More on Intuitionistic fuzzy relations

Annie Varghese ${ }^{1}$ and Sunny Kuriakose ${ }^{2}$
${ }^{1}$ Department of Mathematics, St. Peter's College, Kolencherry
Manithottathil, S. Marady P.O., Muvattupuzha, Kerala 686 673, India
e-mail: anniestpc@gmail.com
${ }^{2}$ Principal, BPC College, Piravom, Kerala, India

Abstract

In this paper, we extend the intuitionistic fuzzy relation defined on a crisp set to an intuitionistic fuzzy relation defined on an intuitionistic fuzzy set. Various properties like symmetry, reflexivity, transitivity etc. are studied.

Keywords: Intuitionistic fuzzy set, Intuitionistic fuzzy relation, Composition, Ordered reflexivity, Symmetry, Transitivity.
AMS Classification: 03E72.

1 Introduction

A fuzzy binary relation is considered as a fuzzy subset of the set $A \times B$ where A and B are two crisp sets. In [1], a generalization of fuzzy relations was introduced and their properties were studied. Intuitionistic fuzzy sets, defined by K. Atanassov, helps us to model uncertainty with an additional degree. Intuitionistic Fuzzy Relations (IFRs) has already been studied by many researchers. Commonly, IFRs are intuitionistic fuzzy sets in a cartesian product of universes [3]. Here an attempt is made to extend IFRs to a relation between two intuitionistic fuzzy sets.

The notion of generalized IFRs is introduced in section 2. i.e., IFR defined on IFS. Then various binary and unary operations of these relations are defined and symmetry, reflexivity and transitivity are studied in section 3 . Throughout this paper, unless otherwise stated, by a relation, we mean an intuitionistic fuzzy binary relation defined on IFSs over the universe U.

Definition 1.1 [4] Let X be an ordinary (non fuzzy) set. An intuitionistic fuzzy set A in X is given by

$$
A=\left\{\left(x, \mu_{A}(x), \nu_{A}(x)\right) / x \in X\right\}
$$

where $\mu_{A}: X \rightarrow[0,1], \nu_{A}: X \rightarrow[0,1]$ with the condition $0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1$, for all $x \in X$.

2 Relations on intuitionistic fuzzy sets

Let U be any nonempty set and A, B be IFS in U given by the membership function μ_{A} and μ_{B} respectively and the nonmembership functions ν_{A} and ν_{B} respectively, where

$$
\mu_{A}, \mu_{B}, \nu_{A}, \nu_{B}: U \rightarrow[0,1] .
$$

$A \times B$ is the IFS in $U \times U$ defined by

$$
\begin{aligned}
\mu_{A \times B}(x, y) & =\min \left\{\mu_{A}(x), \mu_{B}(y)\right\} \\
\nu_{A \times B}(x, y) & =\max \left\{\nu_{A}(x), \nu_{B}(y)\right\}
\end{aligned}
$$

for all $x, y \in U$.
Definition 2.1 Let $R \subseteq A \times B$,

$$
\begin{array}{ll}
\text { i.e. } & \mu_{R}(x, y) \leq \mu_{A \times B}(x, y) \\
\text { and } & \nu_{R}(x, y) \geq \nu_{A \times B}(x, y)
\end{array}
$$

with the condition that

$$
0 \leq \mu_{R}(x, y)+\nu_{R}(x, y) \leq 1
$$

Then R is an IFR from A to B.
Definition 2.2 Let R, R_{1}, R_{2} be IFRs from A to B. Then $R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1}+R_{2}, R_{1} \cdot R_{2}$, $R_{1} \bigcup R_{2}, R_{1} \bigcap R_{2}, R_{1} \odot R_{2}, R_{1} \otimes R_{2}, \bar{R}$ and R^{-1} are defined as follows:

