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1 Introduction

In a series of papers, some of the basic properties of the intuitionistic fuzzy implications are
discussed (see, e.g., [2, 5–15, 17, 18]).

In the present paper, a new interesting formula from the classical logic obtains an intuitionistic
fuzzy interpretation and for it, the lists of the intuitionistic fuzzy implications that satisfy it as
tautologies and as intuitionistic fuzzy tautologies are given.

In the paper, we use the notation from [3]. Here, we will mention only that the ordered pair
〈a, b〉 in [4] is called an Intuituinistic Fuzzy Pair (IFP) if a, b, a+ b ∈ [0, 1]. Here we are going to
work with these pairs.

The IFP 〈a, b〉 is:

• a tautology if and only if (iff) a = 1 and b = 0;

• an intuitionistic fuzzy tautology (IFT) iff a ≥ b.

Let everywhere the IFPs A and B have the forms: A = 〈a, b〉, B = 〈c, d〉, i.e., a, b, c, d, a+ b,

c+ d ∈ [0, 1].
In some definitions we shall use functions sg and sg:

sg(x) =

{
1, if x > 0

0, if x ≤ 0
, sg(x) =

{
0, if x > 0

1, if x ≤ 0
.

2 Main results

In [16], the following formula of the classical mathematical logic is given:

(A→ B)→ ((¬A→ B)→ B).

Since at the moment in the intuitionistic fuzzy logic more than 200 different intuitionistic
fuzzy implications have been defined, we will rewrite the above formula to the form:

(A→i B)→i ((¬σ(i)A→i B)→i B) (1)

and will study which intuitionistic fuzzy implications satisfy it and in which form - as tautologies
or as IFTs.

Theorem 1. Formula (1) is an IFT for for i = 1, 4, 5, 6, 7, 9, 12, 13, 17, 18, 20, 21, 22, 23, 25,

27, 28, 29, 30, 33, 34, 35, 36, 38, 42, 43, 44, 45, 46, 49, 50, 51, 53, 57, 61, 64, 66, 71, 72, 74, 75, 76,

77, 79, 80, 81, 82, 85, 88, 89, 90, 91, 94, 97, 100, 101, 102, 103, 104, 105, 106, 108, 109, 110, 111,

112, 113, 114, 115, 116, 117, 118, 120, 121, 122, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133,

134, 135, 136, 137, 151, 153, 158, 159, 160, 161, 166, 167, 168, 169, 170, 177, 178, 179, 180, 187,

188, 189, 190, 192, 193, 194, 195, 196, 197, 198, 204, 206 when the negation ¬σ(i) is generated by
the implication→i.
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Proof. For i = 1, we obtain that σ(1) = 1 and

(A→1 B)→1 ((¬1A→1 B)→1 B)

= (〈a, b〉 →1 〈c, d〉)→1 ((¬1〈a, b〉 →1 〈c, d〉)→1 〈c, d〉)
= 〈max(b,min(a, c)),min(a, d)〉 →1 ((〈b, a〉 →1 〈c, d〉)→1 〈c, d〉)
= 〈max(b,min(a, c)),min(a, d)〉 →1 (〈max(a,min(b, c)),min(b, d)〉 →1 〈c, d〉)
= 〈max(b,min(a, c)),min(a, d)〉 →1 〈max(min(b, d),min(max(a,min(b, c)), c)),

min(max(a,min(b, c)), d)〉
= 〈max(min(a, d),min(max(b,min(a, c)),max(min(b, d),min(max(a,min(b, c)), c)))),

min(max(b,min(a, c)),min(max(a,min(b, c)), d))〉.

Let

X ≡ max(min(a, d),min(max(b,min(a, c)),max(min(b, d),min(max(a,min(b, c)), c))))

−min(max(b,min(a, c)),min(max(a,min(b, c)), d)).

If b ≥ c, then

X = max(min(a, d),min(max(b,min(a, c)),max(min(b, d),min(max(a, c), c))))

−min(max(b,min(a, c)),min(max(a, c), d))

= max(min(a, d),min(b,max(min(b, d), c)))−min(b,max(a, c), d).

If b ≤ d, then

X = max(min(a, d),min(b,max(b, c)))−min(b,max(a, c), d)

= max(min(a, d), b)−min(b,max(a, c), d)

≥ b− b
= 0.

If b > d, then

X = max(min(a, d),min(b,max(d, c)))−min(b,max(a, c), d)

= max(min(a, d),max(c, d))−min(max(a, c), d)

= max(min(a, d), c, d)−min(max(a, c), d)

≥ d− d
= 0.

If b < c, then

X = max(min(a, d),min(max(b,min(a, c)),max(min(b, d),min(max(a, b), c))))

−min(max(b,min(a, c)),min(max(a, b), d)).

If b ≤ d, then
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X = max(min(a, d),min(max(b,min(a, c)),max(b,min(max(a, b), c))))

−min(max(b,min(a, c)),min(max(a, b), d))

= max(min(a, d),min(max(b,min(a, c)),max(b,max(min(a, c),min(b, c)))))

−min(max(b,min(a, c)),min(max(a, b), d))

= max(min(a, d),min(max(b,min(a, c)),max(b,min(a, c))))

−min(max(b,min(a, c)),min(max(a, b), d))

≥ max(b,min(a, c))−max(b,min(a, c))

= 0.

