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Abstract

This paper concerns the theory of intui-
tionistic fuzzy sets according to Atanassov.
If triangular norms, especially nonstrict
Archimedean ones, are used, we propose a
revision and a flexibilizing generalization of
some fundamental notions and constructions
of that theory. Its application to group de-
cision making is outlined.
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1 Introduction

The term "intuitionistic fuzzy sets" does function
in two contexts in the literature devoted to fuzziness.
In the first one, we then mean intuitionistic logic-
-based fuzzy sets developed in 1984 by Takeuti and
Titani (see [11, 12]). At almost the same time and
disregarding that the adjective "intuitionistic" is re-
served for contructions related to intuitionistic logic,
Atanassov proposed a generalization of fuzzy sets
and called his constructions intuitionistic fuzzy sets,
too (see e.g. [1, 2]). This a bit unfortunate and colli-
ding name was and is a source of some reservations
about his concept. On the other hand, one must em-
phasize that Atanassov's intuitionistic fuzzy sets do
offer some interesting new possibilities of applica-
tions, e.g. in problems of decision making (see [8],
[9]). More precisely, in comparison with fuzzy sets,
they seem to be better suited for expressing a degree
of hesitation of a decision maker. This paper is de-
voted to intuitionistic fuzzy sets from [1] equipped
with triangular norm-based operations (see [3]). We

will show in Section 3 that some fundamental no-
tions of that theory do require a revision when non-
strict Archimedean triangular norms are used. That
modified look will be applied in Section 4 to group
decision making. Section 2 recollects the original
concept of intuitionistic fuzzy sets with triangular
norms using a bit modified notation and terminology.

2 Intuitionistic Fuzzy Sets

A fuzzy set is a nebular collection of elements
from a universe M described by and identified with
a (membership) function A: M → [0, 1]. An intui-
tionistic fuzzy set is instead a nebular collection of
elements from M identified with a pair = ( A, Ad ),
where A, Ad: M → [0, 1] and

∀x∈M: A( x) + Ad( x) ≤ 1. (2.1)

Again, one interprets A as a membership function:
A( x) is a degree of membership of x in the intui-
tionistic fuzzy set , whereas Ad, a function dual
to A, is understood as a nonmembership function,
i.e. Ad( x) does express a degree of nonmembership
of x in that intuitionistic fuzzy set. A double optics
is thus exploited in intuitionistic fuzzy set theory
by applying in A a many-valued form of the clas-
sical membership predicate ∈ and, on the other
hand, by using a many-valued form of the dual
classical predicate ∈/ to construct Ad. The number

χ ( x) = 1 − A( x) − Ad( x) (2.2)

is called and understood as a degree of hesitation
whether or not x is in . It is obvious that each
fuzzy set A can be seen as an intuitionistic fuzzy



set, namely as ( A, A′), with the standard complemen-
tation A′( x) = 1 − A( x). Trivially,

∀x∈M: A( x) + Ad( x) + χ ( x) = 1. (2.3)

Basic relations for and operations on intuitionistic
fuzzy sets = ( A, Ad ) and = ( B, Bd ) with trian-
gular norms are defined in the following way ([3]):

= ⇔ A = B & Ad = Bd, (equality)

⊂ ⇔ A⊂ B & Bd⊂ Ad, (inclusion)

∪t, s = ( A∪s B, Ad ∩t B
d ),

(sum induced by t and s)

∩t, s = ( A∩t B, Ad ∪s Bd ),

(intersection induced by t and s)

′ = ( Ad, A) (complement)

with a t-norm t, a t-conorm s, and ( A∩t B)( x) =
A( x) tB( x), ( A∪s B)( x) = A( x) sB( x) (see [4, 6]).
However, the choice of t and s cannot be quite ar-
bitrary. If we like ∪t, s and ∩t, s to be intui-
tionistic fuzzy sets, one has to assume that t ≤ s*
(equivalently: s ≤ t*), where s* denotes the t-norm
associated with s, i.e. a s* b = 1− (1− a) s (1− b).

3 An Alternative Look at Intuitionistic
Fuzzy Sets

Whichever t-norm t and t-conorm s are used to
generate sums and intersections of intuitionistic
fuzzy sets the condition (2.1), being fundamental in
the Atanassov's theory, offers the same way of ag-
gregating A( x) and Ad( x). This seems to be a bit
inconsistent and causes some discomfort. Let us try
to find a more flexible method of that aggregation.