1. $\mu_{R_{1} \cup R_{2}}(x, y)=\max \left\{\mu_{R_{1}}(x, y), \mu_{R_{2}}(x, y)\right\}$
$\nu_{R_{1} \cup R_{2}}(x, y)=\min \left\{\nu_{R_{1}}(x, y), \nu_{R_{2}}(x, y)\right\}$
2. $\mu_{R_{1} \cap R_{2}}(x, y)=\min \left\{\mu_{R_{1}}(x, y), \mu_{R_{2}}(x, y)\right\}$
$\nu_{R_{1} \cap R_{2}}(x, y)=\max \left\{\nu_{R_{1}}(x, y), \nu_{R_{2}}(x, y)\right\}$
3. $\mu_{R_{1}+R_{2}}(x, y)=\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)-\mu_{R_{1}}(x, y) \mu_{R_{2}}(x, y)$,
$\nu_{R_{1}+R_{2}}(x, y)=\nu_{R_{1}}(x, y) \nu_{R_{2}}(x, y)$
4. $\mu_{R_{1} \cdot R_{2}}(x, y)=\mu_{R_{1}}(x, y) \mu_{R_{2}}(x, y)$
$\nu_{R_{1} \cdot R_{2}}(x, y)=\nu_{R_{1}}(x, y)+\nu_{R_{2}}(x, y)-\nu_{R_{1}}(x, y) \nu_{R_{2}}(x, y)$
5. $\mu_{R_{1} \cup R_{2}}(x, y)=\min \left\{1, \mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)\right\}$
$\nu_{R_{1} \cup R_{2}}(x, y)=\max \left\{0, \nu_{R_{1}}(x, y)+\nu_{R_{2}}(x, y)-1\right\}$
6. $\mu_{R_{1} \cap R_{2}}(x, y)=\max \left\{0, \mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)-1\right\}$
$\nu_{R_{1} \cap R_{2}}(x, y)=\min \left\{1, \nu_{R_{1}}(x, y)+\nu_{R_{2}}(x, y)\right\}$
7. $\mu_{R_{1} \odot R_{2}}(x, y)=\frac{\mu_{R_{1}}(x, y)+\mu_{R_{2}}(x, y)}{2}$
$\nu_{R_{1} \odot R_{2}}(x, y)=\frac{\nu_{R_{1}}(x, y)+\nu_{R_{2}}(x, y)}{2}$
8. $\mu_{R_{1} \otimes R_{2}}(x, y)=\sqrt{\mu_{R_{1}}(x, y) \mu_{R_{2}}(x, y)}$
$\nu_{R_{1} \otimes R_{2}}(x, y)=\sqrt{\nu_{R_{1}}(x, y) \nu_{R_{2}}(x, y)}$
9. $\mu_{\bar{R}}(x, y)=\min \left\{1-\mu_{R}(x, y), \mu_{A \times B}(x, y)\right\}$

$$
\nu_{\bar{R}}(x, y)=\left\{\begin{aligned}
& \max \left\{1-\nu_{R}(x, y), \nu_{A \times B}(x, y)\right\}=C(x, y) \\
& \text { if } 0 \leq \mu_{\bar{R}}(x, y)+C(x, y) \leq 1 \\
& \mu_{R}(x, y) \text { if } \mu_{\bar{R}}(x, y)+C(x, y)>1
\end{aligned}\right.
$$

10. $\mu_{R^{-1}}(x, y)=\mu_{R}(y, x)$
$\nu_{R^{-1}}(x, y)=\nu_{R}(y, x)$ for all $x, y \in U$.
Note 1. All the above definitions are intuitionistic fuzzy relations on intuitionistic fuzzy sets.
Note 2. If A and B are ordinary subsets of U, then

$$
\begin{aligned}
& \mu_{\bar{R}}(x, y)= \begin{cases}1-\mu_{R}(x, y), & \text { if }(x, y) \in A \times B \\
0, & \text { if }(x, y) \notin A \times B\end{cases} \\
& \nu_{\bar{R}}(x, y)= \begin{cases}1-\nu_{R}(x, y), & \text { if }(x, y) \in A \times B \\
1, & \text { if }(x, y) \notin A \times B\end{cases}
\end{aligned}
$$

