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1 Introduction

The study of groups arose early in the nineteenth century in connection with the solution of
equations. The theory of abstract groups plays an important part in present day mathematics and
science. Groups arise in a bewildering number of apparently unconnected subjects. Thus they
appear in crystallography and quantum mechanics, in geometry and topology, in analysis and
algebra, in physics, chemistry and even in biology.

The notion of fuzzy sets was first introduced by Zadeh [28]. Rosenfeld [26] introduced the
fuzzy sets in the realm of group theory. Since then many mathematicians have been involved
in extending the concepts and results of abstract algebra to the broader frame work of the fuzzy
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setting. Anthony and Sherwood [1] gave the definition of fuzzy subgroup based on t-norm. As a
generalization of a fuzzy set, the concept of an intuitionistic fuzzy set was introduced by Atanassov
[2, 3]. Solairaju and Nagarajan [27] introduced the notion of Q-fuzzy groups.

Norms were introduced in the framework of probabilistic metric spaces. However, they are
widely applied in several other fields, e.g., in fuzzy set theory, fuzzy logic, and their applications.
In previous works [4–25], by using norms, we investigated some properties of fuzzy algebraic
structures, specially, we defined and investigated Q-fuzzy subgroups, anti Q-fuzzy subgroups,
Level subsets and translations Q-fuzzy subgroups, level subsets and translations of anti Q-fuzzy
subgroups and Q-intuitionistic fuzzy subgroups with respect to norms [4–7, 25].

In this paper we introduce the notion of normality and translation of Q-intuitionistic fuzzy
subgroups with respect to norms (t-norm T and t-conorm C) and investigate some related
properties. Level cut subset of them is introduced and the relation between this representation
and them is discussed such that some of its properties are studied. Finally, some results of them
by using group homomorphisms are investigated.

2 Preliminaries

This section contains some basic definitions and preliminary results which will be needed in the
sequel. For more details we refer to [6, 7, 25].

Definition 2.1 (see [6]). A group is a non-empty set G on which there is a binary operation
(a, b) → ab such that:

(1) If a and b belong to G, then ab is also in G (closure),
(2) a(bc) = (ab)c for all a, b, c ∈ G (associativity),
(3) There is an element e ∈ G such that ae = ea = a for all a ∈ G (identity),
(4) If a ∈ G, then there is an element a−1 ∈ G such that aa−1 = a−1a = e (inverse).

One can easily check that this implies the unicity of the identity and of the inverse. A group
G is called Abelian if the binary operation is commutative, i.e., ab = ba for all a, b ∈ G. There
are two standard notations for the binary group operation: either the additive notation, that is
(a, b) → a + b in which case the identity is denoted by 0, or the multiplicative notation, that is
(a, b) → ab for which the identity is denoted by e.

Definition 2.2 (see [6]). A function (or map) f : G → H from one group G to another H is a
(group) homomorphism if the group operation is preserved in the sense that f(g1g2) = f(g1)f(g2)

and f is called an anti (group) homomorphism if f(g1g2) = f(g2)f(g1) for all g1, g2 ∈ G.

Proposition 2.3 (see [7]). Let G be a group. Let H be a non-empty subset of G. The following
are equivalent:

(1) H is a subgroup of G.

(2) x, y ∈ H implies xy−1 ∈ H for all x, y.
A subgroup H of a group G is called normal if ghg−1 ∈ H for any g ∈ G and h ∈ H.
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Definition 2.4 (see [7]). Let G be an arbitrary group with a multiplicative binary operation and
identity e. A fuzzy subset of G, we mean a function from G into [0, 1]. The set of all fuzzy subsets
of G is called the [0, 1]-power set of G and is denoted [0, 1]G.

Definition 2.5 (see [25]). For sets X, Y and Z, f = (f1, f2) : X → Y × Z is called a complex
mapping if f1 : X → Y and f2 : X → Z are mappings.

Definition 2.6 (see [25]). Let X be a nonempty set. A complex mapping A = (µA, νA) : X →
[0, 1] × [0, 1] is called an intuitionistic fuzzy set (in short, IFS) in X such that µA, νA ∈ [0, 1]X

and for all x ∈ X we have (µA(x) + νA(x)) ∈ [0, 1]. In particular ∅X and UX denote the
intuitionistic fuzzy empty set and intuitionistic fuzzy whole set in X defined by ∅X(x) = (0, 1)

and UX(x) = (1, 0), respectively. We will denote the class of all IFSs in X as IFS(X).

Definition 2.7 (see [25]). Let X be a nonempty set and let A = (µA, νA) and B = (µB, νB) be
IFSs in X. Then

(1) Inclusion: A ⊆ B iff µA ≤ µB and νA ≥ νB.

(2) Equality: A = B iff A ⊆ B and B ⊆ A.

Definition 2.8 (see [6]). A t-norm T is a function T : [0, 1]× [0, 1] → [0, 1] having the following
four properties:

(T1) T (x, 1) = x (neutral element)
(T2) T (x, y) ≤ T (x, z) if y ≤ z (monotonicity)
(T3) T (x, y) = T (y, x) (commutativity)
(T4) T (x, T (y, z)) = T (T (x, y), z) (associativity),

for all x, y, z ∈ [0, 1].

Corollary 2.9 (see [6]). Let T be a t-norm. Then for all x ∈ [0, 1]

(1) T (x, 0) = 0.

(2) T (0, 0) = 0.

