
Intuitionistic fuzzy n-ary systems

WiesÃlaw A. Dudek
Institute of Mathematics, Technical University,
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Abstract

We introduce the basic concepts on in-
tuitionistic fuzzy subalgebras on n-ary
groupoids, i.e., on algebras containing
one fundamental n-ary operation. We
describe some similarities and differ-
ences between the n-ary and binary case.
In the case of n-ary quasigroups and
groups we suggest the common method
of investigations based on some methods
used in the universal algebra.
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1 Introduction

After the introduction of the concept of fuzzy
sets by Zadeh, several researches were conducted
on the generalizations of the notion of fuzzy set
and application to many algebraic structures such
as: groups, quasigroups, rings, semirings, BCK-
algebras et cetera. All these applications are con-
nected with binary operations.

But in many branches of mathematics (also in ap-
plications) one can find so-called n-ary groupoids,
i.e., sets with one n-ary operation f : Gn → G,
where n ≥ 2 is fixed. Such groupoid are called
also polyadic or n-ary systems and are investi-
gated by many authors, for example by Post [15]
and Belousov [2]. Some special types of n-ary
groupoids are used by Belousov in the theory of
nets [2]. Mullen and Shcherbakov studied codes
based on n-ary quasigroups [13]. GrzymaÃla-Busse

applied polyadic groupoids to the theory of au-
tomata [10]. Applications in modern physics are
described by Kerner [11]. In such applications
some role plays (intuitionistic) fuzzy subsets.

The main role in the theory of n-ary systems plays
n-ary groups and quasigroups, which are a natu-
ral generalization of binary (n = 2) groups and
quasigroups. It is clear that many classical re-
sults can be extended to the n-ary case. But for
n > 2 we obtain the large set of theorems which
are not true for n = 2. Moreover, the part of
obtained results is true only for ternary (n = 3)
groupoids.

2 Preliminaries

According to the general convention used in
the theory of n-ary systems the sequence of el-
ements xi, . . . , xj will be denoted by xj

i (for
j < i it is empty symbol). This means that
f(x1, x2, . . . , xn) will be written as f(xn

1 ).

An n-ary groupoid (G, f) is called unipotent if it
contains an element θ such that f(x, x, . . . , x) = θ
for all x ∈ G. Such groupoid is obviously an n-
ary semigroup, i.e., for all i, j ∈ {1, 2, . . . , n} and
x2n−1

1 ∈ G it satisfies the n-ary associativity

f(xi−1
1 , f(xn+i−1

i ), x2n−1
n+i ) =

f(xj−1
1 , f(xn+j−1

j ), x2n−1
n+j ),

which is a natural generalization on the classical
associativity.

An n-ary quasigroup is defined as an n-ary gro-
upoid (G, f) in which for all 1 ≤ i ≤ n and all
xn

0 ∈ G there exists a uniquely determined ele-



ment zi ∈ G such that

f(xi−1
1 , zi, x

n
i+1) = x0 . (1)

An n-ary quasigroup (G, f) in which the opera-
tion f is associative in the above sense is called
an n-ary group. For n = 2 we obtain an arbitrary
group.

It is worthwhile to note that, under the assump-
tion of the associativity of the operation f, it suf-
fices only to postulate the existence of a solution
of (1) at the place i = 1 and i = n or at one place
i other than 1 and n. Then one can prove unique-
ness of the solution of (1) for all 1 ≤ i ≤ n (cf.
[15], p.21317).

For any fixed n, the class of all n-ary groups is a
variety. Very useful systems of identities defining
this variety one can find in [9] and [7].

3 Intuitionistic fuzzy subgroupoids

Now generalize some classical results obtained
for binary algebras such as BCC-algebras [8] and
groups [16] to the case of n-ary groupoids.

Definition 3.1. A fuzzy set µ defined on G is
called a fuzzy subgroupoid of an n-ary groupoid
(G, f) if

µ(f(xn
1 )) ≥ min{µ(x1), . . . , µ(xn)}

for all xn
1 ∈ G.