Notation

We use the following matrix representation for IFS in $U \times U$. If the universal set $U=$ $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ and if G is an IFS in $U \times U$ with membership function μ_{G} and nonmembership function ν_{G}, then G is represented as

$$
G:\left(\begin{array}{ccc}
\left(\mu_{G}\left(a_{1}, a_{1}\right), \nu_{G}\left(a_{1}, a_{1}\right)\right) & \left(\mu_{G}\left(a_{2}, a_{1}\right), \nu_{G}\left(a_{2}, a_{1}\right)\right) & \cdots\left(\mu_{G}\left(a_{n}, a_{1}\right), \nu_{G}\left(a_{n}, a_{1}\right)\right) \\
\left(\mu_{G}\left(a_{1}, a_{2}\right), \nu_{G}\left(a_{1}, a_{2}\right)\right) & \left(\mu_{G}\left(a_{2}, a_{2}\right), \nu_{G}\left(a_{2}, a_{2}\right)\right) & \cdots\left(\mu_{G}\left(a_{n}, a_{2}\right), \nu_{G}\left(a_{n}, a_{2}\right)\right) \\
\cdots & \cdots & \cdots \\
\left(\mu_{G}\left(a_{1}, a_{n}\right), \nu_{G}\left(a_{1}, a_{n}\right)\right) & \left(\mu_{G}\left(a_{2}, a_{n}\right), \nu_{G}\left(a_{2}, a_{n}\right)\right) & \cdots\left(\mu_{G}\left(a_{n}, a_{n}\right), \nu_{G}\left(a_{n}, a_{n}\right)\right)
\end{array}\right)
$$

Example 2.1 Let $U=\{a, b\}$ and A, B be given by

$$
\begin{aligned}
A & =\{(a, 0.1,0.3),(b, 0.6,0.2)\} \\
B & =\{(a, 0.8,0.1),(b, 0.3,0.7)\}
\end{aligned}
$$

Then

$$
A \times B:\left(\begin{array}{ll}
(0.1,0.3) & (0.6,0.2) \\
(0.1,0.7) & (0.3,0.7)
\end{array}\right)
$$

Let R_{1}, R_{2} be two relations from A to B defined by

$$
R_{1}:\left(\begin{array}{cc}
(0.1,0.4) & (0.5,0.3) \\
(0.01,0.8) & (0.2,0.7)
\end{array}\right) \quad R_{2}:\left(\begin{array}{cc}
(0.05,0.5) & (0.5,0.3) \\
(0.1,0.8) & (0.2,0.7)
\end{array}\right)
$$

Then $R_{1} \cap R_{2}$ is a relation from A to B defined by

$$
R_{1} \cap R_{2}:\left(\begin{array}{ll}
(0.05,0.5) & (0.5,0.3) \\
(0.01,0.8) & (0.2,0.7)
\end{array}\right)
$$

and \bar{R}_{1} is a relation from A to B defined by

$$
\bar{R}_{1}:\left(\begin{array}{cc}
(0.1,0.6) & (0.5,0.5) \\
(0.1,0.7) & (0.3,0.7)
\end{array}\right)
$$

Definition 2.3 The composition \circ of two IFRs, R_{1} and R_{2} is defined by

$$
\begin{aligned}
\mu_{R_{1} \circ R_{2}}(x, y) & =\max _{z \in U}\left[\min \left(\mu_{R_{1}}(x, z), \mu_{R_{2}}(z, y)\right)\right] \text { and } \\
\nu_{R_{1} \circ R_{2}}(x, y) & =\min _{z \in U}\left[\max \left(\nu_{R_{1}}(x, z), \nu_{R_{2}}(z, y)\right)\right]
\end{aligned}
$$

where R_{1} is a relation from A to B and R_{2} is a relation from B to C.
Theorem 2.1 Let R_{1} be a relation from A to B and R_{2} a relation from B to C, then $R_{1} \circ R_{2}$ is a relation from A to C [8].

3 Symmetry, reflexivity and transitivity

Definition 3.1 An IFR R on IFS A is symmetric if

$$
\mu_{R}(x, y)=\mu_{R}(y, x) \quad \text { and } \quad \nu_{R}(x, y)=\nu_{R}(y, x) \text { for all } x, y \in U .
$$

Theorem 3.1 If R is symmetric, then so is R^{-1}.

