3
where — is one of the intuitionistic fuzzy negations given in [5], or another possible negation.
(6) Termwise subtraction
A —axmin B = A @max min 75,
A —inmax B = A ®minmax 7 B.

2 ‘6

Operations “reduction”, “projection” and ‘“‘substitution” over EIFIMs coincide with the re-
spective operations defined in [3, 4, 6].
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4 Operations ‘“‘reduction” over an EIFIM

Here and below we use symbol “L” for lack of some component in the separate definitions. In
some cases, it is suitable to change this symbol with “0”.
Now, we introduce operations (k, L)-and (L, [)-reduction of a given EIFIM A = [K, L, {ay, , }]:

Ay = [K = {k}, L {ct, 00 ]

where
Ctow = iy, fort, =k € K —{k}andv, =1[; € L
and
Ay = [K, L= A{1}, {ct .},
where

Ctown = iy, fort, =k € Kandv, =1[; € L —{l}.

Second, we define
Ay = (A1) ) = (Awn) 1),

i.e.,
A(kvl) = [K - {k}7 L - {l}7 {Ctuﬂ)w }}7
where ¢, v, = ak,y, fort, =k; € K —{k} andv, =1[; € L — {l}.

Third, let P = {ky,ks,....ks} € K and Q = {q1,¢,...,q:} C L. Then, we define the
following three operations:

Aty = (A 1) (ko)) -+ ) (ko)

Ap@) = (- ((Awtn)) (rd))-) (b110) 5

Arg) = (A1) 2.@) ) 0@ = (- ((Aan) (Pa)) ) (Page)-
Obviously,

A(K,L) = I@ and A(@}q)) = A.
5 Operation “substitution’ over an EIFIM

Let EIFIM A = [K, L, {ax,}] be given. First, local substitution over the EIFIM is defined for the
couples of indices (p, k) and/or (q, 1), respectively, by

[z; L] A=[(K - {k})U{p}, L {aws}],

{J_; ﬂ A=K, (L—{1}) U{q} {ar}],

1 ][]
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i.e.

L, Ci’] A= (K —{k}) U{p} (L — {1}) U{a} {a}].

Let the sets of indices P = {p1,p2, ..., pu}, @ = {@1, G2, -.., ¢} be given. Third, for them we

define sequentially:
P P1P2 Pu
L Y T Y
[K } ki ko Ky

[J_; CLQ} A= ({J_; (llll(l]j(l]:] A),
G N

6 Short remarks on index matrix representation
of ordinary graphs

Let us have the following oriented graph C

a b c

¢ f

For it, we can construct the (0, 1)-IM, i.e., IM with elements from set {0, 1}, which is an
adjacency matrix of the graph

a b ¢ d e f

al0 0 O 1 0 O
b0 0 0 1 0 O
C=+¢/0 0 0 1 0 0.
dajo 0 0 0 1 1
el0 0O 0O O O O
f1o 0 0 0 0 O

Shortly, we denote this matrix by “Adjacency IM” (AdIM).
Obviously, the columns indexed by a, b, ¢ and the rows, indexed by e, f contain only zeros
and do not give any information. So, we can transform the AdIM to the form

f

QU o o9
[ R e e e
_ O O O 0®
_ o O O




in which the isolated vertices are omitted. This new (0, 1)-IM can be called “reduced AIM”.

An important question is whether this modification is a correct one. Really, we see that the
connections between the immediate neighbouring vertices of the graph are seen, but we must
check the basic property of the standard adjacency matrix X, that the elements of the multiplica-
tion X? = X ®x 4) X represent which vertices are adjacent (see, e.g., [8]). Using the operation
© (max,min)> W€ obtain for the (0,1)-IM D

d e f d e f d e f
all 0 O all 0 O al0 1 1
D Omaxminy D= b1 0 0 Opuaxmm) 6|1 0 0 = b0 1 1.
cl1 0 O cl1 0 0 cl 0 1 1
dlro 1 1 dlo 1 1 dl0o 0 0

