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1 Introduction

The concept of intuitionistic fuzzy is introduced by K. Atanasov (1984) [1, 2]. This concept is a
generalization of fuzzy theory introduced by L. Zadeh [3]. Several works made in the study of
the Cauchy problem with fuzzy initial condition [4]. By the metric space defined in [5] we have
something that makes sense to study this problem in intuitionistic fuzzy theory.

Jong Y. P. and Hho K. H. in [6] gives the demonstrate of the existence and uniqueness of a
problem of Cauchy with fuzzy initial condition, using the method of successive approximation
and in [7] the authors studied Cauchy problem is level-wise continuous and satisfies the general-
ized Lipschitz condition. From this work we attempt to give generalization of this existence and
uniqueness in the intuitionistic fuzzy case.

In this paper, we prove the existence and uniqueness theorem of a solution to the intuitionistic
fuzzy differential equation {

ẋ(t) = f(t, x(t))

x(t0) = x0

(1)

where x0 is an intuitionistic fuzzy quantity and f : I × IFn → IFn is level-wise continuous and
satisfies a generalized Lipschitz condition.
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At first, in Section 2, we give some definitions and properties regarding the concept of an
intuitionistic fuzzy metric. The main results of this work is discussed in Section 3.

2 Preliminaries

Throughout this paper,
(
Rn, B(Rn), µ

)
denotes a complete finite measure space. Let us Pk(Rn)

the set of all nonempty compact convex subsets of Rn and let T = [c, d] ⊂ R be a compact
interval. we denote by

IFn = IF(Rn) =
{
〈u, v〉 : Rn → [0, 1]2 , |∀ x ∈ Rn0 ≤ u(x) + v(x) ≤ 1

}
An element 〈u, v〉 of IFn is said an intuitionistic fuzzy number if it satisfies the following condi-
tions

(i) 〈u, v〉 is normal i.e there exists x0, x1 ∈ Rn such that u(x0) = 1 and v(x1) = 1.

(ii) u is fuzzy convex and v is fuzzy concave.

(iii) u is upper semi-continuous and v is lower semi-continuous

(iv) supp 〈u, v〉 = cl{x ∈ Rn : | v(x) < 1} is bounded.

so we denote the collection of all intuitionistic fuzzy number by IFn
For α ∈ [0, 1] and 〈u, v〉 ∈ IF n, the upper and lower α-cuts of 〈u, v〉 are defined by[

〈u, v〉
]α

=
{
x ∈ Rn : v(x) ≤ 1− α

}
and [

〈u, v〉
]
α

=
{
x ∈ Rn : u(x) ≥ α

}
Remark 2.1. If 〈u, v〉 ∈ IFn, so we can see [〈u, v〉]α as [u]α and [〈u, v〉]α as [1− v]α in the fuzzy
case.

We define 0(1,0) ∈ IFn as

0(1,0)(t) =

{
(1, 0) t = 0

(0, 1) t 6= 0

Let 〈u, v〉 ,〈u′, v′〉 ∈ IFn and λ ∈ R, we define the following operations by :(
〈u, v〉 ⊕ 〈u′, v′〉

)
(z) =

(
sup
z=x+y

min
(
u(x), u′(y)

)
, inf
z=x+y

max
(
v(x), v′(y)

))

λ 〈u, v〉 =

{
〈λu, λv〉 if λ 6= 0

0(1,0) if λ = 0

For 〈u, v〉, 〈z, w〉 ∈ IFn and λ ∈ R, the addition and scaler-multiplication are defined as follows[
〈u, v〉 ⊕ 〈z, w〉

]α
=
[
〈u, v〉

]α
+
[
〈z, w〉

]α
,
[
λ 〈z, w〉

]α
= λ

[
〈z, w〉

]α
[
〈u, v〉 ⊕ 〈z, w〉

]
α

=
[
〈u, v〉

]
α

+
[
〈z, w〉

]
α
,
[
λ 〈z, w〉

]
α

= λ
[
〈z, w〉

]
α
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Definition 2.1. Let 〈u, v〉 an element of IFn and α ∈ [0, 1], we define the following sets :[
〈u, v〉