Proof 3.1

$$
\begin{aligned}
\mu_{R^{-1}}(x, y) & =\mu_{R}(y, x)=\mu_{R}(x, y)=\mu_{R^{-1}}(y, x) \\
\nu_{R^{-1}}(x, y) & =\nu_{R}(y, x)=\nu_{R}(x, y)=\nu_{R^{-1}}(y, x)
\end{aligned}
$$

for all $x, y \in U$.
Theorem 3.2 R is symmetric if and only if $R=R^{-1}$.
Proof 3.2 Let R be symmetric. Then

$$
\begin{aligned}
& \mu_{R^{-1}}(x, y)=\mu_{R}(y, x)=\mu_{R}(x, y) \\
& \nu_{R^{-1}}(x, y)=\nu_{R}(y, x)=\nu_{R}(x, y) \quad \text { for all } x, y \in U .
\end{aligned}
$$

So, $R^{-1}=R$.
Conversely, let $R^{-1}=R$

$$
\begin{aligned}
\mu_{R}(x, y) & =\mu_{R^{-1}}(x, y)
\end{aligned}=\mu_{R}(y, x), ~(x, y)=\nu_{R^{-1}}(x, y)=\nu_{R}(y, x)
$$

Theorem 3.3 If R_{1} and R_{2} are symmetric IFRs on an IFS A, then $R_{1} * R_{2}$ is also symmetric on A.

Proof follows immediately from the definitions.

* could be anyone of $\cup, \cap,+, \cdot, \bigcup, \bigcap \odot, \otimes$

Note. $R_{1} \circ R_{2}$ is not in general symmetric as is obvious from the definition. The following theorem gives the condition for it being symmetric. The proof is analogous to that in [1].

Theorem 3.4 If R_{1} and R_{2} are symmetric relations on A, then $R_{1} \circ R_{2}$ is symmetric on A if, and only if, $R_{1} \circ R_{2}=R_{2} \circ R_{1}$.

Corollary. R^{n} is symmetric for all positive integer n if R is symmetric. (R^{n} is $R \circ R \cdots \circ R n$ times)

Definition 3.2 An IFR R on A is reflexive of order (α, β) if $\mu_{R}(x, x)=\alpha$ and $\nu_{R}(x, x)=\beta$ for all $x \in U$ such that $\mu_{A}(x) \neq 0$ and $\nu_{A}(x) \neq 1$.

Note.

1. Clearly $0 \leq \alpha+\beta \leq 1$
2.

$$
\begin{aligned}
\mu_{R^{-1}}(x, x) & =\mu_{R}(x, x)=\alpha, \\
\nu_{R^{-1}}(x, x) & =\nu_{R}(x, x)=\beta .
\end{aligned}
$$

So R^{-1} is reflexive of order (α, β)
3. If $\alpha=1, \beta=0$, IFS A reduces to an ordinary set.

Theorem 3.5 If R_{1} and R_{2} are reflexive IFRs on IFS A of orders (α, γ) and (β, δ) respectively, then $R_{1}^{-1}, R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1}+R_{2}, R_{1} \cdot R_{2}, R_{1} \cup R_{2}, R_{1} \cap R_{2}, R_{1} \odot R_{2}, R_{1} \otimes R_{2}$, are reflexive of orders $(\alpha, \gamma),(\max [\alpha, \beta], \min [\gamma, \delta]),(\min [\alpha, \beta], \max [\gamma, \delta]),(\alpha+\beta-\alpha \beta, \gamma \delta),(\alpha \beta, \gamma+\delta-\gamma \delta)$, $(\min [1, \alpha+\beta], \max [0, \gamma+\delta-1]),(\max [0, \alpha+\beta-1], \min [1, \gamma+\delta]),\left(\frac{\alpha+\beta}{2}, \frac{\gamma+\delta}{2}\right)$ and $(\sqrt{\alpha \beta}, \sqrt{\gamma \delta})$, respectively

Proof follows from the respective definitions.
Note. $R_{1} \circ R_{2}$ and \bar{R}_{1} are not reflexive. See [1].
Definition 3.3 Let R be an IFR on IFS A. Then R is transitive if $R \circ R \subseteq R$
Theorem 3.6 If R is a transitive relation, then so is R^{-1}.

