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Abstract: The apparatus of Generalized Nets (GNs) is applied here to a description of a 

selection operator, which is one of the basic genetic algorithm operators. The GN model 
presented here describes one of the most widely used selection algorithms in current GA, 
namely stochastic universal sampling. The resulting GN model could be considered as a 
separate module, but can also be accumulated into a GN model to describe a whole genetic 
algorithm. 
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1 Introduction 

 
Genetic Algorithms (GA) are an adaptive heuristic search algorithm based on the 
evolutionary ideas of natural selection and genetics. They represent an intelligent exploitation 
of a random search used to solve optimization problems. The basic techniques of GA are 
designed to simulate processes in natural systems necessary for evolution, especially those 
follow the principles first laid down by Charles Darwin of “survival of the fittest”. GA is 
based on an analogy with the genetic structure and behaviour of chromosomes within a 
population of individuals. 

GA are implemented in a computer simulation in which a population of abstract 
representations (called chromosomes or the genotype of the genome) of candidate solutions 
(called individuals, creatures, or phenotypes) to an optimization problem evolves toward 
better solutions. The evolution usually starts from a population of randomly generated 
individuals and happens in generations. In each generation, the fitness of every individual in 
the population is evaluated, multiple individuals are stochastically selected from the current 
population (based on their fitness), and modified (recombined and possibly randomly 
mutated) to form a new population. The new population is then used in the next iteration of 
the algorithm. Commonly, the algorithm terminates when either a maximum number of 
generations has been produced, or a satisfactory fitness level has been reached for the 
population. Once the genetic representation and the fitness function are defined, GA proceeds 
to initialize a population of solutions randomly, then improve it through repetitive application 
of mutation, crossover, inversion and selection operators. 
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GA are quite popular and are applied in many domains – industrial design, scheduling, 
network design, routing, time series prediction, database mining, control systems, artificial 
life systems, as well as in many fields of science [5, 7, 8]. On the other hand, until now the 
apparatus of Generalized Nets (GN) has been used as a tool for the description of parallel 
processes in several areas – economics, transport, medicine, computer technologies, etc. 
[1÷3, 13÷16]. That is why the idea of application of GN to GA description has intuitively 
appeared. Until now only a few GN models regarding genetic algorithm performance have 
been developed [1, 3, 13÷16]. A GN model for genetic algorithms learning was proposed in 
[1, 3]. The GN model in [15] describes the selection of genetic algorithm operators. The 
model has the possibility to test different groups of the defined genetic algorithm operators 
and to choose the most appropriate combination between them. The developed GN execute 
an GA and realize tuning of the genetic operators, as well as of the fitness function, for the 
considered problem. The genetic algorithm search procedure is described with the GN model 
in [16]. The model simultaneously evaluates several fitness functions, ranks the individuals 
according to their fitness and has the opportunity to choice the best fitness function regarding 
to specific problem domain. In [12, 13, 14] the basic genetic algorithms operators – 
correspondingly selection, crossover and mutation are described using GN. Different types of 
crossover, namely one-, two-point crossover, as well as “cut and splice” techniques, are 
described in details in [13]. GN model, presented in [14], describes the mutation operator of 
the Breeder genetic algorithm. The selection of individuals to produce successive generations 
plays an extremely important role in a genetic algorithm. A probabilistic selection is 
performed based upon the individual’s fittness such that the better individuals have an 
increased chance of being selected. An individual in the population can be selected more than 
once with all individuals in the population having a chance of being selected to reproduce 
into the next generation. There are several schemes for the selection process: roulette wheel 
selection and its extensions, scaling techniques, tournament, elitist models, and ranking 
methods [9, 10, 17]. Widely the used Matlab Toolbox for Genetic algorithms 
[6, 11] contains two functions for the selection function, namely the roulette wheel selection 
method and the stochastic universal sampling. Since in [12] a GN model of a roulette wheel 
selection method is developed, the goal of this investigation is to develop a GN model of a 
stochastic universal sampling. 
 