]+

l
(α) = inf{x ∈ Rn | u(x) ≥ α},

[
〈u, v〉

]+

r
(α) = sup{x ∈ Rn | u(x) ≥ α}[

〈u, v〉
]−
l

(α) = inf{x ∈ Rn | v(x) ≤ 1− α},
[
〈u, v〉

]−
r

(α) = sup{x ∈ Rn | v(x) ≤ 1− α}

Remark 2.2. [
〈u, v〉

]
α

=

[[
〈u, v〉

]+

l
(α),

[
〈u, v〉

]+

r
(α)

]
[
〈u, v〉

]α
=

[[
〈u, v〉

]−
l

(α),
[
〈u, v〉

]−
r

(α)

]
Proposition 2.1. For all α, β ∈ [0, 1] and 〈u, v〉 ∈ IFn

(i)
[
〈u, v〉

]
α
⊂
[
〈u, v〉

]α
(ii)

[
〈u, v〉

]
α

and
[
〈u, v〉

]α
are nonempty compact convex sets in Rn

(iii) if α ≤ β then
[
〈u, v〉

]
β
⊂
[
〈u, v〉

]
α

and
[
〈u, v〉

]β
⊂
[
〈u, v〉

]α
(iv) If αn ↗ α then

[
〈u, v〉

]
α

=
⋂
n

[
〈u, v〉

]
αn

and
[
〈u, v〉

]α
=
⋂
n

[
〈u, v〉

]αn

Let M any set and α ∈ [0, 1] we denote by

Mα = {x ∈ Rn : u(x) ≥ α} and Mα = {x ∈ Rn : v(x) ≤ 1− α}

Lemma 2.1. [6] Let
{
Mα, α ∈ [0, 1]

}
and

{
Mα, α ∈ [0, 1]

}
two families of subsets of Rn

satisfies (i)–(iv) in Proposition 2.1, if u and v define by

u(x) =

{
0 if x /∈M0

sup {α ∈ [0, 1] : x ∈Mα} if x ∈M0

v(x) =

{
1 if x /∈M0

1− sup {α ∈ [0, 1] : x ∈Mα} if x ∈M0

Then 〈u, v〉 ∈ IFn
Lemma 2.2. Let I a dense subset of [0, 1], if

[
〈u, v〉

]
α

=
[
〈u′, v′〉

]
α

and[
〈u, v〉

]α
=
[
〈u′, v′〉

]α
, for all α ∈ I then 〈u, v〉 = 〈u′, v′〉

On the space IFn we will consider the following metric,

dn∞

(
〈u, v〉 , 〈z, w〉

)
=

1

4
sup

0<α≤1

∥∥∥[ 〈u, v〉 ]+

r
(α)−

[
〈z, w〉

]+

r
(α)
∥∥∥

+
1

4
sup

0<α≤1

∥∥∥[ 〈u, v〉 ]+

l
(α)−

[
〈z, w〉

]+

l
(α)
∥∥∥

+
1

4
sup

0<α≤1

∥∥∥[ 〈u, v〉 ]−
r

(α)−
[
〈z, w〉

]−
r

(α)
∥∥∥

+
1

4
sup

0<α≤1

∥∥∥[ 〈u, v〉 ]−
l

(α)−
[
〈z, w〉

]−
l

(α)
∥∥∥

where ‖.‖ denotes the usual Euclidean norm in Rn.
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Theorem 2.1. ([6]) dn∞ defines a metric on IFn.

Theorem 2.2. The metric space (IFn, d
n
∞) is complete.

Proof. There exists i0 ≤ n such that

dn∞ (< u, v >,< u′, v′ >) ≤
√
nd∞ (< u, v >i0 , < u′, v′ >i0)

Since d∞ defined a complete topology if IF1, then dn∞ also is complete.

Define D1, D2 : IFn × IFn → R+ by the equations

D1

(
〈u, v〉 , 〈u′, v′〉

)
= sup

0≤α≤1
dH

([
〈u, v〉

]
α
,
[
〈u′, v′〉

]
α

)
D2

(
〈u, v〉 , 〈u′, v′〉

)
= sup

0≤α≤1
dH

([
〈u, v〉

]α
,
[
〈u′, v′〉

]α)
where dH is the Hausdorff metric defined in Pk(Rn) by dH([a, b][c, d]) = max{||a−c||; ||b−d||}.

