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1 Introduction

A fuzzy binary relation is considered as a fuzzy subset of the set A× B where A and B are two
crisp sets. In [1], a generalization of fuzzy relations was introduced and their properties were
studied. Intuitionistic fuzzy sets, defined by K. Atanassov, helps us to model uncertainty with
an additional degree. Intuitionistic Fuzzy Relations (IFRs) has already been studied by many
researchers. Commonly, IFRs are intuitionistic fuzzy sets in a cartesian product of universes [3].
Here an attempt is made to extend IFRs to a relation between two intuitionistic fuzzy sets.

The notion of generalized IFRs is introduced in section 2. i.e., IFR defined on IFS. Then
various binary and unary operations of these relations are defined and symmetry, reflexivity and
transitivity are studied in section 3. Throughout this paper, unless otherwise stated, by a relation,
we mean an intuitionistic fuzzy binary relation defined on IFSs over the universe U .

Definition 1.1 [4] Let X be an ordinary (non fuzzy) set. An intuitionistic fuzzy set A in X is
given by

A = {(x, µA(x), νA(x))/x ∈ X}

where µA : X → [0, 1], νA : X → [0, 1] with the condition 0 ≤ µA(x) + νA(x) ≤ 1, for all
x ∈ X .
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2 Relations on intuitionistic fuzzy sets

Let U be any nonempty set and A, B be IFS in U given by the membership function µA and µB
respectively and the nonmembership functions νA and νB respectively, where

µA, µB, νA, νB : U → [0, 1].

A×B is the IFS in U × U defined by

µA×B(x, y) = min{µA(x), µB(y)}
νA×B(x, y) = max{νA(x), νB(y)}

for all x, y ∈ U .

Definition 2.1 Let R ⊆ A×B,

i.e. µR(x, y) ≤ µA×B(x, y)

and νR(x, y) ≥ νA×B(x, y)

with the condition that
0 ≤ µR(x, y) + νR(x, y) ≤ 1.

Then R is an IFR from A to B.

Definition 2.2 Let R,R1, R2 be IFRs from A to B. Then R1 ∪ R2, R1 ∩ R2, R1 + R2, R1 · R2,
R1

⋃
R2, R1

⋂
R2, R1 �R2, R1 ⊗R2, R̄ and R−1 are defined as follows:

1. µR1∪R2(x, y) = max{µR1(x, y), µR2(x, y)}
νR1∪R2(x, y) = min{νR1(x, y), νR2(x, y)}

2. µR1∩R2(x, y) = min{µR1(x, y), µR2(x, y)}
νR1∩R2(x, y) = max{νR1(x, y), νR2(x, y)}

3. µR1+R2(x, y) = µR1(x, y) + µR2(x, y)− µR1(x, y)µR2(x, y),

νR1+R2(x, y) = νR1(x, y)νR2(x, y)

4. µR1·R2(x, y) = µR1(x, y)µR2(x, y)

νR1·R2(x, y) = νR1(x, y) + νR2(x, y)− νR1(x, y)νR2(x, y)

5. µR1
⋃
R2(x, y) = min{1, µR1(x, y) + µR2(x, y)}

νR1
⋃
R2(x, y) = max{0, νR1(x, y) + νR2(x, y)− 1}

6. µR1
⋂
R2(x, y) = max{0, µR1(x, y) + µR2(x, y)− 1}

νR1
⋂
R2(x, y) = min{1, νR1(x, y) + νR2(x, y)}

7. µR1�R2(x, y) =
µR1

(x,y)+µR2
(x,y)

2

νR1�R2(x, y) =
νR1

(x,y)+νR2
(x,y)

2
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8. µR1⊗R2(x, y) =
√
µR1(x, y)µR2(x, y)

νR1⊗R2(x, y) =
√
νR1(x, y)νR2(x, y)

9. µR̄(x, y) = min{1− µR(x, y), µA×B(x, y)}

νR̄(x, y) =


max{1− νR(x, y), νA×B(x, y)} = C(x, y),

if 0 ≤ µR̄(x, y) + C(x, y) ≤ 1

µR(x, y) if µR̄(x, y) + C(x, y) > 1

10. µR−1(x, y) = µR(y, x)

νR−1(x, y) = νR(y, x) for all x, y ∈ U .