Example 2.10 (see [6]). (1) Standard intersection t-norm

Tm(x, y) = min{x, y}.

(2) Bounded sum t-norm
Tb(x, y) = max{0, x+ y − 1}.

(3) Algebraic product t-norm
Tp(x, y) = xy.

(4) Drastic t-norm

TD(x, y) =


y, if x = 1

x, if y = 1

0, otherwise.

(5) Nilpotent minimum t-norm

TnM(x, y) =

{
min{x, y}, if x+ y > 1

0, otherwise.
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(6) Hamacher product t-norm

TH0(x, y) =

{
0, if x = y = 0
xy

x+y−xy
, otherwise.

The drastic t-norm is the pointwise smallest t-norm and the minimum is the pointwise largest
t-norm:

TD(x, y) ≤ T (x, y) ≤ Tmin(x, y)

for all x, y ∈ [0, 1].

Lemma 2.11 (see [6]). Let T be a t-norm. Then

T (T (x, y), T (w, z)) = T (T (x,w), T (y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.12 (see [7]). A t-conorm C is a function C : [0, 1] × [0, 1] → [0, 1] having the
following four properties:

(C1) C(x, 0) = x

(C2) C(x, y) ≤ C(x, z) if y ≤ z

(C3) C(x, y) = C(y, x)

(C4) C(x,C(y, z)) = C(C(x, y), z) ,
for all x, y, z ∈ [0, 1].

Corollary 2.13 (see [7]). Let C be a t-conorm. Then for all x ∈ [0, 1]

(1) C(x, 1) = 1.

(2) C(0, 0) = 0.

Example 2.14 (see [7]).
(1) Standard union t-conorm

Cm(x, y) = max{x, y}.

(2) Bounded sum t-conorm
Cb(x, y) = min{1, x+ y}.

(3) Algebraic sum t-conorm
Cp(x, y) = x+ y − xy.

(4) Drastic t-conorm

CD(x, y) =


y, if x = 0

x, if y = 0

1, otherwise,

dual to the drastic t-norm.
(5) Nilpotent maximum t-conorm, dual to the nilpotent minimum T -norm:

CnM(x, y) =

{
max{x, y}, if x+ y < 1

1, otherwise.
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(6) Einstein sum (compare the velocity-addition formula under special relativity)

CH2(x, y) =
x+ y

1 + xy

is a dual to one of the Hamacher t-norms. Note that all t-conorms are bounded by the maximum
and the drastic t-conorm:

Cmax(x, y) ≤ C(x, y) ≤ CD(x, y)

for any t-conorm C and all x, y ∈ [0, 1].

Recall that t-norm T (respectively, t-conorm C) is idempotent if for all x ∈ [0, 1], T (x, x) = x

(respectively, C(x, x) = x).

Lemma 2.15 (see [7]). Let C be a t-conorm. Then

C(C(x, y), C(w, z)) = C(C(x,w), C(y, z)),

for all x, y, w, z ∈ [0, 1].

Definition 2.16 (see [25]). Let (G, .) be a group and Q be a non-empty set. An intuitionistic
fuzzy set A = (µA, νA) ∈ IFS(G×Q) is said to be a Q-intuitionistic fuzzy subgroup of G with
respect to norms (t-norm T and t-conorm C) if the following conditions are satisfied:
(1)

A(xy, q) = (µA(xy, q), νA(xy, q)) ⊇ A(T (µA(x, q), µA(y, q)), C(νA(x, q), νA(y, q))),

(2)
A(x−1, q) = (µA(x

−1, q), νA(x
−1, q)) ⊇ A(x, q) = (µA(x, q), νA(x, q)),

which means:
(a) µA(xy, q) ≥ T (µA(x, q), µA(y, q)),

(b) νA(xy, q) ≤ C(νA(x, q), νA(y, q)),

(c) µA(x
−1, q) ≥ µA(x, q),

(d) νA(x−1, q) ≤ νA(x, q),

for all x, y ∈ G and q ∈ Q.

Throughout this paper the set of all Q-intuitionistic fuzzy subgroups of G with respect to
norms (t-norm T and t-conorm C) will be denoted by QIFSN(G).

Proposition 2.17 (see [25]). Let T and C be idempotent. Then

A = (µA, νA) ∈ QIFSN(G)

if and only if

A(xy−1, q) ⊇ A(T (µA(x, q), µA(y, q)), C(νA(x, q), νA(y, q)))

for all x, y ∈ G and q ∈ Q.
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3 Main results

Proposition 3.1. Let A = (µA, νA) ∈ QIFSN(G) and α, β ∈ [0, 1]. If T,C are idempotent, then

Aα,β = {x ∈ G : A(x, q) ⊇ (α, β)}

is a subgroup of G.

Proof. Let x, y ∈ Aα,β . Then A(x, q) ⊇ (α, β) and A(y, q) ⊇ (α, β), thus µA(x, q), µA(y, q) ≥ α

and νA(x, q), νA(y, q) ≤ β. As

µA(xy
−1, q) ≥ T (µA(x, q), µA(y

−1, q)) ≥ T (µA(x, q), µA(y, q)) ≥ T (α, α) = α

and

νA(xy
−1, q) ≤ C(νA(x, q), νA(y

−1, q)) ≤ C(νA(x, q), νA(y, q)) ≤ C(β, β) = β

so µA(xy
−1, q) ≥ α and νA(xy

−1, q) ≤ β, which implies that xy−1 ∈ Aα,β. Thus Proposition 2.3
gives us that Aα,β is a subgroup of G.