Remark 2.3.

dn∞

(
〈u, v〉 , 〈u′, v′〉

)
≤ 1

2
sup

0≤α≤1
dH

([
〈u, v〉

]
α
,
[
〈u′, v′〉

]
α

)
+

1

2
sup

0≤α≤1
dH

([
〈u, v〉

]α
,
[
〈u′, v′〉

]α)
≤ 1

2
D1

(
〈u, v〉 , 〈u′, v′〉

)
+

1

2
D2

(
〈u, v〉 , 〈u′, v′〉

)
In the sequel we gives some results of measurability, integrability and differentiability for the

proof is similar to [6]

F : T → IFn is called integrable bounded if there exists an integrable function h : T → R such
that ‖y‖ ≤ h(t) holds for any y ∈ supp(F (t)), t ∈ T .

Definition 2.2. We say that a mapping F : T → IFn is strongly measurable if for all
α ∈ [0, 1] the set-valued mappings Fα : T → Pk(Rn) defined by Fα(t) = [F (t)]α and
Fα : T → Pk(Rn) defined by Fα(t) = [F (t)]α are (Lebesgue) measurable, when Pk(Rn) is
endowed with the topology generated by the Hausdorff metric dH .

Lemma 2.3. Let F : T → IFn be strongly measurable and denote Fα(t) =
[
λα(t), λα(t)

]
,

Fα(t) =
[
µα(t), µα(t)

]
for α ∈ [0, 1]. Then λα, λα, µα, µα are measurable.

Definition 2.3. Suppose F : T → IFn is integrably bounded and strongly measurable for each
α ∈ (0, 1] write[∫

T

F (t)dt

]
α

=

∫
T

[F (t)]α dt =

{∫
T

fdt|f : T → Rn is a measurable selection for Fα

}
[∫

T

F (t)dt

]α
=

∫
T

[F (t)]α dt =

{∫
T

fdt|f : T → Rn is a measurable selection for Fα

}
.

if there exists 〈u, v〉 ∈ IFn such that [〈u, v〉]α =
[∫
A
F (t)dt

]α and [〈u, v〉]α =
[∫
T
F (t)dt

]
α

∀α ∈ (0, 1]. Then F is called integrable on T , write 〈u, v〉 =
∫
T
F (t)dt.
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Remark 2.4.

• If F (t) = 〈ut, vt〉 is integrable, then
∫
〈ut, vt〉 =

〈∫
ut,
∫
vt
〉

• If F : T → IFn is integrable then in view of Lemma (2.3)
∫
F is obtained by integrating

the α-level curves, that is[∫
F

]
α

=

[∫
λα,

∫
λα
]

and
[∫

F

]α
=

[∫
µα,

∫
µα
]
, α ∈ [0, 1]

Fα(t) = [F (t)]α = [λα(t), λα(t)], Fα(t) = [F (t)]α = [µα(t), µα(t)] for α ∈ [0, 1].

Theorem 2.3. If F : T → IFn is strongly measurable and integrably bounded, then F is inte-
grable.

Proof: If we denoteMα =
∫
Fα andMα =

∫
Fα, then properties (i)–(iii) of Lemma (2.1) are

checked .
Since Fα ⊂ Fα ⇒

∫
Fα ⊂

∫
Fα for all α ∈ [0, 1], by Lemma (2.1), There exists unique

〈u, v〉 ∈ IFn such that [〈u, v〉]α =
∫
Fα et [〈u, v〉]α =

∫
Fα, which completes the proof.

Definition 2.4. A mapping F : T → IFn is called level-wise continuous at t0 ∈ T if the set-
valued mappings Fα(t) = [F (t)]α and Fα(t) = [F (t)]α are continuous at t = t0 with respect to
the Hausdorff metric dH for all α ∈ [0, 1]

Proposition 2.2. If F : T → IFn is level-wise continuous then it is strongly measurable.

Proof: By the level-wise continuity of F ; Fα and Fα are continuous with respect to the Haus-
dorff metric dH for all α ∈ [0, 1]. Therefore F−1

α (U) and Fα(U)−1 are open, and hence its are
measurable for each open U ∈ Pk(Rn).