Lemma 3.2. If µ is a fuzzy subgroupoid of a
unipotent groupoid (G, f), then µ(θ) ≥ µ(x) for
all x ∈ G and θ = f(x, x, . . . , x).

Analogously as in the binary case

Theorem 3.3. A fuzzy set µ of an n-ary groupoid
(G, f) is a fuzzy subgroupoid if and only if for
every t ∈ [0, 1], the level

L(µ, t) = {x ∈ G : µ(x) ≥ t}
is either empty or a subgroupoid of (G, f).

This implies that (similarly as in the binary case)
any subgroupoid of (G, f) can be realized as a
level subgroupoid of some fuzzy subgroupoid µ
defined on G.

The complement of µ, denoted by µ, is the fuzzy
set in G given by µ(x) = 1− µ(x) for all x ∈ G.

An intuitionistic fuzzy set (IFS for short) of a
nonempty set X is defined by Atanassov (cf. [1])
in the following way.

Definition 3.4. An intuitionistic fuzzy set A of
a nonempty set X is an object having the form

A = {(x, µA(x), γA(x)) : x ∈ X},

where µA : X → [0, 1] and γA : X → [0, 1] denote
the degree of membership (namely µA(x)) and the
degree of nonmembership (namely γA(x)) of each
element x ∈ X to the set A, respectively, and
0 ≤ µA(x) + γA(x) ≤ 1 for all x ∈ X.

For the sake of simplicity, we shall use the symbol
A = (µA, γA) for the intuitionistic fuzzy set A =
{(x, µA(x), γA(x)) : x ∈ X}.
Definition 3.5. An IFS A = (µA, γA) of an n-
ary groupoid (G, f) is an intuitionistic fuzzy sub-
groupoid (IFS subgroupoid for short) if

µA( f(xn
1 ) ) ≥ min{µA(x1), . . . , µA(xn)}

γA( f(xn
1 ) ) ≤ max{γA(x1), . . . , γA(xn)}

hold for all xn
1 ∈ G.

It is not difficult to see that the following state-
ments are true.

Proposition 3.6. If A = (µA, γA) is an IFS
intuitionistic fuzzy subgroupoid of (G, f), then so
is A = (µA, µA) and ♦A = (γA, γA).

Proposition 3.7. If A = (µA, γA) is an IFS
subgroupoid of a unipotent n-ary groupoid (G, f),
then µA(θ) ≥ µA(x) and γA(θ) ≤ γA(x) for all
x ∈ G and θ = f(x, . . . , x).

Proposition 3.8. If A = (µA, γA) is an IFS
subgroupoid of a unipotent n-ary groupoid (G, f),
then

Gµ = {x ∈ G : µA(x) = µA(θ)}
Gγ = {x ∈ G : γA(x) = γA(θ)}

are subgroupoids of (G, f).

In some n-ary groupoids there exists an element
e such that f(e, . . . , e, x, e, . . . , e) = x holds for
all x ∈ G, where x is at the place k. Such ele-
ment (if it exists) is called a k-identity. There are
n-ary groupoids containing two or three such ele-
ments. Moreover, there are groupoids containing
only such elements. For example, in any n-ary



group derived from a commutative group (G,+),
i.e., in an n-ary groupoid (G, f) with the oper-
ation f(xn

1 ) = x1 + x2 + . . . + xn, all elements
satisfying the identity nx = x are k-identities (for
every k). But the set of all k-identities is not an
n-ary subgroupoid in general (cf. [6]).

Proposition 3.9. If A = (µA, γA) is an IFS
subgroupoid of an n-ary groupoid (G, f) with a k-
identity e, then µA(e) ≥ µA(x) and γA(e) ≤ γA(x)
for all x ∈ G and

Gµ = {x ∈ G : µA(x) = µA(e)}
Gγ = {x ∈ G : γA(x) = γA(e)}

are subgroupoids of (G, f).

Obviously µA(e1) = µA(e2) and γA(e1) = γA(e2)
for any k-identity e1 and t-identity e2. This
means that in n-ary groupoids containing only k-
identities all IFS subgroupoids are constant.