Proposition 3.2. Let A = (µA, νA) ∈ QIFSN(G) and αi, βi ∈ [0, 1] for i = 1, 2 such that
A(eG, q) ⊇ (αi, βi) for i = 1, 2 with α1 > α2 and β1 < β2. Then Aα1,β1 = Aα2,β2 iff there is no
x ∈ G such that (α2, β2) ⊂ A(x, q) ⊂ (α1, β1).

Proof. LetAα1,β1 =Aα2,β2 and there exists an x ∈ G such that (α2, β2) ⊂ A(x, q)⊂(α1, β1). Then
Aα1,β1 ⊆ Aα2,β2 and so x ∈ Aα2,β2 but x /∈ Aα1,β1 and this is a contradiction to Aα1,β1 = Aα2,β2 .

Thus there is no x ∈ G such that (α2, β2) ⊂ A(x, q) ⊂ (α1, β1).

Conversely, if there is no x ∈ G such that (α2, β2) ⊂ A(x, q) ⊂ (α1, β1), then Aα1,β1 =

Aα2,β2 .

Proposition 3.3. Let A = (µA, νA) ∈ IFS(G × Q) and Aα,β be a subgroup of G for all
α, β ∈ [0, 1] and A(eG, q) ⊇ (α, β). Then A = (µA, νA) ∈ QIFSN(G).

Proof. Let x, y ∈ G and q ∈ Q with A(x, q) = (α1, β1) and A(y, q) = (α2, β2) and then
x ∈ Aα1,β1 and y ∈ Aα2,β2 . Now we investigate the following conditions.
(1) If α1 < α2 and β1 > β2, then y ∈ Aα1,β1 and as Aα1,β1 is a subgroup of G so xy, x−1 ∈ Aα1,β1 .

Now
µA(xy, q) ≥ α1 = T (α1, α2) = T (µA(x, q), µA(y, q)),

νA(xy, q) ≤ β1 = C(β1, β2) = C(νA(x, q), νA(y, q)),

µA(x
−1, q) ≥ α1 = µA(x, q),

νA(x
−1, q) ≤ β1 = νA(x, q).

Thus A = (µA, νA) ∈ QIFSN(G).

(2) If α1 = α2 and β1 > β2, or if β1 = β2 and α1 < α2, then the proof is similar to (1).
(3) If α2 < α1 and β2 > β1, then x ∈ Aα2,β2 and as Aα2,β2 is a subgroup of G so xy, x−1 ∈ Aα2,β2 .

Now
µA(xy, q) ≥ α2 = T (α2, α1) = T (α1, α2) = T (µA(x, q), µA(y, q)),

νA(xy, q) ≤ β2 = C(β2, β1) = C(β1, β2) = C(νA(x, q), νA(y, q)),
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µA(x
−1, q) ≥ α2 = µA(x, q),

νA(x
−1, q) ≤ β2 = νA(x, q).

Then A = (µA, νA) ∈ QIFSN(G).

(4) If α1 = α2 and β2 > β1, or if β1 = β2 and α1 > α2, then the proof is similar to (3).
(5) If α2 = α1 and β2 = β1, then it is trivial.

Proposition 3.4. Let A = (µA, νA) ∈ QIFSN(G) and αi, βi ∈ [0, 1] for i = 1, 2. If Aα1,β1 and
Aα2,β2 are two subgroups in G, then Aα1,β1 ∩ Aα2,β2 will be a subgroup in G.

Proof. Let A(eG, q) ⊇ (α1, β1) and A(eG, q) ⊇ (α2, β2) and x ∈ G, q ∈ Q. Then
(1) If (α1, β1) ⊂ A(x, q) ⊂ (α2, β2), then Aα2,β2 ⊆ Aα1,β1 and so Aα1,β1 ∩ Aα2,β2 = Aα2,β2 and

as Aα2,β2 is a subgroup in G, so Aα1,β1 ∩ Aα2,β2 will be a subgroup in G.

(2) If (α2, β2) ⊂ A(x, q) ⊂ (α1, β1), then Aα1,β1 ⊆ Aα2,β2 and so Aα2,β2 ∩ Aα1,β1 = Aα1,β1 and
as Aα1,β1 is a subgroup in G, so Aα2,β2 ∩ Aα1,β1 will be a subgroup in G.

(3) If (α1, β1) = (α2, β2), then Aα1,β1 = Aα2,β2 and then Aα1,β1 ∩ Aα2,β2 will be a subgroup
in G.

Corollary 3.5. Let A = (µA, νA) ∈ QIFSN(G) and {αi, βi}i∈I ∈ [0, 1]. If Aαi,βi
are subgroups

in G, then ∩Aαi,βi
will be a subgroup in G.

Proposition 3.6. Let A = (µA, νA) ∈ QIFSN(G) and αi, βi ∈ [0, 1] for i = 1, 2. If Aα1,β1 and
Aα2,β2 are two subgroups in G, then Aα1,β1 ∪ Aα2,β2 will be a subgroup in G.

Proof. Let A(eG, q) ⊇ (α1, β1) and A(eG, q) ⊇ (α2, β2) and x ∈ G, q ∈ Q. Then
(1) If (α1, β1) ⊂ A(x, q) ⊂ (α2, β2), then Aα2,β2 ⊆ Aα1,β1 and so Aα1,β1 ∪ Aα2,β2 = Aα1,β1 and

as Aα1,β1 is a subgroup in G, so Aα1,β1 ∪ Aα2,β2 will be a subgroup in G.