It is easy to notice that (1.1) can be rewritten as
Ad ⊂ A′ or, more generally, as

Ad ⊂ Aν (3.1)

with a negation ν, where Aν( x) = ν( A( x)); a slight-
ly modified form of this inclusion can be found in
[13] in which one shows that intuitionistic fuzzy
sets are L-fuzzy sets. The dual function Ad is thus
something smaller than the complement Aν of A.
If t is (at least) left continuous and ν is the nega-
tion induced by t, i.e. ν = νt with

νt( a) = {c∈[0, 1]: a t c = 0},

then (3.1) is equivalent to the equality

A∩t A
d = 1Ø. (3.2)

Since strict t-norms, i.e. t-norms being continuous
and strictly increasing on (0, 1)× (0, 1), as well as
the minimum t-norm ∧ do not have zero divisors,
the condition (3.2) is not interesting for that class
of t-norms and, then, (2.1) can be maintained.

By an Archimedean t-norm we mean a continu-
ous t-norm t such that a t a < a for a∈(0, 1) (see
[4, 6, 15] for more details). It is easy to see that
strict t-norms are Archimedean. A typical example
of a nonstrict Archimedean t-norm is the Łukasie-
wicz t-norm tŁ with a tŁ b = 0 ∨ (a + b − 1). More
generally, each Schweizer t-norm tS, p with

a tS, p b = [0 ∨ (a p + b p − 1)]1/p,

p > 0, is nonstrict Archimedean and, then,

νt( a) = (1− a p)1/p.

Nonstrict Archimedean t-norms do have zero divi-
sors, i.e. a t b = 0 is possible for a, b > 0. That a
t-norm does have zero divisors can be a useful and
desired feature in many applications because that
t-norm then shows some inertia in attaining posi-
tive values: a positive argument <1 is still treated
as zero if the other, though positive, is not suffi-
ciently "large". For instance, 0.3 tŁ 0.6 = 0, whereas
0.3 tŁ 0.8 > 0.

Our further discussion in this section will be
limited to nonstrict Archimedean t-norms. For intu-
itionistic fuzzy sets with a t-norm t from that class,
(3.2) or equivalently (3.1) with ν = νt become a
worth considering alternative to (2.1). Each fuzzy
set F can then be represented in the language of
intuitionistic fuzzy sets as (F, Fν ). Clearly, if t = tŁ,
then νt is the Łukasiewicz negation νŁ with νŁ( a)
= 1− a, and both (3.1) and (3.2) collapse to (2.1).
The question one must pose in this place is that
about a counterpart of the hesitation formula (2.2)
when (3.2) is used. Intuitively speaking, our hesita-
tion as to the status of x does mean that we cannot
agree that x belongs to an intuitionistic fuzzy set
and, simultaneously, we cannot agree that x does
not belong to it. Following that intuition, it seems
that a suitable candidate is



χ ( x) = νt( A( x)) t νt( Ad( x)) = νt( A( x) t°Ad( x)),

(3.3)

where t° denotes the t-conorm complementary to t,
i.e.

a t°b = νt(νt( a) t νt( b)).

Since a t°νt( a) = 1, we have

∀x∈M: A( x) t°Ad( x) t°χ ( x) = 1, (3.4)

which forms a counterpart and a generalization of
the relationship (2.3). It collapses to (2.3) for t = tŁ;
t° is then the Łukasiewicz t-conorm sŁ with a sŁ b =
1 ∧ (a + b). We easily notice that

χ ( x) = 0 ⇔ Ad( x) = Aν( x)
and (3.5)

χ ( x) = 1 ⇔ A( x) = Ad( x) = 0.

The geometrical interpretation of a hesitation de-
gree χ ( x) in (2.3) via a triangle in the unit 3-di-
mensional cube analysed in [10] is in (3.4) re-
placed by an interpretation involving more com-
plex surfaces in that cube (see [7]). In the ortho-
gonal projection of the triangle connected with
(2.3), segments parallel to the diagonal of the unit
square do represents pairs ( A( x), Ad( x)) to which
the same fixed hesitation degree is related. If (3.4)
is used and an analogous projection is made, pairs
( A( x), Ad( x)) with the same hesitation degree do
generally form some curves. For instance, if
t = tS, p, one gets (cf. (2.2))

χ ( x) = [1 − ( A( x)) p − ( Ad( x)) p]1/p. (3.6)

Thus, say, for p = 2, the pairs ( A( x), Ad( x)) with
χ ( x) = 0.5 do form in the unit square a quarter of
the circle with radius ≈ 0.87 and center at (0, 0).