Note 1. All the above definitions are intuitionistic fuzzy relations on intuitionistic fuzzy sets.
Note 2. If A and B are ordinary subsets of U , then

µR̄(x, y) =

1− µR(x, y), if (x, y) ∈ A×B
0, if (x, y) 6∈ A×B

νR̄(x, y) =

1− νR(x, y), if (x, y) ∈ A×B
1, if (x, y) 6∈ A×B

Notation
We use the following matrix representation for IFS in U × U . If the universal set U =

{a1, a2, . . . , an} and if G is an IFS in U × U with membership function µG and nonmembership
function νG, then G is represented as

G :


(µG(a1, a1), νG(a1, a1)) (µG(a2, a1), νG(a2, a1)) · · · (µG(an, a1), νG(an, a1))

(µG(a1, a2), νG(a1, a2)) (µG(a2, a2), νG(a2, a2)) · · · (µG(an, a2), νG(an, a2))

· · · · · · · · ·
(µG(a1, an), νG(a1, an)) (µG(a2, an), νG(a2, an)) · · · (µG(an, an), νG(an, an))



Example 2.1 Let U = {a, b} and A,B be given by

A = {(a, 0.1, 0.3), (b, 0.6, 0.2)}
B = {(a, 0.8, 0.1), (b, 0.3, 0.7)}

Then

A×B :

(
(0.1, 0.3) (0.6, 0.2)

(0.1, 0.7) (0.3, 0.7)

)
Let R1, R2 be two relations from A to B defined by

R1 :

(
(0.1, 0.4) (0.5, 0.3)

(0.01, 0.8) (0.2, 0.7)

)
R2 :

(
(0.05, 0.5) (0.5, 0.3)

(0.1, 0.8) (0.2, 0.7)

)
.

15



Then R1 ∩R2 is a relation from A to B defined by

R1 ∩R2 :

(
(0.05, 0.5) (0.5, 0.3)

(0.01, 0.8) (0.2, 0.7)

)

and R̄1 is a relation from A to B defined by

R̄1 :

(
(0.1, 0.6) (0.5, 0.5)

(0.1, 0.7) (0.3, 0.7)

)
Definition 2.3 The composition ◦ of two IFRs, R1 and R2 is defined by

µR1◦R2(x, y) = max
z∈U

[min(µR1(x, z), µR2(z, y))] and

νR1◦R2(x, y) = min
z∈U

[max(νR1(x, z), νR2(z, y))]

where R1 is a relation from A to B and R2 is a relation from B to C.

Theorem 2.1 Let R1 be a relation from A to B and R2 a relation from B to C, then R1 ◦R2 is a
relation from A to C [8].

3 Symmetry, reflexivity and transitivity

Definition 3.1 An IFR R on IFS A is symmetric if

µR(x, y) = µR(y, x) and νR(x, y) = νR(y, x) for all x, y ∈ U.

Theorem 3.1 If R is symmetric, then so is R−1.

Proof 3.1

µR−1(x, y) = µR(y, x) = µR(x, y) = µR−1(y, x)

νR−1(x, y) = νR(y, x) = νR(x, y) = νR−1(y, x)

for all x, y ∈ U .

Theorem 3.2 R is symmetric if and only if R = R−1.

Proof 3.2 Let R be symmetric. Then

µR−1(x, y) = µR(y, x) = µR(x, y)

νR−1(x, y) = νR(y, x) = νR(x, y) for all x, y ∈ U.

So, R−1 = R.
Conversely, let R−1 = R

µR(x, y) = µR−1(x, y) = µR(y, x)

νR(x, y) = νR−1(x, y) = νR(y, x)
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Theorem 3.3 If R1 and R2 are symmetric IFRs on an IFS A, then R1 ∗ R2 is also symmetric on
A.

Proof follows immediately from the definitions.
* could be anyone of ∪,∩,+, ·,

⋃
,
⋂
�,⊗

Note. R1 ◦ R2 is not in general symmetric as is obvious from the definition. The following
theorem gives the condition for it being symmetric. The proof is analogous to that in [1].

Theorem 3.4 If R1 and R2 are symmetric relations on A, then R1 ◦R2 is symmetric on A if, and
only if, R1 ◦R2 = R2 ◦R1.

Corollary. Rn is symmetric for all positive integer n if R is symmetric. (Rn is R ◦ R · · · ◦ R n

times)

Definition 3.2 An IFR R on A is reflexive of order (α, β) if µR(x, x) = α and νR(x, x) = β for
all x ∈ U such that µA(x) 6= 0 and νA(x) 6= 1.

Note.

1. Clearly 0 ≤ α + β ≤ 1

2.

µR−1(x, x) = µR(x, x) = α,

νR−1(x, x) = νR(x, x) = β.

So R−1 is reflexive of order (α, β)

3. If α = 1, β = 0, IFS A reduces to an ordinary set.

Theorem 3.5 If R1 and R2 are reflexive IFRs on IFS A of orders (α, γ) and (β, δ) respectively,
thenR−1

1 ,R1∪R2,R1∩R2,R1+R2,R1 ·R2,R1

⋃
R2,R1

⋂
R2,R1�R2,R1⊗R2, are reflexive of

orders (α, γ), (max[α, β],min[γ, δ]), (min[α, β],max[γ, δ]), (α+β−αβ, γδ), (αβ, γ+ δ−γδ),
(min[1, α+β],max[0, γ+δ−1]), (max[0, α+β−1],min[1, γ+δ]), (α+β

2
, γ+δ

2
) and (

√
αβ,
√
γδ),

respectively

Proof follows from the respective definitions.
Note. R1 ◦R2 and R̄1 are not reflexive. See [1].