(2) If (α2, β2) ⊂ A(x, q) ⊂ (α1, β1), then Aα1,β1 ⊆ Aα2,β2 and so Aα2,β2 ∪ Aα1,β1 = Aα2,β2 and
as Aα2,β2 is a subgroup in G, so Aα2,β2 ∪ Aα1,β1 will be a subgroup in G.

(3) If (α1, β1) = (α2, β2), then Aα1,β1 = Aα2,β2 and then Aα1,β1 ∪ Aα2,β2 will be a subgroup
in G.

Corollary 3.7. Let A = (µA, νA) ∈ QIFSN(G) and {αi, βi}i∈I ∈ [0, 1]. If Aαi,βi
are subgroups

in G, then ∪Aαi,βi
will be a subgroup in G.

Proposition 3.8. Let T,C be idempotent norms. Then any subgroup H of a group G can be
realized as a level subgroup of A = (µA, νA) ∈ QIFSN(G).

Proof. Let A = (µA, νA) ∈ IFS(G×Q) defined by

A(x, q) = (µA(x, q), νA(x, q)) =

{
(α, 0) if x ∈ H and q ∈ Q and 0 < α < 1

(0, β) if x /∈ H and q ∈ Q and 0 < β < 1.

We show that A = (µA, νA) ∈ QIFSN(G).
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Let x, y ∈ G and q ∈ Q and now we consider the following conditions.
(1) If x, y ∈ H, then as H is a subgroup of G so xy−1 ∈ H. Thus µA(x, q) = µA(y, q)

= µA(xy
−1, q) = α and νA(x, q) = νA(y, q) = νA(xy

−1, q) = 0. Then

µA(xy
−1, q) = α ≥ α = T (α, α) = T (µA(x, q), µA(x, q))

and
νA(xy

−1, q) = 0 ≤ 0 = C(0, 0) = C(νA(x, q), νA(x, q)),

and from Proposition 2.17 we get that A = (µA, νA) ∈ QIFSN(G).

(2) If x ∈ H and y /∈ H, then xy−1 /∈ H and then µA(x, q) = α and µA(y, q) = µA(xy
−1, q) = 0

and νA(x, q) = 0 and νA(y, q) = νA(xy
−1, q) = β. Thus

µA(xy
−1, q) = 0 ≥ 0 = T (α, 0) = T (µA(x, q), µA(y, q))

and
νA(xy

−1, q) = β ≤ β = C(0, β) = C(νA(x, q), νA(y, q)),

and from Proposition 2.17 we obtain that A = (µA, νA) ∈ QIFSN(G).

(3) If x, y /∈ H, then µA(x, q) = µA(y, q) = 0 and νA(x, q) = νA(y, q) = β, then xy−1 may or
may not belong to H.

• If xy−1 ∈ H, then

µA(xy
−1, q) = α ≥ 0 = T (0, 0) = T (µA(x, q), µA(y, q))

and
νA(xy

−1, q) = 0 ≤ β = C(β, β) = C(νA(x, q), νA(y, q))

thus as Proposition 2.17 we get A = (µA, νA) ∈ QIFSN(G).

• If xy−1 /∈ H, then

µA(xy
−1, q) = 0 ≥ 0 = T (0, 0) = T (µA(x, q), µA(y, q))

and
νA(xy

−1, q) = β ≤ β = C(β, β) = C(νA(x, q), νA(y, q))

as Proposition 2.17 we will have that A = (µA, νA) ∈ QIFSN(G).

Thus in all the cases A = (µA, νA) ∈ QIFSN(G).

Definition 3.9. We say that A = (µA, νA) ∈ QIFSN(G) is a normal if µA(xyx
−1, q) = µA(y, q)

and νA(xyx
−1, q) = νA(y, q) for all x, y ∈ G and q ∈ Q. We denote by NQIFSN(G) the

set of all normal Q-intuitionistic fuzzy subgroups of G with respect to norms (t-norm T and
t-conorm C).

Proposition 3.10. If A = (µA, νA) ∈ NQIFSN(G), then Aα,β is a normal subgroup of G for
all α, β ∈ [0, 1] and A(eG, q) ⊇ (α, β).

Proof. Let A = (µA, νA) ∈ NQIFSN(G) then from Proposition 3.1 we will have that Aα,β is
a subgroup of G. Now let x ∈ Aα,β and y ∈ G and q ∈ Q then µA(x, q) ≥ α and νA(x, q) ≤ β.

Thus
µA(yxy

−1, q) = µA(x, q) ≥ α
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and
νA(yxy

−1, q) = νA(x, q) ≤ β

and then yxy−1 ∈ Aα,β and thus Aα,β will be a normal subgroup of G.

Definition 3.11. Let A = (µA, νA) ∈ QIFSN(G) and α, β ∈ [0, 1 − sup{A(x, q) : x ∈ G,

∅X(x) = (0, 1) ⊂ A(x, q) ⊂ UX(x) = (1, 0)}]. Then

TA
(α,β) = (TA

α , T
A
β ) = (µA, νA) + (α, β) = (µA + α, νA + β) : G×Q → [0, 1]

is called a translation of A if

TA
(α,β)(x, q) = (µA(x, q) + α, νA(x, q) + β)

for all x ∈ G.

