Intuitionistic Fuzzy Topological BH-Algebras

V. K. Nivedida ${ }^{1}$ and M. Palanivelrajan ${ }^{2}$
${ }^{1}$ Department of Mathematics, Noble College of Arts and Science for Women, Palavanatham - 626004
${ }^{2}$ Department of Mathematics, Govt. Arts College, Melur - 625106

Abstract

The intuitionistic fuzzification of a BH -algebra is considered and related results are investigated. The notion of equivalence relations on the family of all intuitionistic fuzzy BHalgebras of a BH -algebra is introduced, and then some properties are discussed. The concept of intuitionistic fuzzy topological BH -algebras is introduced, and some related results are obtained.

 Keywords: intuitionistic fuzzy BH-algebra, intuitionistic fuzzy topological BH-algebra.2010 Mathematics Subject Classification: 03E72.

1 Introduction

Y. Imai and K. Iseki [8] introduced two classes of abstract algebras: BCK-algebras and BCIalgebras. It is known that the class of BCK-algebras is a proper subclass of the class of BCIalgebras. In [6, 7] Q.P. Hu and X. Li introduced a wide class of abstract algebras: BCH-algebras. In 1996, Jun, Roh and Kim introduced the notion of BH-algebra, which is a generalization of BCH-algebras [9]. In 2001, Q. Zhang, E.H. Roh and Y.B. Jun studied the fuzzy theory in BHalgebras [14]. C.H. Park introduced the notion of an interval-valued fuzzy BH-algebra in a BHalgebra and investigate related properties [10]. The concept of a fuzzy set, which was introduced in [13], provides a natural framework for generalizing many of the concepts of general topology to what might be called fuzzy topological spaces. D. H. Foster [5] combined the structure of a
fuzzy topological spaces with that of a fuzzy group, introduced by A. Rosenfeld [11], to formulate the elements of a theory of fuzzy topological groups. After the introduction of fuzzy sets by L. A. Zadeh [13], several researchers were conducted on the generalizations of the notion of fuzzy sets. The idea of intuitionistic fuzzy set was first published by K. T. Atanassov [1] , as a generalization of the notion of fuzzy sets. In this paper, using the Atanassovs idea, we establish the notion of intuitionistic fuzzy BH-algebras, equivalence relations on the family of all intuitionistic fuzzy BH -algebras, and intuitionistic fuzzy topological BH -algebras which are generalization of the notion of fuzzy topological BH -algebras. We investigate several properties, and show that the BH-homomorphic image and preimage of an intuitionistic fuzzy topological BH-algebra is an intuitionistic fuzzy topological BH -algebra.

2 Preliminaries

Definition 2.1 ([9]). Let X be a set with a binary operation $*$ and a constant 0 . Then $(X, *, 0)$ is called a BH-algebra if it satisfies the following axioms:

1. $x * x=0$,
2. $x * y=0$ and $y * x=0$ imply $x=y$,
3. $x * 0=x$
for all $x, y \in X$.
Definition 2.2. A non-empty set S of a BH -algebra X is called a $B H$-subalgebra of X if $x * y \in S$ for any $x, y \in X$.

Definition 2.3. A mapping $\theta: X \rightarrow Y$ of BH-algebras is called a BH-homomorphism if $\theta(x *$ $y)=\theta(x) * \theta(y)$ for all $x, y \in X$.

Definition 2.4 ([5]). A fuzzy topology on a set X is a family τ of fuzzy sets in X which satisfies the following conditions:

1. for all $c \in[0,1], k_{c} \in \tau$, where k_{c} has a constant membership function,
2. if $A, B \in \tau$, then $A \cap B \in \tau$,
3. if $A_{j} \in \tau$ for all $j \in J$, then $\bigcup_{j \in J} A_{j} \in \tau$.

The pair (X, τ) is called a fuzzy topological space and members of τ are called open fuzzy sets.

Definition 2.5. An intuitionistic fuzzy set (IFS for short) D in X is an object having the form

$$
D=\left\{\left\langle x, \mu_{D}(x), \nu_{D}(x)\right\rangle \mid x \in X\right\}
$$

where the functions $\mu_{D}: X \rightarrow[0,1]$ and $\nu_{D}: X \rightarrow[0,1]$ denote the degree of membership (namely $\mu_{D}(x)$) and the degree of nonmembership (namely $\nu_{D}(x)$) of each element $x \in X$ to the set D, respectively, and $0 \leq \mu_{D}(x)+\nu_{D}(x) \leq 1$ for each $x \in X$.

For the sake of simplicity, we shall use the notation $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ instead of

$$
D=\left\{\left\langle x, \mu_{D}(x), \nu_{D}(x)\right\rangle \mid x \in X\right\} .
$$

Let f be a mapping from a set X to a set Y. If

$$
B=\left\{\left\langle y, \mu_{B}(y), \nu_{B}(y)\right\rangle \mid y \in Y\right\}
$$

is an IFS in Y, then the preimage of B under f denoted by $f^{-1}(B)$, is the IFS in X defined by

$$
f^{-1}(B)=\left\{\left\langle x, f^{-1}\left(\mu_{B}\right)(x), f^{-1}\left(\nu_{B}\right)(x)\right\rangle \mid x \in X\right\}
$$

and if

$$
D=\left\{\left\langle x, \mu_{D}(x), \nu_{D}(x)\right\rangle \mid x \in X\right\}
$$

is an IFS in X, then the image of D under f, denoted by $f(D)$, is the IFS in Y defined by

$$
f(D)=\left\{\left\langle y, f_{\text {sup }} \mu_{D}(y), f_{\inf } \nu_{D}(y)\right\rangle \mid y \in Y\right\}
$$

where

$$
f_{\text {sup }}\left(\mu_{D}\right)(y)= \begin{cases}\sup _{x \in f^{-1}(y)} \mu_{D}(x), & \text { if } f^{-1}(y) \neq \phi \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
f_{\text {inf }}\left(\nu_{D}\right)(y)= \begin{cases}\inf _{x \in f^{-1}(y)} \nu_{D}(x), & \text { if } f^{-1}(y) \neq \phi \\ 1, & \text { otherwise }\end{cases}
$$

for each $y \in Y$.