Proposition 2.3. If F : T → IFn is level-wise continuous, then it is integrable.

Proof: By Proposition 2.2 F is strongly measurable. Since F 0 is continuous, F 0(t) ∈ Pk(Rn)

for all t ∈ T and T is compact, then ∪t∈TF 0(t) is compact. So F is integrably bounded.

Definition 2.5. A mapping F : T → IFn is said to be differentiable at t0 if there exist F ′(t0) ∈ IFn
such that limits:

lim
∆t→0+

F (t0 + ∆t) � F (t0)

∆t
and lim

∆t→0+

F (t0) � F (t0 −∆t)

∆t

exist and they are equal to F ′(t0) = 〈u′(t0), v′(t0)〉.

Here the limit is taken in the metric space (IFn, d
n
∞). At the end points of T we consider only

the one-sided derivatives.

Remark 2.5. From the definition it directly follows that if F is differentiable then the multivalued
mappings Fα and Fα are Hukuhara differentiable for all α ∈ [0, 1] and

DFα(t) = [F ′(t)]α (2)
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Here DFα denotes the Hukuhara derivative of Fα.

DFα(t) = [F ′(t)]α (3)

Here DFα denotes the Hukuhara derivative of Fα.

If F : T → IFn is differentiable at t0 ∈ T , then we say that F ′(t0) is the intuitionistic fuzzy
derivative of F (t) at the point t0.

Theorem 2.4. Let F : T → IFn be differentiable. Denote Fα(t) = [F (t)]α = [λα(t), λα(t)],
Fα(t) = [F (t)]α = [µα(t), µα(t)]. Then λα(t), λα(t), µα(t) and µα(t) are differentiable and

[F (t)′]α = [λ′α(t), λα′(t)]

[F (t)′]α = [µ′α(t), µα′(t)]

Theorem 2.5. If F : T → IFn is differentiable; then it is levelwise continuous.

Proof: Let t, t + h ∈ T with h > 0. Then for any α ∈ [0, 1] by the definition of metric dn∞ we
have

1

4
dH

(
[F (t+ h)]α, [F (t)]α)

)
+

1

4
dH

(
[F (t+ h)]α, [F (t)]α)

)
≤ dn∞

(
F (t+ h), F (t)

)
≤ dn∞

(
F (t+ h) � F (t), 0(1,0)

)
≤ hdn∞

(
1

h

(
F (t+ h) � F (t)

)
, F ′(t)

)
+ hdn∞

(
F ′(t), 0(1,0)

)

where h is so small that the H-difference F (t+h)�F (t) exists. By the differentiability we know
that the right-hand side goes to zero as h → 0+ and hence Fα and Fα are right continuous then,
F is right continuous level-wise, the left continuity levelwise is proved similarly.

Theorem 2.6. Let F : T → IFn be level-wise continuous; Then for every t ∈ T the integral

G(t) =

∫ t

a

F (s)ds is differentiable and G′(t) = F (t).

Proof: Let α ∈ [0, 1] be fixed. Since F is level-wise continuous, then for arbitrary ε > 0, t,
t+ h ∈ T and h > 0 there exists an δ(ε, α) such that

dH

(
[F (t+ h)]α, [F (t)]α

)
< ε and dH

(
[F (t+ h)]α, [F (t)]α

)
< ε

whenever 0 < h < δ(ε, α). According to Proposition 2.3. F is integrable, and [Theorem 4.2 in
[7]] gives

G(t+ h) �G(t) =

∫ t+h

t

F
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Then

dn∞

(
1

h
(G(t+ h) �G(t)), F (t)

)
=

1

h
dn∞

(∫ t+h

t

F (s)ds, hF (t)

)
=

1

h
dn∞

(∫ t+h

t

F (s)ds,

∫ t+h

t

F (t)ds

)
≤ 1

h

∫ t+h

t

dn∞

(
F (s), F (t)

)
ds

Consequently, by Remark 2.3 we have,

dn∞

(
1

h
(G(t+ h) �G(t)), F (t)

)
≤ 1

2h

[ ∫ t+h

t

sup
0≤α≤1

dH

(
[F (s)]α, [F (t)]α

)
ds

+

∫ t+h

t

sup
0≤α≤1

dH

(
[F (s)]α, [F (t)]α

)
ds

]
≤ 1

2h

[
hε+ hε

]
≤ ε

this implies, lim
h→0

1
h
(G(t+ h) �G(t)) = F (t),

and similarly lim
h→0

1
h
(G(t) �G(t− h)) = F (t), which proves the theorem.