Also we say that TA
(α,β) is normal if TA

(α,β)(xyx
−1, q) = TA

(α,β)(y, q) for all x, y ∈ G.

Proposition 3.12. Let A = (µA, νA) ∈ QIFSN(G) and TA
(α,β) be a translation of A. Then:

(1) TA
(α,β)(x

−1, q) = TA
(α,β)(x, q) for all x ∈ G and q ∈ Q and α, β ∈ [0, 1].

(2) If T,C are idempotent norms, then TA
(α,β)(eG, q) ⊇ TA

(α,β)(x, q) for all x ∈ G and q ∈ Q and
α, β ∈ [0, 1].

Proof. Let x ∈ G and q ∈ Q and α ∈ [0, 1]. Then
(1)

TA
α (x, q) = µA(x, q) + α

= µA((x
−1)−1, q) + α

≥ µA(x
−1, q) + α

= TA
α (x

−1, q)

= µA(x
−1, q) + α

≥ µA(x, q) + α

= TA
α (x, q)

thus TA
α (x

−1, q) = TA
α (x, q). Also

TA
β (x, q) = νA(x, q) + β

= νA((x
−1)−1, q) + β

≤ νA(x
−1, q) + β

= TA
β (x

−1, q)

= νA(x
−1, q) + β

≤ νA(x, q) + β

= TA
β (x, q),

then TA
β (x

−1, q) = TA
β (x, q).

Therefore

TA
(α,β)(x

−1, q) = (TA
α (x

−1, q), TA
β (x

−1, q)) = (TA
α (x, q), T

A
β (x, q)) = TA

(α,β)(x, q).
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(2) TA
α (eG, q) = µA(eG, q) + α

= µA(xx
−1, q) + α

≥ T (µA(x, q), µA(x
−1, q)) + α

≥ T (µA(x, q), µA(x, q)) + α

= µA(x, q) + α

= TA
α (x, q)

so TA
α (eG, q) ≥ TA

α (x, q). Also

TA
β (eG, q) = νA(eG, q) + β

= νA(xx
−1, q) + β

≤ C(νA(x, q), νA(x
−1, q)) + β

≤ C(νA(x, q), νA(x, q)) + β

= νA(x, q) + β

= TA
β (x, q)

so TA
β (eG, q) ≤ TA

β (x, q). Thus

TA
(α,β)(eG, q) = (TA

α (eG, q), T
A
β (eG, q)) ⊇ (TA

α (x, q), T
A
β (x, q)) = TA

(α,β)(x, q).

Proposition 3.13. Let A = (µA, νA) ∈ QIFSN(G) and TA
(α,β) be a translation of A. If T,C

are idempotent norms and TA
(α,β)(xy

−1, q) = TA
(α,β)(eG, q), then TA

(α,β)(x, q) = TA
(α,β)(y, q) for all

x, y ∈ G and q ∈ Q and α, β ∈ [0, 1].

Proof. Let x, y ∈ G and q ∈ Q and α, β ∈ [0, 1]. Then

TA
α (eG, q) = µA(x, q) + α

= µA(xy
−1y, q) + α

≥ T (µA(xy
−1, q), µA(y, q)) + α

= T (µA(xy
−1, q) + α, µA(y, q) + α)

= T (TA
α (xy

−1, q), TA
α (y, q))

= T (TA
α (eG, q), T

A
α (y, q))

≥ T (TA
α (y, q), T

A
α (y, q))

= TA
α (y, q)

= µA(y, q) + α

= µA(yx
−1x, q) + α

≥ T (µA(yx
−1, q), µA(x, q)) + α

= T (µA(yx
−1, q) + α, µA(x, q) + α)

= T (TA
α (yx

−1, q), TA
α (x, q))

= T (TA
α ((xy

−1)−1, q), TA
α (x, q))
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= T (T µ
α (xy

−1, q), T µ
α (x, q))

= T (T µ
α (eG, q), T

µ
α (x, q))

≥ T (TA
α (x, q), T

A
α (x, q))

= TA
α (x, q)

so TA
α (eG, q) ≥ TA

α (x, q). Also

TA
β (eG, q) = νA(eG, q) + β

= νA(xx
−1, q) + β

≤ C(νA(x, q), νA(x
−1, q)) + β

≤ C(νA(x, q), νA(x, q)) + β

= νA(x, q) + β

= TA
β (x, q)

and thus TA
α (x, q) = TA

α (y, q).

Also

TA
β (eG, q) = µA(x, q) + β

= µA(xy
−1y, q) + β

≤ C(νA(xy
−1, q), νA(y, q)) + β

= C(νA(xy
−1, q) + β, νA(y, q) + β)

= C(TA
β (xy

−1, q), TA
β (y, q))

= C(TA
β (eG, q), T

A
β (y, q))

≤ C(TA
β (y, q), T

A
β (y, q))

= TA
β (y, q)

= νA(y, q) + β

= νA(yx
−1x, q) + β

≤ C(νA(yx
−1, q), νA(x, q)) + β

= C(νA(yx
−1, q) + β, νA(x, q) + β)

= C(TA
β (yx

−1, q), TA
β (x, q))

= C(TA
β ((xy

−1)−1, q), TA
β (x, q))

= C(T µ
β (xy

−1, q), T µ
β (x, q))

= C(T µ
β (eG, q), T

µ
β (x, q))

≤ C(TA
β (x, q), T

A
β (x, q)),

= TA
β (x, q)

then TA
β (x, q) = TA

β (y, q). Therefore

TA
(α,β)(x, q) = (TA

α (x, q), T
A
β (x, q)) = (TA

α (y, q), T
A
β (y, q)) = TA

(α,β)(y, q).
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Proposition 3.14. Let A = (µA, νA) ∈ QIFSN(G) and TA
(α,β) be a translation of A. Then

TA
(α,β) ∈ QIFSN(G) for all α, β ∈ [0, 1].