3 Intuitionistic fuzzy BH-algebras

Definition 3.1. Let X be a BH -algebra. An IFS

$$
D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle
$$

in X is called an intuitionistic fuzzy BH -algebra if it satisfies:

$$
\mu_{D}(x * y) \geq \min \left\{\mu_{D}(x), \mu_{D}(y)\right\}
$$

and

$$
\nu_{D}(x * y) \leq \max \left\{\nu_{D}(x), \nu_{D}(y)\right\} \text { for all } x, y \in X
$$

Example 3.2. Consider a BH-algebra $X=\{0, a, b, c\}$ with the following cayley table:

$*$	0	a	b	c
0	0	c	0	b
a	a	0	0	0
b	b	b	0	c
c	c	c	b	0

Let

$$
D=\left\langle x, \mu_{D}(x), \nu_{D}(x)\right\rangle
$$

be an IFS in X by $\mu_{D}(0)=0.7, \mu_{D}(a)=0.2, \mu_{D}(b)=0.5, \mu_{D}(c)=0.4$ and $\nu_{D}(0)=$ $0.2, \nu_{D}(a)=0.8, \nu_{D}(b)=0.3, \nu_{D}(c)=0.5$. Then

$$
D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle
$$

is an intuitionistic fuzzy BH -algebra.
Proposition 3.3. If an IFS

$$
D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle
$$

in X is an intuitionistic fuzzy BH -algebra of X, then

$$
\mu_{D}(0) \geq \mu_{D}(x)
$$

and

$$
\nu_{D}(0) \leq \nu_{D}(x) \text { for all } x \in X
$$

Proof. Let $x \in X$. Then

$$
\mu_{D}(0)=\mu_{D}(x * x) \geq \min \left\{\mu_{D}(x), \mu_{D}(x)\right\}=\mu_{D}(x)
$$

and

$$
\nu_{D}(0)=\nu_{D}(x * x) \leq \max \left\{\nu_{D}(x), \nu_{D}(x)\right\}=\nu_{D}(x) .
$$

Theorem 3.4. If $\left\{D_{i} \mid i \in \wedge\right\}$ is an arbitrary family of intuitionistic fuzzy BH -algebras of X, then $\cap D_{i}$ is an intuitionistic fuzzy BH -algebra of X, where

$$
\cap D_{i}=\left\{\left\langle x, \wedge \mu_{D_{i}}(x), \vee \nu_{D_{i}}(x)\right\rangle \mid x \in X\right\} .
$$

Proof. Let $x, y \in \mathrm{X}$. Then

$$
\wedge \mu_{D_{i}}(x * y) \geq \wedge\left(\min \left\{\mu_{D_{i}}(x), \mu_{D_{i}}(y)\right\}\right)=\min \left\{\wedge \mu_{D_{i}}(x), \wedge \mu_{D_{i}}(y)\right\}
$$

and

$$
\vee \nu_{D_{i}}(x * y) \leq \vee\left(\max \left\{\nu_{D_{i}}(x), \nu_{D_{i}}(y)\right\}\right)=\max \left\{\vee \nu_{D_{i}}(x), \vee \nu_{D_{i}}(y)\right\} .
$$

Hence,

$$
\cap D_{i}=\left\langle x, \wedge \mu_{D_{i}}, \vee \nu_{D_{i}}\right\rangle
$$

is an intuitionistic fuzzy BH-algebra of X.

Theorem 3.5. If an IFS $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ in X is an intuitionistic fuzzy BH-algebra of X, then so is \bar{D}, where $\bar{D}=\left\{\left\langle x, \mu_{D}(x), 1-\mu_{D}(x)\right\rangle \mid x \in X\right\}$.

Proof. It is sufficient to show that $\bar{\mu}_{D}$ satisfies the second condition in Definition 3.1.
Let $x, y \in X$. Then

$$
\begin{aligned}
\mu_{\mathcal{D}}(x * y) & =1-\mu_{D}(x * y) \\
& \leq 1-\min \left\{\mu_{D}(x), \mu_{D}(y)\right\} \\
& =\max \left\{1-\mu_{D}(x), 1-\mu_{D}(y)\right\} \\
& =\max \left\{\mu_{\mathcal{D}}(x), \mu_{\mathcal{D}}(y)\right\} .
\end{aligned}
$$

Hence \mathcal{D} is an intuitionistic fuzzy BH-algebra of X.
Theorem 3.6. If an IFS $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ in X is an intuitionistic fuzzy BH -algebra of X, then the sets

$$
X_{\mu}:=\left\{x \in X \mid \mu_{D}(x)=\mu_{D}(0)\right\}
$$

and

$$
X_{\nu}:=\left\{x \in X \mid \nu_{D}(x)=\nu_{D}(0)\right\}
$$

are BH-subalgebras of X.
Proof. Let $x, y \in X_{\mu}$. Then $\mu_{D}(x)=\mu_{D}(0)=\mu_{D}(y)$, and so $\mu_{D}(x * y)=\min \left\{\mu_{D}(x), \mu_{D}(y)\right\}=$ $\mu_{D}(0)$. By using Proposition 3.3, we know that $\mu_{D}(x * y)=\mu_{D}(0)$ or equivalently $x * y \in X_{\mu}$. Now let $x, y \in X_{\nu}$. Then $\nu_{D}(x * y) \leq \max \left\{\nu_{D}(x), \nu_{D}(y)\right\}=\nu_{D}(0)$, and by applying Proposition 3.3 we conclude that $\nu_{D}(x * y)=\nu_{D}(0)$ and hence $x * y \in X_{\nu}$.