For any α ∈ [0, 1] and fuzzy set µ of G, the set

U(µ; α) = {x ∈ G : µ(x) ≥ α}
L(µ;α) = {x ∈ G : µ(x) ≤ α}

is called an upper (respectively lower ) α-level cut
of µ.

Theorem 3.10. If A = (µA, γA) is an IFS sub-
groupoid of an n-ary groupoid (G, f), then the
sets U(µA; α) and L(γA; α) are subgroupoids of
(G, f) for every α ∈ Im(µA) ∩ Im(γA).

Theorem 3.11. If A = (µA, γA) is an IFS in
an n-ary groupoid (G, f) such that the nonempty
sets U(µA; α) and L(γA; α) are subgroupoids of
(G, f) for all α ∈ [0, 1]. Then A = (µA, γA) is
an IFS subgroupoid of (G, f).

The proof of the above two theorems is analogous
to the proof of the corresponding theorems for
binary groupoids (cf. [12]).

Also it is not difficult to verify that the following
two statements are true.

Theorem 3.12. Let B be a nonempty subset of
an n-ary groupoid (G, f) and let A = (µA, γA) be
an intuitionistic fuzzy set on G defined by

µA(x) =

{
s0 if x ∈ B,
s1 otherwise,

and

γA(x) =

{
t0 if x ∈ B,
t1 otherwise,

for all x ∈ G and si, ti ∈ [0, 1], where s0 > s1,
t0 < t1 and si + ti ≤ 1 for i = 0, 1. Then
A = (µA, γA) is an IFS subgroupoid of (G, f) if
and only if B is an n-ary subgroupoid of (G, f).
Moreover, U(µA; s0) = B = L(γA; t0).

Corollary 3.13. Let χA be the characteris-
tic function of an n-ary subgroupoid of an n-ary
groupoid (G, f). Then the intuitionistic fuzzy set
A∼ = (χA, χA) is an IFS subgroupoid of (G, f).

A fuzzy set µ defined on G is said to be normal if
there exists x ∈ G such that µ(x) = 1. A simple
example of normal fuzzy sets are characteristic
functions of subsets of G.

If an n-ary groupoid (G, f) is unipotent, then a
fuzzy set µ defined on G is normal if and only if
µ(θ) = 1, where θ = f(x, x, . . . , x).

The set N (G, f) of all normal fuzzy subgroupoids
on (G, f) is partially ordered by the relation

µ v ρ ⇐⇒ µ(x) ≤ ρ(x)

for all x ∈ G.

Moreover, similarly as in the binary case, for any
fuzzy subgroupoid µ of (G, f) there exists ρ ∈
N (G, f) such that µ v ρ. If an n-ar groupoid
(G, f) is unipotent, then the maximal element of
(N (G, f),v) is either constant or characteristic
function of some subset of G.

4 Fuzzification of quasigroups

A groupoid (G, · ) is called a quasigroup if each
of the equations ax = b, xa = b has a unique
solution for any a, b ∈ G.

A fuzzification of quasigroups (binary and n-ary)
is more complicated as a fuzzification of arbitrary
groups (cf. for example [16]). The problem lies
in the fact that a subset of a quasigroup (G, ·)
closed with respect to the quasigroup operation
in general is not a quasigroup with respect to this
operation.

A fuzzification of quasigroups (cf. [4, 12]) is based
on the second equivalent definition of a quasi-
group. Namely, (cf. [14]) a quasigroup (G, ·) may



be defined as an algebra (G, ·, \, /) with the three
binary operations · , \, / satisfying the identities

(xy)/y = x, x\(xy) = y,
(x/y)y = x, x(x\y) = y.

The quasigroup (G, ·, \, /) corresponds to quasi-
group (G, ·), where

x\y = z ⇐⇒ xz = y and x/y = z ⇐⇒ zy = x.