Theorem 3.1. If and are intuitionistic fuzzy
sets with respect to the condition (3.1) with ν = νt
and a nonstrict Archimedean t-norm t, then so are

∪t, s and ∩t, s provided that s ≤ t°.

Generally, s ≤ t° cannot be replaced by t ≤ s°.

4 Applications to Group Decision Making

Since the method we are going to present does
require a familiarity with axiomatic theory of scalar

cardinalities of fuzzy sets, we like to begin our di-
scussion by recalling some basic notions and facts
from that theory (see [14-16] for further details).

4.1 Scalar Cardinalities of Fuzzy Sets

We restrict ourselves to the class FFS of all finite
fuzzy sets in M.

Definition 4.1. A function σ: FFS → [0 , ∞) is called
a scalar cardinality if for each a, b∈[0 ,1], x, y∈M
and A, B∈FFS the following axioms are satisfied:

σ (1 /x) = 1, (coincidence)

a ≤ b ⇒ σ (a /x) ≤ σ (b /y), (monotonicity)

A∩ B = 1Ø ⇒ σ ( A∪B) = σ ( A) + σ ( B). (additivity)

If these postulates are fulfilled, one says that σ ( A)
is a scalar cardinality of A. As usual, ∩ (∪, resp.)
denotes the standard operation of intersection (sum,
resp.) realized via ∧ (∨, resp.). As stated in the fol-
lowing characterization theorem, axiomatically de-
fined scalar cardinalities from Definition 4.1 are
exactly a natural generalization of the sigma count
scA = Σx ∈supp(A) A( x) of A (see e.g. [17]). There-
fore, they will be called generalized sigma counts.

Theorem 4.2. σ is a scalar cardinality iff there ex-
ists a nondecreasing function f : [0 , 1] → [0 , 1]
such that f (0) = 0, f (1) = 1 and

σ ( A) = f ( A( x)) for each A.

Each function f satisfying the conditions of Theo-
rem 4.2 is said to be a cardinality pattern. It ex-
presses our understanding of the scalar cardinality
of a singleton. Simplest examples of cardinality
patterns and resulting scalar cardinalities are given
below.

(Ex. 1) f1, t ( a) = (1 if a ≥ t, else 0), t∈(0 , 1].
It leads to

σ ( A) = At .

At denotes the t-cut set of A ( At = {x : A( x) ≥ t}).

(Ex. 2) f2, t ( a) = (1 if a > t, else 0), t∈[0 , 1).
Then

σ ( A) = At

with At denoting the sharp t-cut set of A, i.e. At =
{x : A( x) > t}.



(Ex. 3) f3, p ( a) = a p, p > 0. It gives

σ ( A) = ( A( x)) p.

More advanced instances of cardinality patterns
are, say, normed (additive) generators of nonstrict
Archimedean t-conorms (see [15, 16]). By the way,
the identity function in [0, 1] is the normed genera-
tor of sŁ and, thus, one can say that sigma counts
are scalar cardinalities generated by the normed
generator of the Łukasiewicz t-conorm.

Let us write σf ( A) instead of σ ( A) in order to
emphasize which cardinality pattern is involved.
Generalized sigma counts σf ( A) can be used to
define relative scalar cardinalities in a very flexi-
ble way (cf. [17]). Namely, let

σf ( A B ) = σf ( A∩t B ) /σf ( B )

with a cardinality pattern f and a t-norm t. This
proportion of elements of A which are in B fulfils
all axioms of (conditional) probability. In particu-
lar, we have

σf ( A 1M ) = f ( A( x)). (4.1)

4.2 Group Decision Making

We like to present a general algorithm of group
decision making which forms a generalization of
the method proposed by Kacprzyk [5] and devel-
oped by Szmidt and Kacprzyk [8] by adding a hes-
itation factor (cf. also [9]). What we propose is the
use of arbitrary relative scalar cardinalities com-
bined with the use of the alternative approach to
hesitation from Section 3. Consequently, one ob-
tains a method which is more flexible in compari-
son with that from [8] and which unifies various
specific variants of doing considered in [5, 8]. Be-
cause of page limit, our discussion is restricted to
an outline of the direct approach to group decision
making without a social fuzzy preference relation.
Details as well as an appropriate generalization in
the case of the indirect approach, involving a social
fuzzy preference relation, will be presented in [7].