Definition 3.7. Let $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ be an IFS in X and let $t \in[0,1]$. Then the set $U\left(\mu_{D}, t\right):=$ $\left\{x \in X \mid \mu_{D}(x) \geq t\right\}$ (resp. $L\left(\nu_{D}, t\right):=\left\{x \in X \mid \nu_{D}(x) \leq t\right\}$) is called a μ-level t-cut (resp. ν-level t-cut) of D.

Theorem 3.8. If an IFS $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ in X is an intuitionistic fuzzy BH-algebra of X , then the μ-level t-cut and ν-level t -cut of D are BH -subalgebras of X for every $t \in[0,1]$ such that $t \in \operatorname{Im}\left(\mu_{D}\right) \cap \operatorname{Im}\left(\nu_{D}\right)$, which are called a μ-level BH-subalgebra and a ν-level BH-subalgebra respectively.

Proof. Let $x, y \in U\left(\mu_{D}, t\right)$. Then $\mu_{D}(x) \geq t$ and $\mu_{D}(y) \geq t$. It follows that $\mu_{D}(x * y) \geq$ $\min \left\{\mu_{D}(x), \mu_{D}(y)\right\} \geq t$ so that $x * y \in U\left(\mu_{D}, t\right)$. Hence, $U\left(\mu_{D}, t\right)$ is a BH-subalgebra of X. Now let $x, y \in L\left(\nu_{D}, t\right)$. Then $\nu_{D}(x * y) \leq \max \left\{\nu_{D}(x), \nu_{D}(y)\right\} \leq t$ and so $x * y \in L\left(\nu_{D}, t\right)$. Therefore, $L\left(\nu_{D}, t\right)$ is a BH-subalgebra of X.

Theorem 3.9. Let $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ be an IFS in X such that the sets $U\left(\mu_{D}, t\right)$ and $L\left(\nu_{D}, t\right)$ are BH-subalgebras of X. Then $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ is an intuitionistic fuzzy BH-algebra of X.

Proof. Assume that there exist $x_{0}, y_{0} \in X$ such that $\mu_{D}\left(x_{0} * y_{0}\right)<\min \left\{\mu_{D}\left(x_{0}\right), \mu_{D}\left(y_{0}\right)\right\}$.
Let

$$
t_{0}:=1 / 2\left(\mu_{D}\left(x_{0} * y_{0}\right)+\min \left\{\mu_{D}\left(x_{0}\right), \mu_{D}\left(y_{0}\right)\right\}\right) .
$$

Then

$$
\mu_{D}\left(x_{0} * y_{0}\right)<t_{0}<\min \left\{\mu_{D}\left(x_{0}\right), \mu_{D}\left(y_{0}\right)\right\}
$$

and so $x_{0} * y_{0} \notin U\left(\mu_{D}, t_{0}\right)$, but $x_{0}, y_{0} \in U\left(\mu_{D}, t_{0}\right)$. This is a contradiction, and therefore

$$
\mu_{D}(x * y) \geq \min \left\{\mu_{D}(x), \mu_{D}(y)\right\} \text { for all } x, y \in X .
$$

Now suppose that $\nu_{D}\left(x_{0} * y_{0}\right)>\max \left\{\nu_{D}\left(x_{0}\right), \nu_{D}\left(y_{0}\right)\right\}$ for some $x_{0}, y_{0} \in X$. Taking

$$
S_{0}:=1 / 2\left(\nu_{D}\left(x_{0} * y_{0}\right)+\max \left\{\nu_{D}\left(x_{0}\right), \nu_{D}\left(y_{0}\right)\right\}\right),
$$

then

$$
\max \left\{\nu_{D}\left(x_{0}\right), \nu_{D}\left(y_{0}\right)\right\}<S_{0}<\nu_{D}\left(x_{0} * y_{0}\right) .
$$

It follows that $x_{0}, y_{0} \in L\left(\nu_{D}, S_{0}\right)$ and $x_{0} * y_{0} \notin L\left(\nu_{D}, S_{0}\right)$, a contradiction. Hence

$$
\nu_{D}(x * y) \leq \max \left\{\nu_{D}(x), \nu_{D}(y)\right\} \text { for all } x, y \in X
$$

This completes the proof.
Theorem 3.10. Any BH-subalgebra of X can be realized as both a μ-level BH-subalgebra and a ν-level BH-subalgebra of some intuitionistic fuzzy BH-algebra of X.

Proof. Let S be a BH-subalgebra of X and let μ_{D} and ν_{D} be fuzzy sets in X defined by

$$
\mu_{D}(x):= \begin{cases}t, & \text { if } x \in S \\ 0, & \text { otherwise }\end{cases}
$$

and

$$
\nu_{D}(x)= \begin{cases}s, & \text { if } x \in S \\ 1, & \text { otherwise }\end{cases}
$$

for all $x \in X$ where t and s are fixed numbers in $(0,1)$ such that $t+s<1$.
Let $x, y \in X$. If $x, y \in S$, then $x * y \in S$. Hence $\mu_{D}(x * y)=\min \left\{\mu_{D}(x), \mu_{D}(y)\right\}$ and $\nu_{D}(x * y)=\max \left\{\nu_{D}(x), \nu_{D}(y)\right\}$. If at least one of x and y does not belong to S, then at least one of $\mu_{D}(x)$ and $\mu_{D}(y)$ is equal to 0 , and at least one of $\nu_{D}(x)$ and $\nu_{D}(y)$ is equal to 1 . It follows that

$$
\mu_{D}(x * y) \geq 0=\min \left\{\mu_{D}(x), \mu_{D}(y)\right\}, \nu_{D}(x * y) \leq 1=\max \left\{\nu_{D}(x), \nu_{D}(y)\right\} .
$$

Hence $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ is an intuitionistic fuzzy BH-algebra of X. Obviously,

$$
U\left(\mu_{D}, t\right)=S=L\left(\nu_{D}, s\right)
$$

This completes the proof.