A quasigroup is called unipotent if xx = yy for
all x, y ∈ G. These quasigroups are connected
with Latin squares which have one fixed element
in the diagonal. Such quasigroups may be defined
as quasigroups (G, ·) with the special element θ
satisfying the identity xx = θ. In this case also
x\θ = x and θ/x = x for all x ∈ G.

A nonempty subset S of a quasigroup (G, ·, \, /) is
called a subquasigroup if it is closed under these
three operations · , \, / , i.e., if x ∗ y ∈ S for all
∗ ∈ {·, \, /} and x, y ∈ S.

Thus a fuzzy set µ on a quasigroup (G, · ) is a
fuzzy subquasigroup if µ(x∗y) ≥ min{µ(x), µ(y)}
for all ∗ ∈ {·, \, /} and x, y ∈ S (cf. [4]).

In the case of n-ary quasigroups the situation is
more complicated. According to [2] in any n-ary
quasigroup (G, f) for every s = 1, 2, . . . , n one
can define the s-th inverse n-ary operation f (s)

putting

f (s)(xn
1 ) = y ⇐⇒ f(xs−1

1 , y, xn
s+1) = xs .

Obviously, the operation f (s) is the s-inverse op-
eration for the operation f if and only if

f (s)(xs−1
1 , f(xn

1 ), xn
s+1) = xs

for all xn
1 ∈ G (cf. [2]). Therefore the class of

all n-ary quasigroups may be treated as the vari-
ety of equationally definable algebras with n + 1
fundamental operations f, f (1), . . . , f (n).

A nonempty subset S of G is called a subquasi-
group of (G, f) if it is an n-ary quasigroup with
respect to f. This means that a nonempty sub-
set S of an n-ary quasigroup (G, f) is an n-ary
subquasigroup if and only if it is closed with re-
spect to n + 1 operations f, f (1), . . . , f (n), i.e., if
and only if g(xn

1 ) ∈ G for all xn
1 ∈ G and all

g ∈ F = {f, f (1), f (2), . . . , f (n)} .

Basing on the Definition 3.1 we can define a fuzzy

subquasigroup of an n-ary quasigroup in the fol-
lowing way.

Definition 4.1. A fuzzy set µ defined on G is
called a fuzzy subquasigroup of an n-ary quasi-
group (G, f) if

µ(g(xn
1 )) ≥ min{µ(x1), . . . , µ(xn)}

for all g ∈ F and xn
1 ∈ G.

For such defined fuzzy subquasigroups we can
prove results analogous to the results from the
previous part.

Definition 4.2. An IFS A = (µA, γA) of an
n-ary quasigroup (G, f) is an intuitionistic fuzzy
subquasigroup (IFS subquasigroup for short) if

µA( g(xn
1 ) ) ≥ min{µA(x1), . . . , µA(xn)}

γA( g(xn
1 ) ) ≤ max{γA(x1), . . . , γA(xn)}

hold for all g ∈ F and xn
1 ∈ G.

It is not difficult to see that in an n-ary quasigroup
an IFS subquasigroup is an IFS subgroupoid and
the results of the previous part will be true for n-
ary quasigroup if we replace ”IFS subgroupoid”
by ”IFS subquasigroup”.

Moreover, the following characterization of IFS
subquasigroups is valid.

Lemma 4.3. A = (µA, γA) is an IFS subquasi-
group of an n-ary quasigroup (G, f) if and only if
µA and γA are fuzzy subquasigroups of (G, f).

Proof. Straightforward.

Theorem 4.4. If A = (µA, γA) is an IFS in an
n-ary quasigroup (G, f) such that the nonempty
sets U(µA;α) and L(γA; α) are subquasigroups
of (G, f) for all α ∈ [0, 1]. Then A = (µA, γA) is
an IFS subquasigroup of (G, f).

Proof. Let α ∈ [0, 1]. Assume that U(µA;α) 6=
∅ and L(γA; α) 6= ∅ are subquasigroups of an n-
ary quasigroup (G, f). We must show that A =
(µA, γA) satisfies the Definition 4.2.