Theorem 2.7. Let F : T → IFn be differentiable and assume that the derivative F ′ is integrable
over T Then, for each s ∈ T , we have

F (s) = F (a)⊕
∫ s

a

F ′(t)dt. (4)

Proof: We shall prove that

Fα(s) = Fα(a) +

∫ s

a

DFα(t)dt (5)

Fα(s) = Fα(a) +

∫ s

a

DFα(t)dt (6)

for all α ∈ [0, 1] \ A with A being negligible.

So, for α ∈ [0, 1] \ A be fixed. We will show that Fα(s) = Fα(a) +

∫ s

a

DFα(t)dt, where

DFα is the Hukuhara derivative of Fα. Recall that the supporting functional δ(., K) : Rn → R of
K ∈ Pk(Rn) is defined by

δ(a,K) = sup
{
a.k | k ∈ K

}
(7)

where a.k denotes the usual scalar product of a and k. IfK1, K2 ∈ Pk(Rn) then Theorem II−18

in [8] gives us the equation

dH(K1, K2) = sup
‖a‖=1

|δ(a,K1)− δ(a,K2)| (8)

Now let t, t+ h ∈ T with h > 0 so small that the H-difference F (t+ h)− F (t) exists. Then
by Theorem II − 17 in [8] we have

δ
(
x, Fα(t+ h)− Fα(t)

)
= δ
(
x, Fα(t+ h)

)
− δ
(
x, Fα(t)

)
(9)
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for all x ∈ Rn , α ∈ [0, 1] \ A and consequently

δ
(
x, (Fα(t+ h)− Fα(t))/h

)
= δ
(
x, Fα(t+ h)

)
− δ
(
x, Fα(t)

)
/h (10)

Then by the differentiability of Fα and Eqs. (8) and (10) we obtain δ
(
x, Fα(t)

)
that is right

differentiable and the right derivative equals to δ(x,DFα(t)) where x is an arbitrary element of
the surface of the unit ball S in Rn. Applying a similar reasoning for h < 0, we conclude that for
all x ∈ S, δ

(
x, Fα(t)

)
is differentiable on T and

d

dt
δ
(
x, Fα(t)

)
= δ
(
x,DFα(t)

)
Since DFα(t) is compact and convex it can be expressed as an intersection of all closed half

spaces containing it, i.e.
DFα(t) =

⋂
x∈S

Hx

where Hx = {z ∈ Rn | x.z ≤ δ(x,DFα(t))}. Thus DFα(t) equals to the derivative of the set-
valued mapping Fα defined by Bradley and Datko [4]. The equality (5) now follows from [[4],
Theorem 3.5]. The same technique is applied to show The equality (6).

Consequently, according to Lemma 2.2 the result is obtained.

Definition 2.6. A mapping f : T × IFn → IFn is called level-wise continuous at point
(t0, x0) ∈ T × IFn provided for any fixed α ∈ [0, 1] and arbitrary ε > 0, there exists an δ(ε, α)

such that
dH

(
[f(t, x)]α, [f(t, x0)]α

)
< ε, dH

(
[f(t, x)]α, [f(t, x0)]α

)
< ε

whenever |t− t0| < δ(ε, α) and for all t ∈ T , x ∈ IFn

dH

(
[x]α, [x0]α

)
< δ(ε, α), dH

(
[x]α, [x0]α

)
< δ(ε, α)

3 Main result

Assume that f : I × IFn → IFn is levelwise continuous, where the interval

I = {t : |t− t0| ≤ δ ≤ a}.