Proof. Let x, y ∈ G and q ∈ Q and α, β ∈ [0, 1]. Then
(1)

TA
α (xy, q) = µA(xy, q) + α

≥ T (µA(x, q), µA(y, q)) + α

= T (µA(x, q) + α, µA(y, q) + α)

= T (TA
α (x, q), T

A
α (y, q)),

thus TA
α (xy, q) ≥ T (TA

α (x, q), T
A
α (y, q)).

(2)
TA
α (x

−1, q) = µA(x
−1, q) + α ≥ µA(x, q) + α = TA

α (x, q).

(3)
TA
β (xy, q) = νA(xy, q) + β

≤ C(νA(x, q), νA(y, q)) + β

= C(νA(x, q) + β, νA(y, q) + β)

= C(TA
β (x, q), T

A
β (y, q)),

then TA
β (xy, q) ≤ C(TA

β (x, q), T
A
β (y, q)).

(4)
TA
β (x

−1, q) = νA(x
−1, q) + β ≤ νA(x, q) + β = TA

β (x, q).

Then from (1)–(4) we get that TA
(α,β) = (TA

α , T
A
β ) ∈ QIFSN(G) for all α, β ∈ [0, 1].

Proposition 3.15. Let A = (µA, νA) ∈ QIFSN(G) and TA
(α,β) be a translation of A. If T,C are

idempotent norms, then H = {x ∈ G : TA
(α,β)(x, q) = TA

(α,β)(eG, q)} is a subgroup of G for all
α, β ∈ [0, 1].

Proof. Let x, y ∈ H and q ∈ Q and α, β ∈ [0, 1]. Then TA
(α,β)(x, q) = TA

(α,β)(y, q) = TA
(α,β)(eG, q).

Now

TA
α (xy

−1, q) ≥ T (TA
α (x, q), T

A
α (y

−1, q))

≥ T (TA
α (x, q), T

A
α (y, q))

= T (TA
α (eG, q), T

A
α (eG, q))

= TA
α (eG, q)

= TA
α ((xy

−1)(xy−1)−1, q)

≥ T (TA
α (xy

−1, q), TA
α ((xy

−1)−1, q))

≥ T (TA
α (xy

−1, q), TA
α (xy

−1, q))

= TA
α (xy

−1, q),

therefore TA
α (xy

−1, q) = TA
α (eG, q).
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Also
TA
β (xy

−1, q) ≤ C(TA
β (x, q), T

A
β (y

−1, q))

≤ C(TA
α (x, q), T

A
α (y, q))

= C(TA
β (eG, q), T

A
β (eG, q))

= TA
β (eG, q)

= TA
β ((xy

−1)(xy−1)−1, q)

≤ C(TA
β (xy

−1, q), TA
β ((xy

−1)−1, q))

≤ C(TA
β (xy

−1, q), TA
β (xy

−1, q))

= TA
β (xy

−1, q),

thus TA
β (xy

−1, q) = TA
β (eG, q).

Now as TA
(α,β)(xy

−1, q) = (TA
α (xy

−1, q), TA
β (xy

−1, q)) = TA
(α,β)(eG, q) so xy−1 ∈ H and

Proposition 2.3 gives us that H = {x ∈ G : TA
(α,β)(x, q) = TA

(α,β)(eG, q)} will be a subgroup of G
for all α, β ∈ [0, 1].

Proposition 3.16. Let A = (µA, νA) ∈ QIFSN(G) and TA
(α,β) be a translation of A. If

TA
(α,β)(xy

−1, q) = (1, 0), then TA
(α,β)(x, q) = TA

(α,β)(y, q) for all x, y ∈ G and q ∈ Q and
α, β ∈ [0, 1].

Proof. Let x, y ∈ G and q ∈ Q and α, β ∈ [0, 1]. Then

TA
α (x, q) = TA

α (xy
−1y, q)

≥ T (TA
α (xy

−1, q), TA
α (y, q))

= T (1, TA
α (y, q))

= TA
α (y, q)

= TA
α (y

−1, q)

= TA
α (x

−1xy−1, q)

≥ T (TA
α (x

−1, q), TA
α (xy

−1, q))

≥ T (TA
α (x, q), T

A
α (xy

−1, q))

= T (TA
α (x, q), 1)

= TA
α (x, q).

Thus TA
α (x, q) = TA

α (y, q).

Also
TA
β (x, q) = TA

β (xy
−1y, q)

≤ C(TA
β (xy

−1, q), TA
β (y, q))

= C(0, TA
β (y, q))

= TA
β (y, q)

= TA
β (y

−1, q)

= TA
β (x

−1xy−1, q)
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≤ C(TA
β (x

−1, q), TA
β (xy

−1, q))

≤ C(TA
β (x, q), T

A
β (xy

−1, q))

= C(TA
α (x, q), 0)

= TA
β (x, q).