Let g ∈ F . If the first condition of the Definition
4.2 is false, then there exist xn

1 ∈ G such that

µA(g(xn
1 )) < min{µA(x1), . . . , µA(xn)}.

Taking

α0 =
1
2
[µA(g(xn

1 )) + min{µA(x1), . . . , µA(xn)}],



we have

µA(g(xn
1 )) < α0 < min{µA(x1), . . . , µA(xn)}.

It follows that xn
1 are in U(µA; α0) but g(xn

1 ) are
not in U(µA; α0), which is a contradiction.

Assume that the second condition of the Defini-
tion 4.2 does not hold. Then

γA(g(xn
1 )) > max{γA(x1), . . . , γA(xn)}

for some xn
1 ∈ G. Let

β0 =
1
2
[γA(g(xn

1 )) + max{γA(x1), . . . , γA(xn)}].

Then

γA(g(xn
1 )) > β0 > max{γA(x1), . . . , γA(xn)}

and so xn
1 ∈ L(γA; β0) but g(xn

1 ) 6∈ L(γA;β0).
This contradiction completes the proof.

Proposition 4.5. If A = (µA, γA) is an IFS
subquasigroup of an n-ary quasigroup (G, f), then

min{µA(g(xn
1 )),4sµA(xi)}

= min{µA(x1), ..., µA(xn)},
max{γA(g(xn

1 )),∇sγA(xi)}
= max{γA(x1), . . . , γA(xn)}

for all i = 1, . . . , n, g ∈ F and xn
1 ∈ G, where

4sµ(xi) = min{ ∧
i6=s

µA(xi)} and

∇sγ(xi) = min{ ∧
i6=s

γA(xi)}.

Proof. Indeed, for g = f we have

min{µA(f(xn
1 )),4sµA(xi)}

≥ min{min{µA(x1), ..., µA(xn)},4sµA(xi)}
= min{µA(x1), ..., µA(xn)}

= min{µA(f (s)(xs−1
1 , f(xn

1 ), xn
s+1)),4sµA(xi)}

≥ min{min{µA(f(xn
1 )),4sµA(xi)},4sµA(xi)}

= min{µA(f(xn
1 )),4sµA(xi)},

which completes the proof in this case. The rest
is analogous.

Theorem 4.6. If A = (µA, γA) is an IFS sub-
quasigroup of (G, f), then

µA(x) = sup{α ∈ [0, 1] : x ∈ U(µA;α)}
and

γA(x) = inf{α ∈ [0, 1] : x ∈ L(γA; α)}

for all x ∈ G.

Proof. Let δ = sup{α ∈ [0, 1] : x ∈ U(µA; α)}
and let ε > 0 be given. Then δ − ε < α for some
α ∈ [0, 1] such that x ∈ U(µA; α). This means
that δ− ε < µA(x) so that δ ≤ µA(x) since ε is
arbitrary.

We now show that µA(x) ≤ δ. If µA(x) = β, then
x ∈ U(µA; β) and so

β ∈ {α ∈ [0, 1] : x ∈ U(µA;α)}.

Hence

µA(x) = β ≤ sup{α ∈ [0, 1] : x ∈ U(µA;α)} = δ.

Therefore

µA(x) = δ = sup{α ∈ [0, 1] : x ∈ U(µA; α)}.

Now let η = inf{α ∈ [0, 1] : x ∈ L(γA; α)}. Then

inf{α ∈ [0, 1] : x ∈ L(γA;α)} < η + ε

for any ε > 0, and so α < η + ε for some α ∈
[0, 1] with x ∈ L(γA; α). Since γA(x) ≤ α and ε
is arbitrary, it follows that γA(x) ≤ η.

To prove γA(x) ≥ η, let γA(x) = ζ. Then x ∈
L(γA; ζ) and thus ζ ∈ {α ∈ [0, 1] : x ∈ L(γA;α)}.
Hence

inf{α ∈ [0, 1] : x ∈ L(γA; α)} ≤ ζ,

i.e., η ≤ ζ = γA(x). Consequently

γA(x) = η = inf{α ∈ [0, 1] : x ∈ L(γA; α)},

which completes the proof.