Now, we illustrate the results of the applications of different operations over (0, 1)-IMs, that
represent some oriented graphs. Let us have the graph E

a b

c d

e f
g

Its (0, 1)-IM (in the reduced form, i.e., with omission of the row indexed by ¢) is

c d e f g
all 0 0 0 O
b1 1 0 0 O
E=¢/0 0 1 1 0.
djo 0 1 1 0
el0O 0 0 0 1
f10 0 0 0 1
Then, we calculate:
c d e f g
alO0 0 1 1 0
b|0O O 1 1 O
E>°=E®uwmE= ¢|0 0 0 0 1
dio 0 0 0 1
el0O 0 0O 0 O
f10 0 0 O O
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As above, we can reduce the (0, 1)-IM E? to the form

e [ g
all 1 0
b1 1 0.
cl0 0 1
d|o 0 1
It is interesting to see that
c d e f g
al0 0 0 0 1
b0 0 0 0 1
EOwnE*= ¢[00 0 0 0 0 =EOumkE.
dajo 0 0 0 0
el0O 0 0 O O
f10 0 0 0 O
Therefore, E Onin E? = E? = E? O E. We see that the resultant (0, 1)-IM can be reduced
to
al 1l .
b| 1
Let us construct a graph, that is a result of operation substitution [%%, %ﬂ over graph C, then

we obtain the graph F' with IM:

a b h d e 1
alO0 O O 1 0 O
b0 0 O 1 0 O
hi|0O O 0 1 0 O
dlo 0 0 0 1 1
el 0 0O O O 0 O
i1/0 0 0 0 0 O

and with the form:
a b h
d
e 7

In the present case, when both index sets coincide, it is suitable to use notation [%ﬂ .
If we like to unite the graphs £ and F', we obtain the following graph with the form
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and with (0, 1)-IM

E@max F =

- 0 Q.0 o9

O O OO O O = =IO
—_ O O O O H =,
O O = = O Ol
O O = = O Ol
_ = O O O O
O O = O O O

The (0, 1)-IM that is a result of operation termwise multiplication with sub-operation “max”
over (0,1)-IMs E and C'is

] d e
all O
E max F= ;
@ bl 1 0
d|l 0 1
with sub-operation “min” is
| d e
al 0 O
E min F=
® bl 1 O
dl 0 1
and it has, respectively, the graph-forms
a b b
d d
and
e e
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In addition, we mention that the graph-representation of the (0, 1)-IM

c d e f g 1
al0O 0 O O 0 O
b0 1 0 0 0 0
E®. F= c/l0 O O O 0 O
dl/o 0 1 0 0 0
el0 O O O 0 O
f10 0 O O 0 O
h{O O O O 0 O
and in the reduced form
d e
ESumF=5b]1 0
dl 0 1
i.e., the graph form is
c
e f
g

If we like to omit some vertex of a graph, we can do this, using operation “reduction”. For

example,
c e f g
all 0 0 O
b1 0 0 O
|-
@™ clo 1 1 0
el0 0 0 1
fl1o0 0 0 1
This (0, 1)-IM has a graph-representation
a b
c
e f
g

Now, we illustrate operation ®, ). Let us have graphs G and H
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Let us like to add to each of the lower vertices of G new graphs with the form of H and let the
vertices of these new graphs be the triples (b, p, q), (¢,, s) and (d, ¢, u) that will replace vertices
(x,y, z), respectively. Then, we obtain the graph

that has the (0, 1)-IM-representation

b crs dt
G @(o,*) ([IEZ] H @(max) [37:(/2] H @(max) [xyZ] H) .

Of course, if, e.g., the graph C' is not an oriented, then its AdIM has the form

a b ¢ d e f
al0O 0 0 1 0 O
b0 0 0 1 0 O
clO 0O 0O 1 0 0,
a1 11 0 1 1
el0 0O O 1 0 O
f1o 0o 0 1 0 O

while, if we add to it, e.g., the arc (a, €), its AdIM obtains the form

a b ¢ d e f
alO0 0 O 1 1 0
b0 O 0O 1 0 O
cl0O 0 0O 1 0 0.
di1 1 1 0 1 1
el1 0 0 1 0 O
fl1o o 0 1 0 O
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If the graph has a loop, e.g., (b, b), then its AdIM has the form

a b ¢ d e f
al0 0 O 1 1 0
b0 1 0 1 0 O
cl0O 0 0O 1 0 0.
di1l1 1 1 0 1 1
el1 0 0 1 0 O
f1o o 0 1 0 O

Let us have, for example, the following multi-graph

a b
c
e /
g
Now, the AdIM has the form
c e f g
al3 0 0 O
p_ bl12 0 0 O
c|l0 1 1 0
el0 0 0 3
f10 0 0 1

By similar way we can represent a weighted graph. When we apply to AdIM P operations
“Sum-row-aggregation” and “Sum-column-aggregation”, we obtain the IMs (they are not (0, 1)-
IM):