Definition 3.3 Let R be an IFR on IFS A. Then R is transitive if R ◦R ⊆ R

Theorem 3.6 If R is a transitive relation, then so is R−1.
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Proof 3.3 µR−1(x, y) ≥ µR−1◦R−1(x, y) as in [1].

νR−1(x, y) = νR(y, x)

≤ νR◦R(y, x)

= min
Z∈U

[max(νR(y, z), νR(z, x))]

= min
Z∈U

[max(νR−1(x, z), νR−1(z, y))]

= νR−1◦R−1(x, y)

So, R−1 ◦R−1 ⊆ R−1.

Hence the theorem.

Lemma 3.1 If Φand Ψ are mappings from U to [0, 1], then

min
Z∈U

{
max[Ψ(z),Φ(z)]

}
≥ max{min

Z∈U
Ψ(z),min

Z∈U
φ(z)}.

Proof 3.4 For one particular z,
minZ∈U Ψ(z) ≤ Ψ(z)

minZ∈U Φ(z) ≤ Φ(z)

max{minZ∈U Ψ(z),minZ∈U Φ(z)} ≤ max{Ψ(z),Φ(z)}
max{Ψ(z),Φ(z)} ≥ max{minZ∈U Ψ(z),minZ∈U Φ(z)}
R.H.S. is a fixed quantity. So,

min
Z∈U
{max[Ψ(z),Φ(z)]} ≥ max{min

Z∈U
Ψ(z),min

Z∈U
Φ(z)}

Hence the lemma.

Theorem 3.7 If R1 and R2 are transitive on A, then so is R1 ∩R2.

Proof 3.5 µR1∩R2(x, y) ≥ µ(R1∩R2)◦(R1∩R2)(x, y), see [1].

νR1∩R2(x, y) = max{νR1(x, y), νR2(x, y)}
≤ max{νR1

2(x, y), νR2
2
(x, y)}

= max{min
Z∈U

[max(νR1(x, z), νR1(z, y))],min
Z∈U

[max(νR2(x, z), νR2(z, y))]}

≤ min
Z∈U

[max{max(νR1(x, z), νR1(z, y)),max(νR2(x, z), νR2(z, y))}]

by lemma 3.1

= min
Z∈U

[max{max(νR1(x, z), νR2(x, z)),max(νR1(z, y), νR2(z, y))}]

= min
Z∈U

[max{νR1∩R2(x, z), νR1∩R2(z, y)}]

= ν(R1∩R2)◦(R1∩R2)(x, y)

Therefore, R1 ∩R2 is transitive.
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Note. R1 ∪ R2, R1 + R2, R1 · R2, R1

⋃
R2, R1

⋂
R2 are not transitive in general even if R1 and

R2 are transitive. [1, 2]

Theorem 3.8 If R1 and R2 are transitive relations on an IFS A, then R1 � R2 and R1 ⊗ R2 are
not necessarily transitive.

Proof 3.6 This will be proved by an example.
Let U = {a, b, c} and A be given by

A = {(a, 0.9, 0.1), (b, 0.9, 0.05), (c, 0, 1)}.

Then

A× A :

(0.9, 0.1) (0.9, 0.1) (0, 1)

(0.9, 0.1) (0.9, 0.05) (0, 1)

(0, 1) (0, 1) (0, 1)


Let R1, R2 be relations on A defined by

R1 :

(0.4, 0.2) (0.3, 0.3) (0, 1)

(0.8, 0.1) (0.4, 0.1) (0, 1)

(0, 1) (0, 1) (0, 1)

 ,

R2 :

(0.4, 0.2) (0.8, 0.2) (0, 1)

(0.3, 0.3) (0.4, 0.1) (0, 1)

(0, 1) (0, 1) (0, 1)


One can check that R1 �R2 and R1 ⊗R2 are not transitive.

Theorem 3.9 If R is transitive, so is R2.

Proof 3.7 µR◦R(x, y) ≥ µR2◦R2(x, y) as in [1].

νR◦R(x, y) = min
Z∈U

[max(νR(x, z), νR(z, y))]

≤ min
Z∈U

[max(νR◦R(x, z), νR◦R(z, y))]

= νR2◦R2(x, y)

R2 ◦R2 ⊆ R2.

Hence the theorem.

4 Conclusion

The IFRs presented in this paper are extensions of generalized fuzzy relations defined in [1].
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