Theorem 4.7. Let {Hα : α ∈ Λ}, where Λ is a
nonempty subset of [0, 1], be a collection of sub-
quasigroups of (G, f) such that
(a) G =

⋃
α∈Λ

Hα,

(b) α > β ⇐⇒ Hα ⊂ Hβ for all α, β ∈ Λ.

Then an IFS A = (µA, γA) defined by

µA(x) = sup{α ∈ Λ : x ∈ Hα}

and
γA(x) = inf{α ∈ Λ : x ∈ Hα}

for all x ∈ G is an IFS subguasigroup of (G, f).



Proof. According to Theorem 4.4, it is sufficient
to show that the nonempty sets U(µA; α) and
L(γA; β) are subquasigroups of (G, f).

In order to prove that U(µA; α) 6= ∅ is a sub-
quasigroup of G, we consider the following two
cases:

(i) α = sup{δ ∈ Λ : δ < α}
and

(ii) α 6= sup{δ ∈ Λ : δ < α}.
Case (i) implies that

x ∈ U(µA;α) ⇐⇒ (x ∈ Hδ ∀ δ < α)

⇐⇒ x ∈
⋂

δ<α

Hδ,

so that U(µA; α) =
⋂

δ<α
Hδ which is a subquasi-

group of (G, f).

For the case (ii), we claim that

U(µA;α) =
⋃

δ≥α

Hδ.

If x ∈ ⋃
δ≥α

Hδ then x ∈ Hδ for some δ ≥ α. It fol-

lows that µA(x) ≥ δ ≥ α, so that x ∈ U(µA; α).
This shows that

⋃
δ≥α

Hδ ⊆ U(µA;α).

Now assume that x 6∈ ⋃
δ≥α

Hδ . Then x 6∈ Hδ for

all δ ≥ α. Since α 6= sup{δ ∈ Λ : δ < α}, there
exists ε > 0 such that (α − ε, α) ∩ Λ = ∅. Hence
x 6∈ Hδ for all δ > α − ε, which means that if
x ∈ Hδ then δ ≤ α− ε. Thus µA(x) ≤ α− ε < α,
and so x 6∈ U(µA; α). Therefore U(µA;α) ⊆⋃
δ≥α

Hδ , and thus U(µA; α) =
⋃

δ≥α
Hδ , which is a

subquasigroup of G.

Now we prove that L(γA; β) is a subquasigroup
of (G, f). We consider the following two cases:

(iii) β = inf{η ∈ Λ : β < η}
and

(iv) β 6= inf{η ∈ Λ : β < η}.
For the case (iii) we have

x ∈ L(γA; β) ⇐⇒ (x ∈ Hη ∀ η > β)

⇐⇒ x ∈
⋂

η>β

Hη

and hence L(γA;β) =
⋂

η>β
Hη which is a sub-

quasigroup of (G, f).

For the case (iv), there exists ε > 0 such that
(β, β + ε) ∩Λ = ∅. We will show that L(γA; β) =⋃
η≤β

Hη . If x ∈ ⋃
η≤β

Hη then x ∈ Hη for some

η ≤ β. It follows that γA(x) ≤ η ≤ β so that

x ∈ L(γA; β). Hence
⋃

η≤β
Hη ⊆ L(γA;β).

Conversely, if x /∈ ⋃
η≤β

Hη then x /∈ Hη for all

η ≤ β, which implies that x /∈ Hη for all η <
β + ε, i.e., if x ∈ Hη then η ≥ β + ε. Thus
γA(x) ≥ β + ε > β, i.e., x /∈ L(γA; β). Therefore
L(γA; β) ⊆ ⋃

η≤β
Hη and consequently L(γA;β) =

⋃
η≤β

Hη which is a subquasigroup of (G, f). This

completes the proof.