‘cefg
1

Jsum(Pak): k?‘ 5 4

and

psum(P7 l) =

khmm@@‘
HOJ[\D[\DOJ‘N

that shows how many arcs enter and how many arcs leave the individual vertices, where, following
[7] we define for the IM A:
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Sum-row-aggregation operation

o~
[y

o~
()

o~
3

3

psum<A> kO) = kO

m
Aty Do Qhyly - g 1,
=1

s
Il
—

and

Sum-column-aggregation operation

k1 ; Ay 1;
Osum(Au lO) - =

n
km | 22 Qe t;
j=1

7 Main results: Extended intuitionistic fuzzy graphs

Let V' = {v1,v9,...,v,} be a fixed set of vertices and let each vertex = to have a degree of
existence «(x) and a degree of non-existence (x). Therefore, we can construct the Intuitionistic
Fuzzy Set (IFS; see [2, 5]):

V' ={(z,a(z), B(x)[x € V} = {{vi, a(v;), Bw))|L <@ <nj,

where for each z € V:
0 < a(z),B(z),a(z) + B(z) < 1.

Let H be a set of arcs between vertices from 1. We again can juxtapose to each arc a degree
of existence y(z,y) and a degree of non-existence v(x,y). Therefore, we can construct the new
IFS

H* = {{((z,y), p(z,y),v(z,y))|z,y € V}
= {((vi, v5), (i, vy), v(vi,v5)) |1 < 4, j < nj,
where for each x,y € V:
0 < p(z,y),v(z,y), w(z,y) +vizy <1

Now, for the graph G = (V, H) we can construct the Extended Intuitionistic Fuzzy Graph
(EIFG) G* = (V'*, H*). It has the following IM-representation:

[V*7 V*7 {<M(ZL‘,Z/), V(xvy»}] = [V*’ V*’ {<N(vi’vj)v V(Ui>vj>>}]

U1, <Oé(’U1), B(U1)> <o Un, <Oé(1)n), ﬁ(vn»
U1, <Oé(’01),5(111)> <ILL'U17’017VU17U1> cee <:uvhvnvl/v1,vn>
- V5, <Oé(Uz‘)7 ﬁ(%)) <,uvi,v1= VUi7U1> . </"Lviﬂ)n7 V'Ui,vn> ,
U,y (@(Vn), B(vn)) {(Hom,v1 > Vo 1) e {Homvms Von vn)
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where for every 1 < i,j < n: fly, 0, Vo, € [0,1], flo 0, + Vo, € [0,1], afvy), B(v;) €
0, 1], a(vy) + B(wv;) € [0, 1].

Let us discuss here for simplicity only the case of oriented graph. Let us denote by z — y
the fact that both vertices x and y are connected by an arc and z is higher that y. Let operation
o € {+, max, @ min, x }.

We call that the EIFG G* is “well-top-down-(very strong, strong, middle, weak, very weak)-
ordered”, or shortly, “well-top-down-o-ordered”, if for every two vertices v; and v;, such that
v; — vj, the following inequality holds:

<ai7 Bz> © </’L’Ui,'Uj7 VUiﬂJj> > <aj’ 6]>

Analogously, we call that the EIFG G* is “well-bottom-up-(very strong, strong, middle, weak,
very weak)-ordered”, or shortly, “well-bottom-up-o-ordered”, if for every two vertices v; and v;,
such that v; — v;, the following inequality holds:

<04i7 6z> o <,Uvi,vj7 Vvi7vj> < <aj7 ﬁ])

We illustrate the way for IM-interpretation of the EIFGs by the following example. Let us
have the EIFG G* with the form

h

Its H*-component has the following form (where, obviously, the information about the IFS
V* is included in it):

I = [{<a,§,1>,<b,1,1> (650 (3 2 e 2 U1 (0,502,
(g 20 ({05030 0,530 (0550 (e 5 ) U )
(0,22 (0 g ) At v
Now, we can modify the IM to the form
H* = [{{a 50 (b330 {6304 2 2 e 2 00 U g ) 2 20,
(2,0 (62 D 15 240 3 2 8 2 20 Dt g
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The form of the new IM is

L oY LD gD aih
a><%7%> <%7%> <%7i> <O,1> <071> <0,1>
b.(35,3) | (3,0) (0,1) (0,1) (0,1) (0,1)
o0 Gy 0n 0N o
GG e 0D Gy G o)
e. (3.5 (01 (1) (01 (EhH (o
filsg | (0,1 (0,1) (0,1) 0,1 (b
9; <%’ %> (0,1) (0,1) (0,1) (0,1) <g7 %>

Let the EIFIM A = [K*, L*, {{ft, 1, Vx,1,) }] be given.
Let fori =1,2,3: p;, 04, pi + 0; € [0, 1] be fixed numbers.
In [2, 5], several level operators were defined. One of them, for a given IFS