Let P = {p1, p2, ... , pm} be a set of m ≥ 1 indi-
viduals, and let S = {s1, s2, ... , sn} with n ≥ 2 be a
set of options (alternatives). Suppose that each in-
dividual pk formulates his/her own preferences over
S and expresses them by means of a binary fuzzy

relation Rk : S× S → [0, 1]. It can be represented as an
n× n matrix Rk = [ ] with i, j = 1, 2, ... , n. The
number ∈[0, 1] is a degree to which pk prefers si
to sj; for each i, we put = 0. One accepts that
there is a relationship between and , namely

≤ ν( ) (4.2)

with a strong (i.e. continuous, strictly decreasing
and involutive) negation ν having a unique fixed
point a*∈(0, 1). Throughout, for brevity, we as-
sume that k = 1, ... , m and i, j = 1, ... , n unless
otherwise specified. Finally, let Q denote a relative
linguistic quantifier of "most"-type (see [17]), i.e.
Q : [0 , 1] → [0 , 1] is nondecreasing, Q (0) = 0 and
Q ( a) = 1 for a > t, where t < 1 (cf. Theorem 4.2).
Our task is to find a solution understood as a fuzzy
set SQ of options such that a soft majority, i.e. Q
individuals, is not against them. We like to con-
struct a suitable general, flexible procedure

{R1, R2, ... , Rm} → SQ.

For the sake of notational convenience, put P = 1P ,
Sj = S {sj} and Sj = .

Case 1: t is a strict t-norm or t = ∧. We then take
ν = νŁ, i.e. a* = 0.5.

Variant 1a. Assume all Rk's are reciprocal, which
means that in (4.2) all inequalities with i ≠ j do
collapse to equalities, and thus we have

+ = 1 whenever i ≠ j. (4.3)

We propose the following algorithm of finding SQ.

Step 1. Construct fuzzy sets Rk, j of options which
pk prefers to sj. So, Rk, j : Sj → [0, 1] with

Rk, j ( si) = for each si ∈Sj .

The number

= ν(σf (Rk, j Sj)) = ν( f ( )) (4.4)

with a cardinality pattern f is a degree to which pk
is not against sj.

Step 2. Construct fuzzy sets I
j

of individuals being
not against an option sj, i.e. I

j
: P → [0, 1] with

I
j
( pk) = .



Let
dj = σf *(I j

P) = f *( ) (4.5)

with a cardinality pattern f * which is possibly dif-
ferent from f.

Step 3. Compute Q (dj) for j = 1, ... , n. Q (dj) is a
degree to which Q individuals are not against sj.

Step 4. Put

SQ = Q (d1) / s1 + ... + Q (dn) / sn. (4.6)

Let us mention a few important particular cases of
the solution SQ from (4.6):
(i) If f = f1, a* and f * = id, SQ collapses to the
fuzzy Q-core from [5].
(ii) Taking f = f1, α with α ≤ 0.5 and f * = id, SQ
becomes the fuzzy α /Q-core from [5], a fuzzy set
of options such that Q individuals are not suffi-
ciently (to degree ≥ 1− α) against them.
(iii) f ( a) = (1 if a ≥ a*, else a /a*) and f * = id.
SQ is then the fuzzy s /Q-core from [5], a fuzzy set
of options such that Q individuals are not strongly
against them.

Variant 1b. Suppose at least some of the matrices
Rk's are not reciprocal, i.e. we generally have

+ ≤ 1. (4.7)

To each Rk we assign an n× n symmetric hesita-
tion matrix Hk = [ ] of elements from [0, 1] such
that (cf. (2.3))

+ + = 1 whenever i ≠ j (4.8)

and = 0. The number expresses a hesitation
margin of pk as to his/her preference between si
and sj. It is now possible that

, < α for some i ≠ j (4.9)

with α ≤ 0.5. The intensity of the preference be-
tween si and sj formulated by pk is then more or
less low and, paradoxically, si and sj are thus ra-
ther equally good for pk if his/her choice is re-
stricted to {si, sj}. Consequently, we modify Rk by
putting

= = 1 (4.10)

whenever (4.9) holds. These modified Rk's will be
used in the algorithm given below.