Let IFS(G, f) be the family of all IFS subquasi-
groups of (G, f) and α ∈ [0, 1] be a fixed real num-
ber. For any A = (µA, γA) and B = (µB, γB)
from IFS(G, f) we define two binary relations
Uα and Lα on IFS(G, f) as follows:

(A,B) ∈ Uα ⇐⇒ U(µA; α) = U(µB; α)

and

(A,B) ∈ Lα ⇐⇒ L(γA; α) = L(γB;α) .

These two relations Uα and Lα are equivalence
relations, give rise to partitions of IFS(G, f) into
the equivalence classes of Uα and Lα, denoted
by [A]Uα and [A]Lα for any A = (µA, γA) ∈
IFS(G, f), respectively. And we will denote the
quotient sets of IFS(G, f) by Uα and Lα as
IFS(G, f)/Uα and IFS(G, f)/Lα, respectively.

If S(G, f) is the family of all subquasigroups of
(G, f) and α ∈ [0, 1], then we define two maps
Uα and Lα from IFS(G, f) to S(G, f)∪{∅} as
follows:

Uα(A) = U(µA; α) and Lα(A) = L(γA; α),

respectively, for each A = (µA, γA) ∈ IFS(G, f).
Then the maps Uα and Lα are well-defined.

Theorem 4.8. For any α ∈ (0, 1), the maps
Uα and Lα are surjective from IFS(G, f) onto
S(G, f) ∪ {∅}.



Proof. Let α ∈ (0, 1). Note that 0∼ = (0,1)
is in IFS(G, f), where 0 and 1 are fuzzy sets
in (G, f) defined by 0(x) = 0 and 1(x) = 1 for
all x ∈ G. Obviously, Uα(0∼) = Lα(0∼) = ∅.
If (H, f) is an n-ary subquasigroup of (G, f),
then for the IFS subquasigroup H = (χH , χH)
we have Uα(H) = U(χH ; α) = H and Lα(H) =
L(χH ; α) = H. Hence Uα and Lα are surjective.

Theorem 4.9. The quotient sets IFS(G, f)/Uα

and IFS(G, f)/Lα are equipotent to S(G, f)∪{∅}
for any α ∈ (0, 1).

Proof. Let α ∈ (0, 1) be fixed and let

Uα : IFS(G, f)/Uα −→ S(G, f) ∪ {∅}

and

Lα : IFS(G, f)/Lα −→ S(G, f) ∪ {∅}

be the maps defined by

Uα([A]Uα) = Uα(A)

and
Lα([A]Lα) = Lα(A),

respectively, for each A = (µA, γA) ∈ IFS(G, f).

If U(µA; α) = U(µB;α) and L(γA; α) = L(γB; α)
for A = (µA, γA) and B = (µB, γB) from
IFS(G, f), then (A, B) ∈ Uα and (A,B) ∈ Lα,
whence [A]Uα = [B]Uα and [A]Lα = [B]Lα . Hence
the maps Uα and Lα are injective.

To show that the maps Uα and Lα are sur-
jective, let (H, f) be a subquasigroup of (G, f).
Then for H = (χH , χH) ∈ IFS(G, f) we have
Uα([H]Uα) = U(χH ;α) = H and Lα([H]Lα) =
L(χH ; α) = H. Also 0∼ = (0,1) ∈ IFS(G, f).
Moreover Uα([0∼]Uα) = U(0;α) = ∅ and
Lα([0∼]Lα) = L(1; α) = ∅. Hence Uα and Lα

are surjective.

For any α ∈ [0, 1], we define another relation Rα

on IFS(G, f) as following:

(A,B) ∈ Rα ⇐⇒
U(µA;α) ∩ L(γA;α) = U(µB; α) ∩ L(γB; α)

for any A = (µA, γA) and B = (µB, γB) from
IFS(G, f). Then the relation Rα is also an
equivalence relation on IFS(G, f).

Theorem 4.10. For any α ∈ (0, 1) and any
IFS subquasigroup A = (µA, γA) of (G, f) the map
Iα : IFS(G, f) −→ S(G, f) ∪ {∅} defined by

Iα(A) = Uα(A) ∩ Lα(A)

is suriective.