Theorem 3.11. Let α be a BH-homomorphism of a BH-algebra X into a BH-algebra Y and B an intuitionistic fuzzy BH-algebra of Y. Then $\alpha^{-1}(B)$ is an intuitionistic fuzzy BH-algebra of X.

Proof. For any $x, y \in X$, we have

$$
\begin{aligned}
\mu_{\alpha^{-1}}(B)(x * y) & =\mu_{B}(\alpha(x * y)) \\
& =\mu_{B}(\alpha(x) * \alpha(y)) \\
& \geq \min \left\{\mu_{B}(\alpha(x)), \mu_{B}(\alpha(y))\right\} \\
& =\min \left\{\mu_{\alpha^{-1}}(B)(x), \mu_{\alpha^{-1}}(B)(y)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{\alpha^{-1}}(B)(x * y) & =\nu_{B}(\alpha(x * y)) \\
& =\nu_{B}(\alpha(x) * \alpha(y)) \\
& \leq \max \left\{\nu_{B}(\alpha(x)), \nu_{B}(\alpha(y))\right\} \\
& =\max \left\{\nu_{\alpha^{-1}}(B)(x), \nu_{\alpha^{-1}}(B)(y)\right\} .
\end{aligned}
$$

Hence $\alpha^{-1}(B)$ is an intuitionistic fuzzy BH-algebra in X.
Theorem 3.12. Let α be a BH-homomorphism of a BH -algebra X onto a BH-algebra Y. If $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ is an intuitionistic fuzzy BH-algebra of X, then $\left.\alpha(D)=\left\langle y, \alpha_{\text {sup }} \mu_{D}\right), \alpha_{\text {inf }}\left(\nu_{D}\right)\right\rangle$ is an intuitionistic fuzzy BH -algebra of Y.

Proof. Let $D=\left\langle x, \mu_{D}, \nu_{D}\right\rangle$ be an intuitionistic fuzzy topological BH-algebra in X and let $y_{1}, y_{2} \in$ Y. Noticing that

$$
\left\{x_{1} * x_{2} \mid x_{1} \in \alpha^{-1}\left(y_{1}\right) \text { and } x_{2} \in \alpha^{-1}\left(y_{2}\right)\right\} \subseteq\left\{x \in X \mid x \in \alpha^{-1}\left(y_{1} * y_{2}\right)\right\}
$$

we have

$$
\begin{aligned}
\alpha_{\text {sup }}\left(\mu_{D}\right)\left(y_{1} * y_{2}\right) & =\sup \left\{\mu_{D}(x) \mid x \in \alpha^{-1}\left(y_{1} * y_{2}\right)\right\} \\
& \geq \sup \left\{\mu_{D}\left(x_{1} * x_{2}\right) \mid x_{1} \in \alpha^{-1}\left(y_{1}\right) \text { and } x_{2} \in \alpha^{-1}\left(y_{2}\right)\right\} \\
& \geq \sup \left\{\min \left\{\mu_{D}\left(x_{1}\right), \mu_{D}\left(x_{2}\right)\right\} \mid x_{1} \in \alpha^{-1}\left(y_{1}\right) \text { and } x_{2} \in \alpha^{-1}\left(y_{2}\right)\right\} \\
& =\min \left\{\sup \left\{\mu_{D}\left(x_{1}\right) \mid x_{1} \in \alpha^{-1}\left(y_{1}\right)\right\}, \sup \left\{\mu_{D}\left(x_{2}\right) \mid x_{2} \in \alpha^{-1}\left(y_{2}\right)\right\}\right\} \\
& =\min \left\{\alpha_{\sup }\left(\mu_{D}\right)\left(y_{1}\right), \alpha_{\text {sup }}\left(\mu_{D}\right)\left(y_{2}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\alpha_{\mathrm{inf}}\left(\nu_{D}\right)\left(y_{1} * y_{2}\right) & =\inf \left\{\nu_{D}(x) \mid x \in \alpha^{-1}\left(y_{1} * y_{2}\right)\right\} \\
& \leq \inf \left\{\nu_{D}\left(x_{1} * x_{2}\right) \mid x_{1} \in \alpha^{-1}\left(y_{1}\right) \text { and } x_{2} \in \alpha^{-1}\left(y_{2}\right)\right\} \\
& \leq \inf \left\{\max \left\{\nu_{D}\left(x_{1}\right), \nu_{D}\left(x_{2}\right)\right\} \mid x_{1} \in \alpha^{-1}\left(y_{1}\right) \text { and } x_{2} \in \alpha^{-1}\left(y_{2}\right)\right\} \\
& =\max \left\{\inf \left\{\nu_{D}\left(x_{1}\right) \mid x_{1} \in \alpha^{-1}\left(y_{1}\right)\right\}, \inf \left\{\nu_{D}\left(x_{2}\right) \mid x_{2} \in \alpha^{-1}\left(y_{2}\right)\right\}\right\} \\
& =\max \left\{\alpha_{\inf }\left(\nu_{D}\right)\left(y_{1}\right), \alpha_{\text {inf }}\left(\nu_{D}\right)\left(y_{2}\right)\right\}
\end{aligned}
$$