Step 1. As in (4.4), compute

= ν(σf (Rk, j Sj)) = ν( f ( )).

Step 2. Similarly to (4.5), compute

dj = σf *(I j
P) = f *( ).

Step 3. Construct fuzzy sets Hk, j of options such
that pk is hesitant as to his/her preference between
them and sj, i.e. Hk, j : Sj → [0, 1] with

Hk, j ( si) = for each si ∈Sj .
Let

= σg (Hk, j Sj) = g ( ). (4.11)

This is a degree to which pk is hesitant as to his/
her preference between sj and another option.

Step 4. Construct fuzzy sets L
j

of individuals who
hesitate as to their preferences between sj and an-
other option, i.e. L

j
: P → [0, 1] with L

j
( pk) = .

Define

ej = σg*(L
j

P) = g*( ). (4.12)

Step 5. Compute Q (dj)'s and Q (dj sŁ ej)'s.

Step 6. SQ = [Q (d1), Q (d1 sŁ e1)] / s1 + ... (4.13)

+ [Q (dn), Q (dn sŁ en)] / sn.

SQ is now an interval-valued fuzzy set. The above
procedure, allowing us to use four different cardi-
nality patterns, gives in general a bit redundant flex-
ibility in this respect. The use of f * = g = g* seems
to be in practice sufficient in many cases (see e.g. [8]
in which f = f1, a* and f * = g = g* = id ).

Case 2: t is nonstrict Archimedean and ν = νt.

Variant 2a. Assume

= ν( ) whenever i ≠ j. (4.14)

Clearly, (4.14) collapses to (4.3) for t = tŁ, and im-
plies ≥ a* and/or ≥ a*. The algorithm of find-
ing SQ is identical to (4.4)-(4.6) in Variant 1a.

Variant 2b. Assume

≤ ν( )



for each k, i and j. Again, to each Rk we assign a
symmetric n× n hesitation matrix Hk = [ ] with

= 0 and (cf. (3.3), (4.8))

= ν( t° ) whenever i ≠ j. (4.15)

If, say, t = tS, 2, then (see (3.6))

= (1 − ( )2 − ( )2)1/2. (4.16)

For i ≠ j, one has (see (3.4), (3.5))

t° t° = 1
and

= 0 ⇔ = ν( ).

If , < α for i ≠ j with α ≤ a*, we modify Rk
by putting = = 1. SQ is now generated as fol-
lows (cf. Variant 1b).

Step 1 - Step 4. Follow (4.4), (4.5), (4.11), (4.12).

Step 5. Compute Q (dj)'s and Q (dj t°ej)'s.

Step 6. SQ = [Q (d1), Q (d1 t°e1)] / s1 + ...

+ [Q (dn), Q (dn t°en)] / sn.

The following example with m = n = 4 is consid-
ered in [8]:

R1 = , R2 = ,

R3 = , R4 =

and Q ( x) = [1 if x ≥ 0.8, 2x − 0.6 if x∈(0.3, 0.8), 0
if x ≤ 0.3]. The algorithm from [8] of group deci-
sion making with a hesitation factor, which collap-
ses to that from Variant 1b with α = 0.5, f = f1, 0.5
and f * = g = g* = id, leads to the solution

SQ = [4/10, 17/30] / s1 + [1, 1] / s2 +

[0, 7/60] / s3 + [0, 0] / s4.

The same values of both α and cardinality patterns
applied in the method from Variant 2b with t = tS, 2
and ν = νt do give [ dj] = [0.85, 0.97, 0.56, 0] and
(see (4.16))

H1 = , H2 = ,

H3 = , H4 = .

Hence [ ej] = [0.72, 0.66, 0.73, 0.78] and

SQ = [1, 1] / s1 + [1, 1] / s2 + [0.52, 1] / s3 + [0, 0.96] / s4.

The solution is now less "selective". But a* ≈ 0.71
and, thus, the values of the Rk's do have in this case
a quite different meaning in comparison with that in
the first part of this example.
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