Then TA
β (x, q) = TA

β (y, q). Therefore

TA
(α,β)(x, q) = (TA

α (x, q), T
A
β (x, q)) = (TA

α (y, q), T
A
β (y, q)) = TA

(α,β)(y, q).

Definition 3.17. Let f : G → H be a group homomorphism such that A = (µA, νA) ∈
QIFSN(G) : G × Q → [0, 1] and B = (µB, νB) ∈ QIFSN(H) : H × Q → [0, 1]. Let
TA
(α,β) = (TA

α , T
A
β ) be a translation of A and TB

(α,β) = (TB
α , TB

β ) be a translation of B. Define a
fuzzy image by

f(TA
(α,β))(y, q)

= (f(TA
α (y, q), f(T

A
β ))(y, q))

=

(sup{TA
α (x, q) | x ∈ G, f(x) = y}, inf{TA

β (x, q) | x ∈ G, f(x) = y}) if f−1(y) ̸= ∅,

(0, 1) if f−1(y) = ∅.

Also f−1(TB
(α,β))(x, q) = (f−1(TB

α )(x, q), f−1(TB
β )(x, q)) = (TB

α (f(x), q), TB
β (f(x), q)).

Proposition 3.18. Let f be an epimorphism from group G into group H. If A = (µA, νA) ∈
QIFSN(G) and TA

(α,β) is a translation of A, then f(TA
(α,β)) ∈ QIFSN(H).

Proof. Let h1, h2 ∈ H and q ∈ Q. Then
(1)
f(TA

α )(h1h2, q) = sup{TA
α (g1g2, q) | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}

≥ sup{T (TA
α (g1, q), T

A
α (g2, q)) | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}

= T (sup{TA
α (g1, q) | g1∈G, f(g1)=h1}, sup{TA

α (g2, q) | g2∈G, f(g2)=h2})
= T (f(TA

α )(h1, q), f(T
A
α )(h2, q)),

thus f(TA
α )(h1h2, q) ≥ T (f(TA

α )(h1, q), f(T
A
α )(h2, q)).

(2)
f(TA

α )(h
−1
1 , q) = sup{TA

α (g
−1
1 , q) | g1 ∈ G, f(g−1

1 ) = h−1
1 }

≥ sup{TA
α (g1, q) | g1 ∈ G, f(g1, q) = h1} = f(TA

α )(h1, q)

so f(TA
α )(h

−1
1 , q) ≥ f(TA

α )(h1, q).

(3)

f(TA
β )(h1h2, q) = inf{TA

β (g1g2, q) | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}
≤ inf{C(TA

β (g1, q), T
A
β (g2, q)) | g1, g2 ∈ G, f(g1) = h1, f(g2) = h2}

= C(inf{TA
β (g1, q) | g1∈G, f(g1)=h1}, inf{TA

β (g2, q) | g2∈G, f(g2)=h2})
= C(f(TA

β )(h1, q), f(T
A
β )(h2, q)),

then f(TA
β )(h1h2, q) ≤ C(f(TA

β )(h1, q), f(T
A
β )(h2, q)).
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(4)
f(TA

β )(h
−1
1 , q) = inf{TA

β (g
−1
1 , q) | g1 ∈ G, f(g−1

1 ) = h−1
1 }

≤ inf{TA
β (g1, q) | g1 ∈ G, f(g1, q) = h1} = f(TA

β )(h1, q),

then f(TA
β )(h

−1
1 , q) ≤ f(TA

β )(h1, q).

Therefore (1)–(4) give us that

f(TA
(α,β)) = (f(TA

α , f(T
A
β )) ∈ QIFSN(H).

Proposition 3.19. Let f be a homomorphism from group G into group H. If B = (µB, νB) ∈
QIFSN(H) and TB

(α,β) = (TB
α , TB

β ) is a translation of B, then f−1(TB
(α,β)) ∈ QIFSN(G).

Proof. Let g1, g2 ∈ G and q ∈ Q. Then

f−1(TB
α )(g1g2, q) = TB

α (f(g1g2), q)

= TB
α (f(g1)f(g2), q)

≥ T (TB
α (f(g1), q), T

B
α (f(g2), q))

= T (f−1(TB
α )(g1, q), f

−1(TB
α )(g2, q)),

then f−1(TB
α )(g1g2, q) ≥ T (f−1(TB

α )(g1, q), f
−1(TB

α )(g2, q)).

Also

f−1(TB
β )(g1g2, q) = TB

β (f(g1g2), q)

= TB
β (f(g1)f(g2), q)

≤ C(TB
β (f(g1), q), T

B
β (f(g2), q))

= C(f−1(TB
β )(g1, q), f

−1(TB
β )(g2, q)),

then f−1(TB
β )(g1g2, q) ≤ C(f−1(TB

β )(g1, q), f
−1(TB

β )(g2, q)).

Let g ∈ G and q ∈ Q. Then

f−1(TB
α )(g−1, q) = TB

α (f(g−1), q) = TB
α (f(g)−1, q) ≥ TB

α (f(g), q) = f−1(TB
α )(g, q)

and

f−1(TB
β )(g−1, q) = TB

β (f(g−1), q) = TB
β (f(g)−1, q) ≤ TB

β (f(g), q) = f−1(TB
β )(g, q).

Then f−1(TB
(α,β)) = (f−1(TB

α ), f−1(TB
β )) ∈ QIFSN(G).