Proof 3.3 $\mu_{R^{-1}}(x, y) \geq \mu_{R^{-1} \circ R^{-1}}(x, y)$ as in [1].

$$
\begin{aligned}
\nu_{R^{-1}}(x, y) & =\nu_{R}(y, x) \\
& \leq \nu_{R \circ R}(y, x) \\
& =\min _{Z \in U}\left[\max \left(\nu_{R}(y, z), \nu_{R}(z, x)\right)\right] \\
& =\min _{Z \in U}\left[\max \left(\nu_{R^{-1}}(x, z), \nu_{R^{-1}}(z, y)\right)\right] \\
& =\nu_{R^{-1} \circ R^{-1}}(x, y)
\end{aligned}
$$

So, $R^{-1} \circ R^{-1} \subseteq R^{-1}$.
Hence the theorem.

Lemma 3.1 If Фand Ψ are mappings from U to $[0,1]$, then

$$
\min _{Z \in U}\{\max [\Psi(z), \Phi(z)]\} \geq \max \left\{\min _{Z \in U} \Psi(z), \min _{Z \in U} \phi(z)\right\} .
$$

Proof 3.4 For one particular z,
$\min _{Z \in U} \Psi(z) \leq \Psi(z)$
$\min _{Z \in U} \Phi(z) \leq \Phi(z)$
$\max \left\{\min _{Z \in U} \Psi(z), \min _{Z \in U} \Phi(z)\right\} \leq \max \{\Psi(z), \Phi(z)\}$
$\max \{\Psi(z), \Phi(z)\} \geq \max \left\{\min _{Z \in U} \Psi(z), \min _{Z \in U} \Phi(z)\right\}$
R.H.S. is a fixed quantity. So,

$$
\min _{Z \in U}\{\max [\Psi(z), \Phi(z)]\} \geq \max \left\{\min _{Z \in U} \Psi(z), \min _{Z \in U} \Phi(z)\right\}
$$

Hence the lemma.

Theorem 3.7 If R_{1} and R_{2} are transitive on A, then so is $R_{1} \cap R_{2}$.
Proof $3.5 \mu_{R_{1} \cap R_{2}}(x, y) \geq \mu_{\left(R_{1} \cap R_{2}\right) \circ\left(R_{1} \cap R_{2}\right)}(x, y)$, see [1].

$$
\begin{aligned}
\nu_{R_{1} \cap R_{2}} & (x, y)=\max \left\{\nu_{R_{1}}(x, y), \nu_{R_{2}}(x, y)\right\} \\
& \leq \max \left\{\nu_{R_{1}}(x, y), \nu_{R_{2}^{2}}(x, y)\right\} \\
& =\max \left\{\min _{Z \in U}\left[\max \left(\nu_{R_{1}}(x, z), \nu_{R_{1}}(z, y)\right)\right], \min _{Z \in U}\left[\max \left(\nu_{R_{2}}(x, z), \nu_{R_{2}}(z, y)\right)\right]\right\} \\
& \leq \min _{Z \in U}\left[\max \left\{\max \left(\nu_{R_{1}}(x, z), \nu_{R_{1}}(z, y)\right), \max \left(\nu_{R_{2}}(x, z), \nu_{R_{2}}(z, y)\right)\right\}\right]
\end{aligned}
$$

by lemma 3.1
$=\min _{Z \in U}\left[\max \left\{\max \left(\nu_{R_{1}}(x, z), \nu_{R_{2}}(x, z)\right), \max \left(\nu_{R_{1}}(z, y), \nu_{R_{2}}(z, y)\right)\right\}\right]$
$=\min _{Z \in U}\left[\max \left\{\nu_{R_{1} \cap R_{2}}(x, z), \nu_{R_{1} \cap R_{2}}(z, y)\right\}\right]$
$=\nu_{\left(R_{1} \cap R_{2}\right) \circ\left(R_{1} \cap R_{2}\right)}(x, y)$
Therefore, $R_{1} \cap R_{2}$ is transitive.