Consider the intuitionistic fuzzy differential equation (1) where x0 ∈ IFn.
We denote J0 = I ×B(x0, b) where a > 0, b > 0 , x0 ∈ IFn

B(x0, b) =
{
x ∈ IFn|dn∞(x, x0) ≤ b

}
Definition 3.1. A mapping x : I → IFn is a solution to the problem (1) if it is level-wise contin-
uous and satisfies the integral equation

x(t) = x0 ⊕
∫ t

t0

f(s, x(s))ds. for all t ∈ I
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According to the method of successive approximation, let us consider the sequence {xn(t)}
such that

xn(t) = x0 ⊕
∫ t

t0

f(s, xn−1(s))ds, n = 1, 2, . . . (11)

where x0(t) ≡ x0, t ∈ T

Theorem 3.1. Assume that

1. A mapping f : J0 → IFn is level-wise continuous,

2. for any pair (t, x), (t, y) ∈ J0, we have

dn∞

(
f(t, x), f(t, y)

)
≤ Ldn∞

(
x, y
)

(12)

where L > 0 is a given constant.
Then there exists a unique solution x = x(t) of (1) defined on the interval

|t− t0| ≤ δ = min{a, b
M
}, (13)

where M = 1
2

(
D1

(
f(t, x), 0(1,0)

)
+D2

(
f(t, x), 0(1,0)

))
and for any (t, x) ∈ J0.

Moreover, there exists an intuitionistic fuzzy set-valued mapping x : I → IFn such that

dn∞

(
xn(t), x(t)

)
→ 0 for |t− t0| ≤ δ as n→∞

Proof: Let t ∈ T by (11), it follows that, for n = 1

x1(t) = x0 ⊕
∫ t

t0

f(s, x0(s))ds (14)

which proves that x1(t) is level-wise continuous on |t − t0| ≤ a and, hence on |t − t0| ≤ δ.
Moreover, for any α ∈ [0, 1], we have

dH

(
[x1(t)]α, [x0]α

)
= dH

([ ∫ t

t0

f(s, x0)ds
]
α
, 0
)
≤
∫ t

t0

dH

([
f(s, x0)

]
α
, 0
)
ds (15)

dH

(
[x1(t)]α, [x0]α

)
= dH

([ ∫ t

t0

f(s, x0)ds
]α
, 0
)
≤
∫ t

t0

dH

([
f(s, x0)

]α
, 0
)
ds (16)

By Remark 2.3., we get

dn∞

(
x1(t), x0

)
≤M |t− t0| ≤Mδ = b (17)

if |t− t0| ≤ δ, where M = M1+M2

2
, M1 = D1

(
f(t, x), 0(1,0)

)
and M2 = D2

(
f(t, x), 0(1,0)

)
for

any (t, x1) ∈ J0.

Now, assume that xn−1(t) is level-wise continuous on |t− t0| ≤ δ and that

dn∞

(
xn−1(t), x0

)
≤M |t− t0| ≤Mδ = b (18)
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if |t− t0| ≤ δ,where M = M1+M2

2
and for any (t, xn−1) ∈ J0.

From (11), we deduce that xn(t) is level-wise continuous on
|t− t0| ≤ δ and that

dn∞

(
xn(t), x0

)
≤M |t− t0| ≤Mδ = b (19)

if |t− t0| ≤ δ,where M = M1+M2

2
and for any (t, xn) ∈ J0.

Consequently, we conclude that {xn(t)} consists of level-wise continuous mappings on
|t− t0| ≤ δ and that

(t, xn(t)) ∈ J0, |t− t0| ≤ δ, n = 1, 2, . . . (20)

In addition we will show that there exists an intuitionistic fuzzy set-valued mapping x : I → IFn
such that

dn∞

(
xn(t), x(t)

)
→ 0 uniformly for |t− t0| ≤ δ as n→∞

For n = 2 from (11)

x2(t) = x1 ⊕
∫ t

t0

f
(
s, x1(s)

)
ds (21)

from (14) ,(21) we have

dn∞

(
x2(t), x1(t)

)
= dn∞

(∫ t

t0

f(s, x1(s))ds,

∫ t

t0

f(s, x0)ds
)
≤
∫ t

t0

dn∞

(
f(s, x1(s)), f(s, x0)

)
ds

(22)
According to the condition (12), we obtain

dn∞

(
x2(t), x1(t)

)
≤ L

∫ t

t0

dn∞

(
x1(s), x0

)
ds (23)

Now, we can apply the first inequality (17) in the right-hand side of (23) to get

dn∞

(
x2(t), x1(t)

)
≤ML

|t− t0|2

2!
≤ML

δ2

2!
(24)

Starting from (17) and (24), assume that

dn∞

(
xn(t), xn−1(t)

)
≤MLn−1 |t− t0|n

n!
≤MLn−1 δ

n

n!
(25)

and let us prove that such an inequality holds for dn∞
(
xn+1(t), xn(t)

)
.