Hence $\alpha(D)=\left\langle y, \alpha_{\text {sup }}\left(\mu_{D}\right), \alpha_{\text {inf }}\left(\nu_{D}\right)\right\rangle$ is an intuitionistic fuzzy BH-algebra in Y. Let $\Omega(X)$ denote the family of all intuitionistic fuzzy BH-algebras of X and let $t \in[0,1]$. Define binary relations $\tilde{\mu}$ and $\tilde{\nu}$ on $\Omega(X)$ as follows :

$$
A \tilde{\mu} B \Leftrightarrow U\left(\mu_{A}, t\right)=U\left(\mu_{B}, t\right)
$$

and

$$
A \tilde{\nu} B \Leftrightarrow L\left(\nu_{A}, t\right)=L\left(\nu_{B}, t\right),
$$

respectively, for $A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle$ and $B=\left\langle x, \mu_{B}, \nu_{B}\right\rangle \in \Omega(X)$. Then clearly $\tilde{\mu}$ and $\tilde{\nu}$ are equivalence relations on $\Omega(X)$. For any $A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle \in \Omega(X)$, let $[A]_{\mu}$ (resp. $\left.[A]_{\nu}\right)$ denote the equivalence class of $A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle$ modulo $\tilde{\mu}$ (resp. $\tilde{\nu}$), and denote by $\Omega(X) \mid \tilde{\mu}($ resp. $\Omega(X) \mid \tilde{\nu})$ the collection of all equivalence classes of A modulo $\tilde{\mu}$ (resp. $\tilde{\nu}$). $\Omega(X) \mid \tilde{\mu}:=\left\{[A]_{\mu} \mid A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle \in\right.$ $\Omega(X)\}$ (resp. $\Omega(X) \mid \tilde{\nu}:=\left\{[A]_{\nu} \mid A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle \in \Omega(X)\right\}$. Now, let $\mathrm{S}(\mathrm{X})$ denote the family of all BH-subalgebras of X and let $t \in[0,1]$. Define maps α_{t} and β_{t} from $\Omega(X)$ to $S(X) \cup\{\phi\}$ by $\alpha_{t}(A)=U\left(\mu_{A}, t\right)$ and $\beta_{t}(A)=L\left(\nu_{A}, t\right)$, respectively, for all $\mathrm{A}=\left\langle x, \mu_{A}, \nu_{A}\right\rangle \in \Omega(X)$. Then α_{t} and β_{t} are clearly well-defined.

Theorem 3.13. For any $t \in(0,1)$ the maps α_{t} and β_{t} are surjective from $\Omega(X)$ to $S(X) \cup\{\phi\}$.
Proof. Let $t \in(0,1)$. Note that $0 \tilde{=}\langle x, 0,1\rangle$ is in $\Omega(X)$, where 0 and 1 are fuzzy sets in X defined by $0(\mathrm{x})=0$ and $1(\mathrm{x})=1$ for all $x \in X$. Obviously $\alpha_{t}(0)=\mathrm{U}(0, \mathrm{t})=\phi=\mathrm{L}(1, \mathrm{t})=\beta_{t}(0)$. Let $\mathrm{G}(\neq \phi) \in$ $\mathrm{S}(\mathrm{X})$. For $G^{\sim}=\left\langle x, \chi_{G}, \chi_{G}\right\rangle \in \Omega(X)$, we have $\alpha_{t}(G)=U\left(\chi_{G}, t\right)=\mathrm{G}$ and $\beta_{t}(G)=L\left(\chi_{G}^{\prime}, t\right)=$ G. Hence α_{t} and β_{t} are surjective.

Theorem 3.14. The quotient sets $\Omega(X) \mid \tilde{\mu}$ and $\Omega(X) \mid \tilde{\nu}$ are equipotent to $S(X) \cup\{\phi\}$ for every $t \in(0,1)$.

Proof. For $t \in(0,1)$ let α_{t}^{*} (resp. β_{t}^{*}) be a map from $\Omega(X) \mid \tilde{\mu}$ (resp. $\left.\Omega(X) \mid \tilde{\nu}\right)$ to $S(X) \cup\{\phi\}$ defined by $\alpha_{t}^{*}\left([A]_{\mu}\right)=\alpha_{t}[A]$ (resp. $\left.\beta_{t}^{*}\left([A]_{\nu}\right)=\beta_{t}(A)\right)$ for all $A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle \in \Omega(X)$.

If $U\left(\mu_{A}, t\right)=U\left(\mu_{B}, t\right)$ and $L\left(\nu_{A}, t\right)=L\left(\nu_{B}, \mathrm{t}\right)$ for $A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle$ and $B=\left\langle x, \mu_{B}, \nu_{B}\right\rangle \in$ $\Omega(X)$, then $A \tilde{\mu} B$ and $A \tilde{\nu} B$; hence $[A]_{\mu}=[B]_{\mu}$ and $[A]_{\nu}=[B]_{\nu}$. Therefore, the maps α_{t}^{*} and β_{t}^{*} are injective. Now let $G(\neq \phi)_{\tilde{\sim}} \in S(X)$. For $G \tilde{=}\left\langle x, \chi_{G}, \chi_{G}\right\rangle \in \Omega(X)$, we have $\alpha_{t}^{*}\left([G]_{\mu}\right)=$ $\alpha_{t}(G)=U\left(\chi_{G}, t\right)=G$ and $\beta_{t}^{*}([G] \nu)=\beta_{t}\left(G \tilde{)}=L\left(\chi_{G}, t\right)=G\right.$. Finally, for $0 \tilde{=}\langle x, 0,1\rangle \in \Omega(X)$ we get

$$
\alpha_{t}^{*}([0] \mu)=\alpha_{t}(0)=U(0, t)=\phi
$$

and $\beta_{t}^{*}([0] \nu)=\beta_{t}(0)=\mathrm{L}(1, \mathrm{t})=\phi$. This show that α_{t}^{*} and β_{t}^{*} are surjective, and we are done. For any $t \in[0,1]$, we define another relation \mathfrak{R}^{t} on $\Omega(X)$ as follows :

$$
(A, B) \in \mathfrak{R}^{t} \Leftrightarrow U\left(\mu_{A}, t\right) \cap L\left(\nu_{A}, t\right)=U\left(\mu_{B}, t\right) \cap L\left(\nu_{B}, t\right) .
$$

For any $A=\left\langle x, \mu_{A}, \nu_{A}\right\rangle, B=\left\langle x, \mu_{B}, \nu_{B}\right\rangle \in \Omega(X)$. Then the relation \mathfrak{R}^{t} is also an equivalence relation on $\Omega(X)$.