Proposition 3.20. Let f be an anti homomorphism from group G into group H. If B = (µB, νB) ∈
QIFSN(H) and TB

(α,β) = (TB
α , TB

β ) is a translation of B, then f−1(TB
(α,β)) ∈ QIFSN(G).

Proof. Let g1, g2 ∈ G and q ∈ Q. Then

f−1(TB
α )(g1g2, q) = TB

α (f(g1g2), q)

= TB
α (f(g2)f(g1), q)

≥ T (TB
α (f(g2), q), T

B
α (f(g1), q))

= T (TB
α (f(g1), q), T

B
α (f(g2), q))

= T (f−1(TB
α )(g1, q), f

−1(TB
α )(g2, q)),

then f−1(TB
α )(g1g2, q) ≥ T (f−1(TB

α )(g1, q), f
−1(TB

α )(g2, q)).
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Also
f−1(TB

β )(g1g2, q) = TB
β (f(g1g2), q)

= TB
β (f(g2)f(g1), q)

≤ C(TB
β (f(g2), q), T

B
β (f(g1), q))

= C(TB
β (f(g1), q), T

B
β (f(g2), q))

= C(f−1(TB
β )(g1, q), f

−1(TB
β )(g2, q)),

then f−1(TB
β )(g1g2, q) ≤ C(f−1(TB

β )(g1, q), f
−1(TB

β )(g2, q)).

Let g ∈ G and q ∈ Q. Then

f−1(TB
α )(g−1, q) = TB

α (f(g−1), q) = TB
α (f(g)−1, q) ≥ TB

α (f(g), q) = f−1(TB
α )(g, q)

and

f−1(TB
β )(g−1, q) = TB

β (f(g−1), q) = TB
β (f(g)−1, q) ≤ TB

β (f(g), q) = f−1(TB
β )(g, q).

Then f−1(TB
(α,β)) = (f−1(TB

α ), f−1(TB
β )) ∈ QIFSN(G).

Proposition 3.21. Let f be an epimorphism from group G into group H. If A = (µA, νA) ∈
NQIFSN(G) and TA

(α,β) is a translation of A, then f(TA
(α,β)) ∈ NQIFSN(H).

Proof. As Proposition 3.18 we have f(TA
(α,β)) ∈ QIFSN(H). Let x, y ∈ H and q ∈ Q. Since f

is a surjection, f(u) = x for some u ∈ G, then

f(TA
α )(xyx

−1, q) = sup{TA
α (w, q) | w ∈ G, f(w) = xyx−1}

= sup{TA
α (u

−1wu, q) | w ∈ G, f(u−1wu) = y}
= sup{TA

α (w, q) | w ∈ G, f(w) = y}
= f(TA

α )(y, q).

Then f(TA
α )(xyx

−1, q) = f(TA
α )(y, q).

Also
f(TA

β )(xyx
−1, q) = inf{TA

β (w, q) | w ∈ G, f(w) = xyx−1}
= inf{TA

β (u
−1wu, q) | w ∈ G, f(u−1wu) = y}

= inf{TA
β (w, q) | w ∈ G, f(w) = y}

= f(TA
β )(y, q),

thus f(TA
β )(xyx

−1, q) = f(TA
β )(y, q). Therefore

f(TA
(α,β))(xyx

−1, q) = (f(TA
α )(xyx

−1, q), f(TA
β )(xyx

−1, q))

= (f(TA
α )(y, q), f(T

A
β )(y, q))

= f(TA
(α,β))(y, q)

and then f(TA
(α,β)) ∈ NQIFSN(H).
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Proposition 3.22. Let f be a homomorphism from group G into group H. If B = (µB, νB) ∈
NQIFSN(H) and TB

(α,β) = (TB
α , TB

β ) is a translation of B, then f−1(TB
(α,β)) ∈ NQIFSN(G).

Proof. Using Proposition 3.19 implies that f−1(TB
(α,β)) ∈ QIFSN(G). Now for any x, y ∈ G

and q ∈ Q we obtain

f−1(TB
α )(xyx−1, q) = TB

α (f(xyx−1), q)

= TB
α (f(x)f(y)f(x−1), q)

= TB
α (f(x)f(y)f−1(x), q)

= TB
α (f(y), q)

= f−1(TB
α )(y, q)

thus f−1(TB
α )(xyx−1, q) = f−1(TB

α )(y, q). Also

f−1(TB
β )(xyx−1, q) = TB

β (f(xyx−1), q)

= TB
β (f(x)f(y)f(x−1), q)

= TB
β (f(x)f(y)f−1(x), q)

= TB
β (f(y), q)

= f−1(TB
β )(y, q)

so f−1(TB
β )(xyx−1, q) = f−1(TB

β )(y, q). Now

f−1(TB
(α,β))(xyx

−1, q) = (f−1(TB
α )(xyx−1, q), f−1(TB

β )(xyx−1, q))

= (f−1(TB
α )(y, q), f−1(TB

β )(y, q))

= f−1(TB
(α,β))(y, q)

thus f−1(TB
(α,β)) ∈ NQIFSN(G).

4 Conclusion and an open problem

In this study, the idea of normality and translation of Q-intuitionistic fuzzy subgroups with respect
to norms (t-norm T and t-conorm C) are introduced and given some interesting results of them.
Now one can investigate Q-intuitionistic fuzzy subrings with respect to norms (t-norm T and
t-conorm C) and obtain some results about them as we did for Q-intuitionistic fuzzy subgroups
and this can be an open problem.
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