Proof. Indeed, if α ∈ (0, 1) is fixed, then for
0∼ = (0,1) ∈ IFS(G, f) we have

Iα(0∼) = Uα(0∼)∩Lα(0∼) = U(0; α)∩L(1; α) = ∅ ,

and for any H ∈ S(G, f), there exists H =
(χH , χH) ∈ IFS(G, f) such that Iα(H) =
U(χH ;α) ∩ L(χH ; α) = H.

Theorem 4.11. For any α ∈ (0, 1), the quotient
set IFS(G, f)/Rα is equipotent to S(G, f)∪{∅}.
Proof. Let α ∈ (0, 1) be fixed and let

Iα : IFS(G, f)/Rα −→ S(G, f) ∪ {∅}

be a map defined by Iα([A]Rα) = Iα(A) for each
[A]Rα ∈ IFS(G, f)/Rα.

If Iα([A]Rα) = Iα([B]Rα) holds for some [A]Rα

and [B]Rα from IFS(G, f)/Rα, then

U(µA;α) ∩ L(γA; α) = U(µB; α) ∩ L(γB; α),

hence (A,B) ∈ Rα and [A]Rα = [B]Rα . It fol-
lows that Iα is injective.

For 0∼ = (0,1) ∈ IFS(G, f) we have Iα(0∼) =
Iα(0∼) = ∅. If H ∈ S(G, f), then for H =
(χH , χH) ∈ IFS(G, f), Iα(H) = Iα(H) = H.
Hence Iα is a bijective map.

5 Open problems

The above results show that IFS subsets in n-ary
quasigroups can be investigated similarly as IFS
subsets of universal algebras. The problem is with
IFS subgroups of n-ary groups.

As it is well known (cf. [2] or [15]), a nonempty
subset S of an n-ary group (G, f) is an n-ary sub-
group of an n-ary group (G, f) if it is closed with
respect to f and x ∈ S for every x ∈ S, where x is
the solution of the equation f(x, . . . , x, x) = x. In
n-ary groups the map ϕ(x) = x is well-defined and
plays a similar role as inverse elements in classical
groups.



Thus, by the analogy to the binary case, an n-ary
fuzzy subgroup can be defined as an fuzzy sub-
groupoid µ such that µ(x) ≥ µ(x) for all x ∈ G or
as an fuzzy subgroupoid µ such that µ(x) = µ(x)
for all x ∈ G.

Unfortunately, for n > 3 these two concepts are
not equivalent. Indeed, it is not difficult to see
that in the unipotent 4-ary group derived from the
additive group Z4 the map µ defined by µ(0) = 1
and µ(x) = 0.5 for all x 6= 0 is an example of fuzzy
subgroupoid in which µ(x) ≥ µ(x) for all x ∈ Z4.
Thus µ is a fuzzy subgroup in the first sense. It is
not a fuzzy subgroup in the second sense because
for x = 2 we have µ(x) > µ(x).

These two concepts of n-ary fuzzy subgroups
are equivalent for ternary groups because in all
ternary groups we have ϕ2(x) = x. These two
concepts are also equivalent in n-ary groups in
which x(k)(x) = x holds for some fixed k > 0 and
all x.

Problem 1. Describe the similarities and differ-
ences between these two concepts of fuzzy n-ary
subgroups (and IFS subgroups).

Post proved in [15] that any n-ary group can be
embedded into some binary group (called the cov-
ering group). On the other hand (cf. for ex-
ample [9]), with any n-ary group (G, f) is con-
nected the family of binary retracts, i.e., the fam-
ily of binary groups (G, ◦) with the operation
x ◦ y = f(x, a, . . . , a, y), where a ∈ G is fixed.
All such retracts are isomorphic and induce some
properties of the corresponding n-ary group.

Problem 2. Find the connection between fuzzy
subgroups of a given n-ary group and fuzzy sub-
groups of its binary retracts and the covering
group.

Problem 3. Describe IFS subgroups of n-ary
groups and the connection with IFS subgroups of
the corresponding binary groups.
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