 
2 Stochastic Universal Sampling 

 
Stochastic Universal Sampling (SUS) developed by Baker [4] is a single-phase sampling 
algorithm with minimum spread and zero bias. Instead of a single selection pointer employed 
in roulette wheel methods, SUS uses N equally spaced pointers, where N is the number of 
selections required. The population is shuffled randomly and a single random number 
pointer1 in the range [0, 1/N] is generated. The N individuals are then chosen by generating 
the N pointers, starting with pointer1 and spaced by 1/N, and selecting the individuals whose 
fitness spans the positions of the pointers. If et(i) is the expected number of trials of 
individual i,  )(iet  is the floor of et(i) and  )(iet  is the ceiling, an individual is thus 
guaranteed to be selected a minimum of times  )(iet  and no more than  )(iet , thus achie-
ving minimum spread. In addition, as individuals are selected entirely on their positions in 
the population, SUS has zero bias. For these reasons, SUS has become one of the most widely 
used selection algorithms in current GA. 

Figure 1 demonstrates the stochastic universal sampling. The individuals are mapped to 
contiguous segments of a line, such that each individual’s segment is equal in size to its 
fitness exactly as in roulette wheel selection. Equally spaced pointers are placed over the line 
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as many as there are individuals to be selected (N). For 6 individuals (N = 6) to be selected, 
the distance between the pointers is 1/6 = 0.167. Figure 1 shows the selection for the sample 
of the random number 0.1 in the range [0, 0.167]. 
 

 
Figure 1: Stochastic universal sampling 

 
After selection the mating population consists of the individuals 1, 2, 3, 4, 6 and 8. 

Stochastic universal sampling ensures a selection of offspring which is closer to what is 
deserved than roulette wheel selection. 
 
3 GN Models of Stochastic Universal Sampling 

 
Figure 2 presents the code of implemented stochastic universal sampling (sus.m) selection 
function in Matlab Toolbox for Genetic algorithms [6, 11]: 

 

 
Figure 2: Matlab function sus.m 

% SUS.M          (Stochastic Universal Sampling) 
% 
% This function performs selection with STOCHASTIC UNIVERSAL SAMPLING. 
% 
% Syntax:  NewChrIx = sus(FitnV, Nsel) 
% 
% Input parameters: 
%    FitnV     - Column vector containing the fitness values of the 
%                individuals in the population. 
%    Nsel      - number of individuals to be selected 
% 
% Output parameters: 
%    NewChrIx  - column vector containing the indexes of the selected 
%                individuals relative to the original population, shuffled. 
%                The new population, ready for mating, can be obtained 
%                by calculating OldChrom(NewChrIx,:). 
 
% Author:     Hartmut Pohlheim (Carlos Fonseca) 
% History:    12.12.93     file created 
%             22.02.94     clean up, comments 
 
function NewChrIx = sus(FitnV,Nsel); 
 
% Identify the population size (Nind) 
   [Nind,ans] = size(FitnV); 
 
% Perform stochastic universal sampling 
   cumfit = cumsum(FitnV); 
   trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1)'); 
   Mf = cumfit(:, ones(1, Nsel)); 
   Mt = trials(:, ones(1, Nind))'; 
  [NewChrIx, ans] = find(Mt < Mf & [zeros(1, Nsel); Mf(1:Nind-1, :)] <= Mt); 
 
% Shuffle new population 
   [ans, shuf] = sort(rand(Nsel, 1)); 
   NewChrIx = NewChrIx(shuf); 
 
% End of function 
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The GN model, described the stochastic universal sampling, as described in the function 
sus.m, is presented in Figure 3: 
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Figure 3: GN model of stochastic universal sampling 
 

The token α enters GN in place l1 with an initial characteristic “pool of possible 
parents”. The token α is split into new tokens β and γ, which obtain correspondingly 
characteristics “fitness values of the individuals in the population (FitnV)” in place l2 and 
“number of individuals to be selected (Nsel)” in place l3. The form of the first transition of 
the GN model is as follows: 