Note. $R_{1} \cup R_{2}, R_{1}+R_{2}, R_{1} \cdot R_{2}, R_{1} \bigcup R_{2}, R_{1} \bigcap R_{2}$ are not transitive in general even if R_{1} and R_{2} are transitive. [1, 2]

Theorem 3.8 If R_{1} and R_{2} are transitive relations on an IFS A, then $R_{1} \odot R_{2}$ and $R_{1} \otimes R_{2}$ are not necessarily transitive.

Proof 3.6 This will be proved by an example.
Let $U=\{a, b, c\}$ and A be given by

$$
A=\{(a, 0.9,0.1),(b, 0.9,0.05),(c, 0,1)\} .
$$

Then

$$
A \times A:\left(\begin{array}{ccc}
(0.9,0.1) & (0.9,0.1) & (0,1) \\
(0.9,0.1) & (0.9,0.05) & (0,1) \\
(0,1) & (0,1) & (0,1)
\end{array}\right)
$$

Let R_{1}, R_{2} be relations on A defined by

$$
\begin{array}{r}
R_{1}:\left(\begin{array}{ccc}
(0.4,0.2) & (0.3,0.3) & (0,1) \\
(0.8,0.1) & (0.4,0.1) & (0,1) \\
(0,1) & (0,1) & (0,1)
\end{array}\right), \\
R_{2}:\left(\begin{array}{ccc}
(0.4,0.2) & (0.8,0.2) & (0,1) \\
(0.3,0.3) & (0.4,0.1) & (0,1) \\
(0,1) & (0,1) & (0,1)
\end{array}\right)
\end{array}
$$

One can check that $R_{1} \odot R_{2}$ and $R_{1} \otimes R_{2}$ are not transitive.
Theorem 3.9 If R is transitive, so is R^{2}.
Proof 3.7 $\mu_{R \circ R}(x, y) \geq \mu_{R^{2} \circ R^{2}}(x, y)$ as in [1].

$$
\begin{aligned}
\nu_{R \circ R}(x, y) & =\min _{Z \in U}\left[\max \left(\nu_{R}(x, z), \nu_{R}(z, y)\right)\right] \\
& \leq \min _{Z \in U}\left[\max \left(\nu_{R \circ R}(x, z), \nu_{R \circ R}(z, y)\right)\right] \\
& =\nu_{R^{2} \circ R^{2}}(x, y) \\
R^{2} \circ R^{2} & \subseteq R^{2} .
\end{aligned}
$$

Hence the theorem.

4 Conclusion

The IFRs presented in this paper are extensions of generalized fuzzy relations defined in [1].

References

[1] Chakraborthy, M. K., M. Das, Studies in fuzzy relation over fuzzy subsets, Fuzzy Sets and Systems, Vol. 9, 1983, 79-89.
[2] Mukerjee, R. Some observations on fuzzy relations over fuzzy subsets, Fuzzy Sets and Systems, Vol. 15, 1985, 249-254.
[3] Bustince, H., P. Burillo, Structures on intuitionistic fuzzy relations, Fuzzy Sets and Systems, Vol. 78, 1996, 293-303.
[4] Atanassov, K. Intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 20, 1986, No. 1, 87-96.
[5] Atanassov, K. More on intuitionistic fuzzy sets, Fuzzy Sets and Systems, Vol. 33, 1989, 37-45.
[6] Atanassov, K. Intuitionistic Fuzzy Sets, Physica-Verlag, Heidelberg, New York, 1999.
[7] Deschrijver, G., E. E. Kerre. On the composition of intuitionistic fuzzy relations, Fuzzy Sets and Systems, Vol. 136, 2003, 333-361.
[8] Varghese, A., S. Kuriakose. Intuitionistic Fuzzy Relations - A new approach, Proceedings of the International Seminar on New trends in applications of Mathematics, Bharat Mata College, Thrikkakara, Cochin, Kerala, 2011.