X ={(z, ux(z), vx(z))|z € £}
is
Nop(X) = {{z, px(2), vx(2))|z € E & px(z) > a & vx(z) < B},

where a, § € [0, 1] are fixedand o + 8 < 1.
Here, its analogues are intoduced. They are three: N! N2 N3 _ and affect the K-,

P1,017 7 " p2,027 7 " p3,03
L-indices and (1, , Vk,,,)-elements, respectively. The three operators can be applied over an

EIFIM A either sequentially, or simultaneously. In the first case, their forms are
N,}l,al (A) - [Np1,01 (K*)a L*v {<¢ki7lj ) wkiylj>}]7

where
<90ki,lj’ 77Z}k3i7lj> - <Mki7lj7 VkiJj)
only for (k;, o, BF) € N,, o (K*) and for each (I;, !, 5!) € L*;

N32,02 (A> = [K*7 NP2702(L*)7 {<90ki7lj7 wkiylj>}]7

where
<90ki,ljvwki7lj> - <p“k?i7lj7 sz‘Jj)
for each (k;, o, Bf) € K* and only for (I;, o, B) € N,, 5, (L*);

Ngg,a;,» (A) - [K*’ L*v {(Spkivlj’ 77Z)ki7lj>}}7

where
ity Vioty) 1 g, > p3 & vy, < 03
<90ki,lj>¢ki,lj> = ’
(0,1), otherwise

In the second case, their form is
(Npll,ol’ Np22,027 N33,0'3)(A) - [NPLCH (K*)7 NPQ,02 (L*)v {<¢kialj ) ¢kiylj>}]7
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where
<,uki,lj, Vk:i,zj>7

<90ki,lj, wki,zﬂ =
(0,1),

1
Now, we can apply one or more of the level-operators IV,

if <klv a?? ﬁf) S NP1,O’1 (K*)
and (I;, o}, 6!) € Ny, 0,(L")
and gy, 1, > p3 & vy, 1, < 03

if <ki’ a§> ﬁf) S Np1,01 (K*)
and (I}, o}, 8!) € Ny, o, (L)
and Mok 1 < p3 V Vi l; > 03
N? N3

000 Ny oy @nd in a result, the

1,017

form of the graph will be changed. It is important to mention that in the present case (when the
two index sets coincide), the first two level operators must have equal parameters and, therefore,
if some vertex has to be omitted from one of both index sets, it will be omitted from the other

index set, too. For example, if we apply operator N} ; over G*, we obtain

da<%’%> 67(%’i> 97<%’%> h><%’é>

a, <%’ %) <%’ %> <07 1> <07 1> <O7 1>

b (5.5 | (3,00 (0.1) (0,1)  (0,1)

NG = e (b ] 0 (53 0D (0

d7<§’é> <O71> <0>1> <§7%> <O71>

e (1| 0.1 (01 (5 (01

9:3,8) | (0,1)  (0,1)  (0.1)  (}35)

and the new graph has the form
a b c
d e
g
h

On the other hand, if we can apply, e.g., operator N ;% over G*, we obtain
d(35) (31 fmE) 968 hizs)
o.(33 | (33 G 0L 0L (01
b DL Go 0 01 01 01
5 o Gl | (01 (0,1 (0.1)  (0,1) (0,1
M= e ey ey 0y @b o
o3| 0y oy oy @D o
fl )| 01 (1) (0,1)  (0,1) (53
9.(3.3) | (0.1)  (0.1)  (0,1)  (0,1) (33)

(oY)
~



and the new graph has the form

and the IM G* can be reduced to

d (35 et 9G3 i3
o.(33) | G5 o 01D 01
b,(3,5) | (3,0) (0,1) (0,1) (0,1)
Cy <%7 %> <O’ 1> <O7 1> <O> 1> <Oa 1>
d, (3,5 | (0,1) (0,1 ($5 (01
e.{3 1) | 0.1) (01 (35 (01
fAme) | 01 (0.1 (01 (33
9:(3,3) | (0,1)  (0.1) (0,1) ({3

Obviously, vertex f remain in the first index set, because an arc goes out of it. On the other

hand, vertex c here is an isolated one.
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Editorial Remark: The present paper was prepared for press, when the paper of Parvathi Ran-
gasamy, S. Thilagavathi, G. Thamizhendhi and M. G. Karunambigai “Index matrix representation
of intuitionistic fuzzy graphs” was received for the 18-th International Conference on Intuitionis-
tic Fuzzy Sets (May 10-11, 2014) the paper of which will be published in NIFS, Vol. 20, 2014,
No. 2. Both papers contain some common elements, but they are written independently.
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