Theorem 3.15. For any $t \in(0,1)$, the map $\phi_{t}: \Omega(X) \rightarrow S(X) \cup\{\phi\}$ defined by $\phi_{t}(A)=$ $\alpha_{t}(A) \cap \beta_{t}(A)$ for each $\mathrm{A}=\left\langle x, \mu_{A}, \nu_{A}\right\rangle \in \Omega(X)$ is surjective.

Proof. Let $t \in(0,1)$. For $0^{\sim}=\langle x, 0,1\rangle \in \Omega(X)$, we get

$$
\phi_{t}(0) \tilde{)}=\alpha_{t}(0) \cap \beta_{t}(0) \tilde{)}=\cup(0, t) \cap L(1, t)=\phi .
$$

For any $H \in \Omega(X)$, there exists $H \cong=\left\langle x, \chi_{H}, \chi_{H}\right\rangle \in \Omega(X)$ such that

$$
\phi_{t}(H)=\alpha_{t}(H) \cap \beta_{t}(H) \tilde{)}=\cup\left(\chi_{H}, t\right) \cap L\left(\chi_{H}, t\right)=H
$$

This completes the proof.
Theorem 3.16. For any $t \in(0,1)$, the quotient set $\Omega(X) \mid \mathfrak{R}^{t}$ is equipotent to $S(X) \cup\{\phi\}$.
Proof. Let $t \in(0,1)$ and let $\phi_{t}^{*}: \Omega(X) \mid \mathfrak{R}^{t} \rightarrow S(X) \cup\{\phi\}$ be a map defined by $\phi_{t}^{*}\left([A] \mathfrak{R}^{t}\right)=\phi_{t}(A)$ for all $[A]_{\mathfrak{R}^{t}} \in \Omega(X) \mid \mathfrak{R}^{t}$. Assume that $\phi_{t}^{*}\left([A]_{\mathfrak{R}^{t}}\right)=\phi_{t}^{*}\left([B]_{\mathfrak{R}^{t}}\right)$ for any $[A]_{\mathfrak{R}^{t}},[B]_{\mathfrak{R}^{t}} \in \Omega(X) \mid \mathfrak{R}^{t}$. Then
$\alpha_{t}(A) \cap \beta_{t}(A)=\alpha_{t}(B) \cap \beta_{t}(B)$. i.e., $U\left(\mu_{A}, t\right) \cap L\left(\nu_{A}, t\right)=U\left(\mu_{B}, t\right) \cap L\left(\nu_{B}, t\right)$. Hence $(A, B) \in \mathfrak{R}^{t}$, and so $[A]_{\mathfrak{R}^{t}}=[B]_{\mathfrak{R}^{t}}$. Therefore ϕ_{t}^{*} is injective. Now for

$$
0^{\sim}=\langle x, 0,1\rangle \in \Omega(X)
$$

we have

$$
\phi_{t}^{*}\left([0] \Re^{t}\right)=\phi_{t}(0)=\alpha_{t}(0) \cap \beta_{t}(0)=U(0, t) \cap L(1, t)=\phi .
$$

For

$$
H^{\sim}=\left\langle x, \chi_{H}, \chi_{H}\right\rangle \in \Omega(X)
$$

we get

$$
\phi_{t}^{*}\left([H] \Re^{t}\right)=\phi_{t}(H)=\alpha_{t}(H) \cap \beta_{t}(H)=\cup\left(\chi_{H}, t\right) \cap L\left(\chi_{H}, t\right)=H .
$$

Thus ϕ_{t}^{*} is surjective. This completes the proof.

4 Intuitionistic fuzzy topological BH-algebras

In [4], Coker generalized the concept of fuzzy topological space, first initiated by Chang [3], to the case of intuitionistic fuzzy sets as follows.

Definition 4.1 ([4]). An intuitionistic fuzzy topology (IFT) on a non-empty set X is a family Φ of IFSs in X satisfying the following axioms:
(T1) $0,1^{\sim} \in \Phi$,
(T2) $G_{1} \cap G_{2} \in \Phi$ for any $G_{1}, G_{2} \in \Phi$,
(T3) $\cup_{i \in J} G_{i} \in \Phi$ for any family $\left\{G_{i}: i \in J\right\} \subseteq \Phi$.
In this case the pair (X, Φ) is called an intuitionistic fuzzy topological space (IFTS for short) and any IFS in Φ is called an intuitionistic fuzzy open set (IFOS for short) in X.

Definition 4.2. Let (X, Φ) and (Y, Ψ) be two IFTSs. A mapping $f: X \rightarrow Y$ is said to be intuitionistic fuzzy continuous if the preimage of each IFS in Ψ is an IFS in Ψ; and f is said to be intuitionistic fuzzy open if the image of each IFS in Φ is an IFS in Ψ.

Definition 4.3. Let D be an IFS in an IFTS (X, Ψ). Then the induced intuitionistic fuzzy topology (IIFT for short) on D is the family of IFSs in D which are the intersection with D of IFOSs in X. The IIFT is denoted by Ψ_{D}, and the pair $\left(D, \Psi_{D}\right)$ is called an intuitionistic fuzzy subspace of (X, Ψ).