If b > d, then

X = max(min(a, d),min(max(b,min(a, c)),max(d,min(max(a, b), c))))

−min(max(b,min(a, c)),min(max(a, b), d))

= max(min(a, d),min(max(b,min(a, c)),max(d,max(min(a, c),min(b, c)))))

−min(max(b,min(a, c)),min(max(a, b), d))

= max(min(a, d),min(max(b,min(a, c)),max(d,max(min(a, c), b))))

−min(max(b,min(a, c)),min(max(a, b), d))

= max(min(a, d),min(max(b,min(a, c)),max(d,min(a, c), b)))

−min(max(b,min(a, c)),min(max(a, b), d))

≥ max(b,min(a, c))−max(b,min(a, c))

= 0.

Therefore, for i = 1, (1) is an IFT. By the same manner, it is checked that the Theorem 1 is
valid for the other values of i.

Theorem 2. Formula (1) is a tautology for 20, 23, 42, 45, 57, 74, 77, 88, 90, 97, 153, 206 when
the negation ¬σ(i) is generated by the implication→i.

Proof. Let i = 20. Then σ(20) = 2 and

(A→20 B)→20 ((¬2A→20 B)→20 B)

= (〈a, b〉 →20 〈c, d〉)→20 ((¬2〈a, b〉 →20 〈c, d〉)→20 〈c, d〉)
= 〈max(sg(a), sg(c)),min(sg(a), sg(c))〉→20 ((〈sg(a), sg(a)〉→20 〈c, d〉)→20 〈c, d〉)
= 〈max(sg(a), sg(c)),min(sg(a), sg(c))〉
→20 (〈max(sg(sg(a)), sg(c)),min(sg(sg(a)), sg(c))〉 →20 〈c, d〉)

(because for each x ∈ [0, 1] : sg(sg(x)) = sg(x) and sg(sg(x)) = 1− sg(x))

= 〈max(sg(a), sg(c)),min(sg(a), sg(c))〉
→20 (〈max(sg(a), sg(c)),min(1− sg(a), sg(c))〉 →20 〈c, d〉)
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= 〈max(sg(a), sg(c)),min(sg(a), sg(c))〉
→20 〈max(sg(max(sg(a), sg(c))), sg(c)),min(sg(max(sg(a), sg(c))), sg(c))〉

= 〈max(sg(max(sg(a), sg(c))), sg(max(sg(max(sg(a), sg(c))), sg(c)))),

min(sg(max(sg(a), sg(c))), sg(max(sg(max(sg(a), sg(c))), sg(c))))〉.

Let
X ≡ max(sg(max(sg(a), sg(c))), sg(max(sg(max(sg(a), sg(c))), sg(c)))).

If a = 0, then sg(a) = 0, sg(a) = 1 and

X = max(sg(max(1, sg(c))), sg(max(sg(max(0, sg(c))), sg(c))))

= max(sg(1), sg(max(sg(sg(c)), sg(c))))

= max(0, sg(max(sg(sg(c)), sg(c))))

= sg(max(sg(sg(c)), sg(c)))

(because for each x ∈ [0, 1] : sg(sg(x)) = sg(x))

= sg(max(sg(c), sg(c)))

(because for each x ∈ [0, 1] : max(sg(x), sg(x)) = 1)

= sg(1)

= 1.

If a > 0, then sg(a) = 1, sg(a) = 0 and

X = max(sg(max(0, sg(c))), sg(max(sg(max(1, sg(c))), sg(c))))

= max(sg(sg(c)), sg(max(sg(1), sg(c))))

= max(sg(c), sg(max(0, sg(c))))

= max(sg(c), sg(sg(c)))

(because for each x ∈ [0, 1] : sg(sg(x)) = sg(x))

= max(sg(c), sg(c))

= 1.

Let
Y ≡ min(sg(max(sg(a), sg(c))), sg(max(sg(max(sg(a), sg(c))), sg(c)))).

If a = 0, then

Y = min(sg(max(1, sg(c))), sg(max(sg(max(0, sg(c))), sg(c))))

= min(sg(1), sg(max(sg(sg(c)), sg(c))))

= min(1, sg(max(sg(c), sg(c))))

= sg(max(sg(c), sg(c)))

= sg(1)

= 0.
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If a > 0, then

Y = min(sg(max(0, sg(c))), sg(max(sg(max(1, sg(c))), sg(c))))

= min(sg(sg(c)), sg(max(sg(1), sg(c))))

= min(sg(c), sg(max(0, sg(c))))

= min(sg(c), sg(sg(c)))

= min(sg(c), sg(c))

= 0.

Therefore, for i = 20, (1) is a tautology. By the same manner, it is checked that the Theorem
2 is valid for the other values of i.

A modification of formula (1) is the following formula

(A→i B)→i ((¬A→i B)→i B). (2)

In it, the negation is the classical negation ¬1. In this case, the following two assertions are
valid and they are checked by the above manner.

Theorem 3. Formula (2) is an IFT for for i = 1, 4, 5, 6, 7, 9, 12, 13, 14, 17, 18, 21, 22, 23, 25, 27,

28, 29, 46, 48, 49, 50, 51, 53, 57, 61, 64, 66, 71, 72, 75, 80, 81, 91, 94, 100, 101, 102, 108, 109, 110,

111, 112, 113, 117, 120, 121, 122, 124, 125, 126, 127, 128, 133, 134, 135, 136, 137, 151, 153, 158,

159, 160, 161, 166, 169, 170, 179, 180, 187, 189, 190, 192, 193, 197, 198, 201, 202, 204, 206.

Theorem 4. Formula (2) is a tautology for i = 23, 57, 153.

The verification of Theorems 3 and 4 is done with the aid of the software for intuitionistic
fuzzy sets IFSTOOL, [1].

3 Conclusion

The present formula will be used for the intuitionistic fuzzy implications classification and as a
criterion for the determination which are the implications that have the best properties, i.e., that
satisfy the biggest number of well-known and useful properties.
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