Z1 = <{l1}, {l2, l3}, 
truetruel
ll

r
1

32
1 = ,  ∧(l1) > 

 
The token β is split into new tokens δ and ε, which obtain correspondingly character-

istics “calculation of the function cumfit = cumsum(FitnV)” in place l4 and “identify the 
population size (Nind)” in place l5. The form of the second transition of the GN model is as 
follows: 

Z2 = <{l2}, {l4, l5}, 
truetruel
ll

r
2

54
2 = , ∧(l2) > 

 
Further, the tokens δ and γ are combined in a new token ϕ in place l6 with a 

characteristic “calculation of the function Mf = cumfit(:, ones(1, Nsel))”. The token ε keeps 
its characteristic “identify the population size (Nind)” in place l7. The tokens δ and ε are 
combined in a new token η in place l8 with a characteristic “calculation of the function 
cumfit(Nind)”. The token γ keeps its characteristic “number of individuals to be selected 
(Nsel)” in place l9. The form of the third transition of the GN model is as follows: 

Z3 = <{l3, l4, l5}, {l6, l7, l8, l9}, r3, ∧(l3, l4, l5) > 

falsetruetruefalsel
falsetruefalsetruel
truefalsefalsetruel
llll

r

5

4

3

9876
3 =
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The tokens η and γ are combined in a new token λ in place l10 with a characteristic 
“calculation of the function trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1)')”. The token γ 
obtains a new characteristic “rand(Nsel)” in place l11. The form of the fourth transition of the 
GN model is as follows: 

Z4 = <{l8, l9}, {l10, l11}, r4, ∧(l8, l9) > 

truetruel
falsetruel
ll

r

9

8

1110
4 =  

 
The tokens ε and λ are combined in a new token θ in place l12 with a characteristic 

“calculation of the function Mt = trials(:, ones(1, Nind))'”. The token γ obtains a new 
characteristic “sort(rand(Nsel))” in place l13. The form of the fifth transition of the GN model 
is as follows: 

Z5 = <{l7, l10, l11}, {l12, l13}, r5, ∧(l7, l10, l11) > 

truefalsel
falsetruel
falsetruel
ll

r
7

11

10

1312
5 =

 

 
The tokens ϕ and θ  are combined in a new token ω in place l14 with a characteristic 

“calculation of the function [NewChrIx, ans] = find (Mt < Mf & [zeros(1, Nsel); Mf(1:Nind-
1, :)] ≤ Mt)”. The form of the sixth transition of the GN model is as follows: 

Z6 = <{l6, l12}, {l14}, r6, ∧(l6, l12) > 

truel
truel
l

r

12

6

14
6 =  

 
The tokens ω and γ are combined in a new token σ in place l15 with a characteristic 

“shuffle new population NewChrIx = NewChrIx(shuf)”. The form of the seventh transition of 
the GN model is as follows: 

Z7 = <{l13, l14}, {l15}, r7, ∧(l13, l14) > 

truel
truel
l

r

14

13

15
7 =  

 
In the place l15 the new chromosome is created and the selection function, performing 

stochastic universal sampling, is completely fulfilled. The GN model of the selection 
operator presented here could be considered as a separate module, but can also be collected 
into a GN model to describe a whole genetic algorithm. 
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4 Analysis and Conclusions 
 

The theory of Generalized Nets has been applied here to a description of one of the basic 
operators of genetic algorithms, namely the selection operator. A GN model of one of the 
mostly used selection functions, the stochastic universal sampling, has been developed in this 
paper. Such a GN model could be considered as a separate module, but also can be 
accumulated into one GN model for a description of a whole genetic algorithm. In future it is 
planed to be constructed some GNs to represent the functioning of results of the work of 
whole genetic algorithms. The final aim is to produce GNs which are universal for all genetic 
algorithms to be constructed. 
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