Definition 4.4. Let $\left(D, \Phi_{D}\right)$ and $\left(B, \Psi_{B}\right)$ be intuitionistic fuzzy subspaces of IFTSs (X, Φ) and (Y, Ψ), respectively, and let $f: X \rightarrow Y$ be a mapping. Then f is a mapping of D into B if $f(D) \subset B$. Furthermore, f is said to be relatively intuitionistic fuzzy continuous if for each IFS $V_{B} \in \Psi_{B}$, the intersection $f^{-1}\left(V_{B}\right) \cap D$ is an IFS in Φ_{D}; and f is said to be relatively intuitionistic fuzzy open if for each IFS $U_{D} \in \Phi_{D}$, the image $f\left(U_{D}\right)$ is an IFS in Ψ_{B}.

Proposition 4.5. Let $\left(D, \Phi_{D}\right)$ and $\left(B, \Psi_{B}\right)$ be intuitionistic fuzzy subspaces of IFTSs (X, Φ) and (Y, Ψ) respectively, and let f be an intuitionistic fuzzy continuous mapping of X into Y such that $f(D) \subset B$. Then f is relatively intuitionistic fuzzy continuous mapping of D into B.

Proof. Let V_{B} be an IFS in Ψ_{B}. Then there exists $V \in \Psi$ such that $V_{B}=V \cap B$. Since f is intuitionistic fuzzy continuous, it follows that $f^{-1}(V)$ is an IFS in Φ. Hence

$$
f^{-1}\left(V_{B}\right) \cap D=f^{-1}(V \cap B) \cap D=f^{-1}(V) \cap f^{-1}(B) \cap D=f^{-1}(V) \cap D
$$

is an IFS in Φ_{D}. This completes the proof.
For any BH-algebra X and any element $a \in X$ we use a_{r} to denote the selfmap of X defined by $a_{r}(x)=x * a$ for all $x \in X$.

Definition 4.6. Let X be BH-algebra, Φ an IFT on X and D an intuitionistic fuzzy BH- algebra with IIFT Φ_{D}. Then D is called an intuitionistic fuzzy topological BH-algebra if for each $a \in \mathrm{X}$ the mapping

$$
a_{r}:\left(D, \Phi_{D}\right) \rightarrow\left(D, \Phi_{D}\right), x \mapsto x * a
$$

is relatively intuitionistic fuzzy continuous.
Theorem 4.7. Given BH-algebras X and Y, and a BH-homomorphism $\alpha: X \rightarrow Y$, let Φ and Ψ be the IFTs on X and Y, respectively such that $\Phi=\alpha^{-1}(\Psi)$. If B is an intuitionistic fuzzy topological BH-algebra in Y , then $\alpha^{-1}(B)$ is an intuitionistic fuzzy topological BH -algebra in X .

Proof. Let $a \in X$ and let U be an IFS in $\Phi_{\alpha^{-1}}(B)$. Since α is an intuitionistic fuzzy continuous mapping of (X, Φ) into (Y, Ψ), it follows from Proposition 4.5 that α is a relatively intuitionistic fuzzy continuous mapping of $\left(\alpha^{-1}(B), \Phi_{\alpha^{-1}}(B)\right)$ into $\left(B, \Psi_{B}\right)$. Note that there exists an IFS V in Ψ_{B} such that $\alpha^{-1}(V)=U$. Then

$$
\begin{aligned}
\mu_{a_{r}^{-1}}(U)(x) & =\mu_{U}\left(a_{r}(x)\right)=\mu_{U}(x * a)=\mu_{\alpha^{-1}(V)}(x * a) \\
& =\mu_{V}(\alpha(x * a))=\mu_{V}(\alpha(x) * \alpha(a))
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{a_{r}^{-1}}(U)(x) & =\nu_{U}\left(a_{r}(x)\right)=\nu_{U}(x * a)=\nu_{\alpha^{-1}(V)}(x * a) \\
& =\nu_{V}(\alpha(x * a))=\nu_{V}(\alpha(x) * \alpha(a))
\end{aligned}
$$

Since B is an intuitionistic fuzzy topological BH-algebra in Y, the mapping

$$
b_{r}:\left(B, \Psi_{B}\right) \rightarrow\left(B, \Psi_{B}\right), y \mapsto y * b
$$

is relatively intuitionistic fuzzy continuous for every $b \in Y$. Hence,

$$
\begin{aligned}
\mu_{a_{r}^{-1}}(U)(x) & =\mu_{V}(\alpha(x) * \alpha(a))=\mu_{V}(\alpha(a) r(\alpha(x))) \\
& =\mu_{\alpha(a) r(V)^{-1}(\alpha(x))}=\mu_{\alpha\left(\alpha(a) r^{-1}(V)\right)}^{-1}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\nu_{a_{r}^{-1}}(U)(x) & =\nu_{V}(\alpha(x) * \alpha(a))=\nu_{V}(\alpha(a) r(\alpha(x))) \\
& =\nu_{\alpha(a) r(V)^{-1}(\alpha(x))}=\nu_{\alpha\left(\alpha(a) r^{-1}(V)\right)}^{-1}(x)
\end{aligned}
$$

Therefore

$$
a_{r}^{-1}(U)=\alpha^{-1}\left(\alpha(a) r^{-1}(V)\right),
$$

and so

$$
a_{r}^{-1}(U) \cap \alpha^{-1}(B)=\alpha^{-1}\left(\alpha(a) r^{-1}(V)\right) \cap \alpha^{-1}(B)
$$

is an IFS in $\Phi_{\alpha^{-1}}(B)$.
This completes the proof.
Theorem 4.8. Given BH-algebras X and Y, and a BH-isomorphism α of X to Y, let Φ and Ψ be the IFTs on X and Y respectively such that $\alpha(\Phi)=\Psi$. If D is an intuitionistic fuzzy topological BH-algebra in X, then $\alpha(D)$ is an intuitionistic fuzzy topological BH-algebra in Y.