In fact, from (11) and condition (12), it follows that

dn∞

(
xn+1(t), xn(t)

)
= dn∞

(∫ t

t0

f(s, xn(s))ds,

∫ t

t0

f(s, xn−1(s))ds
)

(26)

≤
∫ t

t0

dn∞

(
f(s, xn(s)), f(s, xn−1(s))

)
ds (27)

≤
∫ t

t0

Ldn∞

(
xn(s), xn−1(s)

)
ds (28)

According to (25), we get

dn∞

(
xn+1(t), xn(t)

)
≤MLn

∫ t

t0

|s− t0|n

n!
ds = MLn

|t− t0|n+1

(n+ 1)!
≤MLn

δn+1

(n+ 1)!
(29)
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Thus, inequality (25) holds for n = 1, 2, . . . We can also write

dn∞

(
xn(t), xn−1(t)

)
≤ M

L

(Lδ)n

(n)!
(30)

for n = 1, 2, . . ., and |t− t0| ≤ δ. Furthermore, we can write xn(t) as follows

xn(t) = x0 + [x1(t)− x0] + · · ·+ [xn(t)− xn−1(t)], (31)

which implies that the sequence {xn(t)} and the series

x0 +
∞∑
n=1

[xn(t)− xn−1(t)], (32)

have the same convergence properties.
From (29), according to the convergence criterion of Weierstrass, it follows that the series

having the general term xn(t) 	 xn−1(t), so dn∞
(
xn(t), xn−1(t)

)
→ 0 uniformly on |t − t0| ≤ δ

as n→∞.
Hence, there exists an intuitionistic fuzzy set-valued mapping x : I → IFn such that

dn∞

(
xn(t), x(t)

)
→ 0 uniformly on |t− t0| ≤ δ as n→∞.

From (12) we get

dn∞

(
f(t, xn(t)), f(t, x(t))

)
≤ Ldn∞

(
xn(t), x(t)

)
→ 0 (33)

uniformly on |t− t0| ≤ δ as n→∞.
Taking (33) into account, from (11), we obtain, for n→∞,

x(t) = x0 ⊕
∫ t

t0

f(s, x(s))ds (34)

Consequently, there is at least one level-wise continuous solution of (1).
It remains to show this solution is unique.
Let

y(t) = x0 ⊕
∫ t

t0

f(s, y(s))ds (35)

on |t− t0| ≤ δ, from (11) and (35), for n = 1, 2, . . . we obtain

dn∞

(
y(t), xn(t)

)
= dn∞

(∫ t

t0

f(s, y(s))ds,

∫ t

t0

f(s, xn−1(s))ds
)

(36)

≤
∫ t

t0

dn∞

(
f(s, y(s)), f(s, xn−1(s))

)
ds,

≤ L

∫ t

t0

dn∞

(
y(s), xn−1(s)

)
ds (37)

But dn∞
(
y(t), x0

)
≤ b on |t− t0| ≤ δ being a solution of (35). It follows from (36) that

dn∞

(
y(t), x1(t)

)
≤ bL|t− t0| (38)
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Now, assume that

dn∞

(
y(t), xn(t)

)
≤ bLn

|t− t0|n

n!
(39)

so

dn∞

(
y(t), xn+1(t)

)
≤ L

∫ t

t0

dn∞

(
y(s), xn(s)

)
ds

≤ bLn+1 |t− t0|n+1

(n+ 1)!

Consequently, (39) holds for any n, which leads to the conclusion

dn∞

(
y(t), xn(t)

)
= dn∞

(
x(t), xn(t)

)
→ 0

on the interval |t− t0| ≤ δ as n→∞.
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