Proof. It is sufficient to show that the mapping

$$
b_{r}:\left(\alpha(D), \Psi_{\alpha(D)}\right) \rightarrow\left(\alpha(D), \Psi_{\alpha(D)}\right), y \mapsto y * b
$$

is relatively intuitionistic fuzzy continuous for each $b \in Y$. Let U_{D} be an IFS in Ψ_{D}. Then there exists an IFS U in Φ such that $U_{D}=U \cap D$. Since α is one-one, it follows that

$$
\alpha\left(U_{D}\right)=\alpha(U \cap D)=\alpha(U) \cap \alpha(D)
$$

which is an IFS in $\Psi_{\alpha(D)}$. This shows that α is relatively intuitionistic fuzzy open.
Let $V_{\alpha}(D)$ be an IFS in $\Psi_{\alpha}(D)$. The surjectivity of α implies that for each $b \in Y$ there exists $a \in X$ such that $b=\alpha(a)$. Hence

$$
\begin{aligned}
\mu^{-1} \alpha(b r(V \alpha(D))(x) & =\mu_{\alpha^{-1}\left(\alpha(a) r^{-1}(V \alpha(D))\right.}(x) \\
& =\mu_{\alpha(a) r^{-1}(V \alpha(D))}(\alpha(x)) \\
& =\mu_{V \alpha(D)}(\alpha(a) r(\alpha(x))) \\
& =\mu_{V \alpha(D)}(\alpha(x) * \alpha(a)) \\
& =\mu_{V \alpha(D)}(\alpha(x * a)) \\
& =\mu_{\alpha^{-1}(V \alpha(D))}(x * a) \\
& =\mu_{\alpha^{-1}(V \alpha(D))}\left(a_{r}(x)\right) \\
& =\mu_{a_{r}^{-1}\left(\alpha^{-1}(V \alpha(D))\right.}(x)
\end{aligned}
$$

$$
\begin{aligned}
\nu^{-1} \alpha(b r(V \alpha(D))(x) & =\nu_{\alpha^{-1}\left(\alpha(a) r^{-1}(V \alpha(D))\right.}(x) \\
& =\nu_{\alpha(a) r^{-1}(V \alpha(D))}(\alpha(x)) \\
& =\nu_{V \alpha(D)}(\alpha(a) r(\alpha(x))) \\
& =\nu_{V \alpha(D)}(\alpha(x) * \alpha(a)) \\
& =\nu_{V \alpha(D)}(\alpha(x * a)) \\
& =\nu_{\alpha^{-1}(V \alpha(D))}(x * a) \\
& =\nu_{\alpha^{-1}(V \alpha(D))}\left(a_{r}(x)\right) \\
& =\nu_{a_{r}^{-1}\left(\alpha^{-1}(V \alpha(D))\right.}(x)
\end{aligned}
$$

Therefore

$$
\alpha^{-1}\left(b_{r}^{-1}\left(V_{\alpha(D)}\right)=a_{r}^{-1}\left(\alpha^{-1}\left(V_{\alpha(D)}\right)\right) .\right.
$$

By hypothesis, the mapping

$$
a_{r}:\left(D, \Phi_{D}\right) \rightarrow\left(D, \Phi_{D}\right), x \mapsto x * a
$$

is relatively intuitionistic fuzzy continuous and α is a relatively intuitionistic fuzzy continuous map:

$$
\left(D, \Phi_{D}\right) \rightarrow\left(\alpha(D), \Psi_{\alpha(D)}\right) .
$$

Thus

$$
\alpha^{-1}\left(b_{r}^{-1}\left(V_{\alpha(D)}\right)\right) \cap D=a_{r}^{-1}\left(\alpha^{-1}\left(V_{\alpha(D)}\right)\right) \cap D
$$

is an IFS in Φ_{D}. Since α is relatively intuitionistic fuzzy open,

$$
\alpha\left(\alpha^{-1}\left(b_{r}^{-1}\left(V_{\alpha(D)}\right)\right) \cap D\right)=b_{r}^{-1}\left(V_{\alpha(D)}\right) \cap \alpha(D)
$$

is an IFS in $\Psi_{\alpha(D)}$. This completes the proof.

References

[1] Atanassov, K. (1986). Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 35, 87-96.
[2] Atanassov, K.T. (2015) One new algebraic object, Int.J.Bioautomation, 20 (S1), S75-S81.
[3] Chang, C. (1968). Fuzzy topological spaces. J. Math. Anal. Appl., 24, 182-190.
[4] Coker, D. (1997). An introduction to intuitionistic fuzzy topological spaces. Fuzzy Sets and Systems, 88, 81-89.
[5] Foster, D. H. (1979). Fuzzy topological groups. J. Math. Anal. Appl., 67, 549-564
[6] Hu, Q. P. \& Li, X. (1983). On BCH-algebras. Math. Seminar Notes, 11, 313-320.
[7] Hu, Q. P. \& Li, X. (1985). On Proper BCH-algebras. Math. Japan., 30, 659-661.
[8] Imai, Y \& Iseki, K. (1966). On axiom systems of propositional calculi XIV. Proc. Japan Academy, 42, 19-22
[9] Jun, Y. B., Roh, E. H. \& Kim, H. S. (1998) On BH-algebras, Sci. Mathematicae 1, 347-354.
[10] Park, C. H. (2006). Interval-valued fuzzy ideal in BH-algebras. Advance in Fuzzy Set and System, 1, 231-240.
[11] Rosenfeld, A. (1971). Fuzzy groups. J. Math. Anal. Appl., 35, 512-517.
[12] Senapati, T., Bhowmik, M., \& Pal, M. (2013) Intuitionistic fuzzy translations of intuitionistic fuzzy H-ideals in BCK/BCI algebras, Notes on Intuitionistic Fuzzy sets, 19(1), 32-47.
[13] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353.
[14] Zhang, Q., Roh, E. H., \& Jun, Y. B. (2001). On Fuzzy BH-algebras. J. Huanggang, Normal Univ., 21, 14-19.

