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Abstract:   
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1 Introduction 

 
Zadeh [14] introduced the notion of fuzzy sets. After that there have been a number of 
generalizations of this fundamental concept. Atanassov [1] introduced the notion of 
intuitionistic fuzzy sets. Using the notion of intuitionistic fuzzy sets, Coker [3] introduced the 
notion of intuitionistic fuzzy topological space. In this paper we introduce the notion of 
intuitionistic fuzzy generalized semi-pre closed mappings and intuitionistic fuzzy generalized 
semi-pre open mappings and study some of their  properties. We also introduce intuitionistic 
fuzzy M-generalized semi-pre closed mappings as well as intuitionistic fuzzy M-generalized 
semi-pre open mappings. We provide the relation between intuitionistic fuzzy M-generalized 
semi-pre closed mappings and intuitionistic fuzzy generalized semi-pre closed mappings. 
 
 
2 Preliminaries 
 
Definition 2.1: [1]   An intuitionistic fuzzy set (IFS in short) A in X is an object having the 
form  

A = {〈x, µA(x), νA(x)〉 | x ∈ X} 

where the functions µA(x) : X → [0,1] and νA(x) : X → [0,1] denote the degree of membership 
(namely µA(x)) and the degree of non-membership (namely νA(x)) of each element x∈X to the 
set A, respectively, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈X. Denote by IFS(x), the set of all 
intuitionistic fuzzy sets in X. 
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Definition 2.2: [1] Let A and B be IFSs of the form   

A = {〈x, µA(x), νA(x)〉 | x ∈ X} and B = {〈x, µB(x), νB(x)〉 | x ∈ X}. 
Then 
(a) A ⊆ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νB(x) for all x ∈X; 
(b) A = B if and only if  A ⊆  B and B ⊆  A; 
(c) Ac = {〈x, νA(x), µA(x)〉 |  x ∈ X}; 
(d) A ∩ B = {〈x, µA(x) ∧ µB(x), νA(x) ∨ νB(x)〉 | x ∈ X}; 
(e) A ∪ B = {〈x, µA(x) ∨ µB(x), νA(x) ∧ νB(x)〉 | x ∈ X}. 
 
The intuitionistic fuzzy sets 0~ = {〈 x, 0, 1 〉 | x ∈ X} and  1~ = {〈 x, 1, 0 〉 | x ∈ X}   are 
respectively the empty set and the whole set of  X. For the sake of simplicity, we shall use the 
notation A =  〈x, µA, νA〉  instead of A = {〈 x, µA(x), νA(x) 〉 | x ∈ X}. 
 
Definition 2.3: [3] An intuitionistic fuzzy topology (IFT for short) on X is a family τ of IFSs in 
X satisfying the following axioms. 
(i)  0~, 1~ ∈ τ  
(ii)  G 1  ∩  G2 ∈ τ  for any G1, G2 ∈ τ 
(iii)  ∪Gi ∈ τ  for any family  {Gi |  i ∈ J} ⊆  τ. 
 
In this case the pair (X, τ) is called an intuitionistic fuzzy topological space (IFTS in short)  
and any IFS in τ is known as an intuitionistic fuzzy open set (IFOS in short) in X. The 
complement  Ac of an IFOS A in IFTS (X, τ) is called an intuitionistic fuzzy closed set (IFCS  
in short) in X. 
 
Definition 2.4:[3] Let (X, τ) be an IFTS and  A = 〈x, µA, νA〉 be an IFS in X. Then the 
intuitionistic fuzzy interior and intuitionistic fuzzy closure are defined by  
int(A) =  ∪ {G | G is an IFOS in X and G ⊆ A}. 
cl(A)  =  ∩ {K | K is an IFCS in X and A ⊆ K} 
 
Note that for any IFS A in (X, τ), we have  cl(Ac) = [int(A)]c and int(Ac) = [cl(A)]c [13]. 
 
Definition 2.5:[5] An IFS A =  〈x, µA, νA〉  in an IFTS (X, τ) is said to be an 
(i) intuitionistic fuzzy semi closed set (IFSCS in short) if int(cl(A)) ⊆ A 
(ii) intuitionistic fuzzy pre closed set (IFPCS in short) if cl(int(A)) ⊆ A 
(iii) intuitionistic fuzzy α closed set (IFαCS in short) if cl(int(cl(A)) ⊆ A. 
 
The respective complements of the above IFCSs are called their respective IFOSs. 
 
Definition 2.6:[13] An IFS A =  〈 x, µA, νA 〉  in an IFTS (X, τ) is said to be 
(i) intuitionistic fuzzy semi-pre closed set (IFSPCS for short) if there exists an IFPCS B 

such that  int(B) ⊆ A ⊆ B. 
(ii) intuitionistic fuzzy semi-pre open set (IFSPOS for short) if there exists an intuitionistic 

fuzzy pre open set (IFPOS for short) B such that B ⊆ A ⊆ cl(B). 
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The family of all IFSPCSs (respectively, IFSPOSs) of an  IFTS (X,τ) is denoted by IFSPC(X) 
(respectively IFSPO(X)). Every IFSCS (respectively IFSOS) and every IFPCS (respectively 
IFPOS) is an IFSPCS (respectively IFSPOS). But the separate converses need not be true in 
general [13]. 
 
Note that an IFS A is an IFSPCS if and only if int(cl(int(A))) ⊆ A [7]. 
 
Definition 2.7:[7] Let A be an IFS in an IFTS (X, τ). Then the semi-pre interior and the semi-
pre closure of A are defined as 
spint (A) =  ∪ {G | G is an IFSPOS in X and G ⊆ A}. 
spcl (A)  =  ∩ {K | K is an IFSPCS in X and A ⊆ K}. 
 
Note that for any IFS A in (X, τ), we have  spcl(Ac) = [spint(A)]c and  spint(Ac) = [spcl(A)]c [7] 
 
Definition 2.8:[10] An IFS A is an  

(i) intuitionistic fuzzy regular closed set (IFRCS for short) if A = cl int (A) 
(ii) intuitionistic fuzzy generalized closed set (IFGCS for short) if  cl(A) ⊆ U whenever 

A ⊆ U and U is an IFOS. 
 
Definition 2.9:[7] An IFS A in an IFTS (X,τ) is said to be an intuitionistic fuzzy generalized 
semi-pre closed set (IFGSPCS for short) if  spcl(A) ⊆ U whenever A ⊆ U and U is an  IFOS in 
(X, τ). 
 
Every IFCS, IFSCS, IFPCS, IFRCS, IFαCS, IFSPCS is an IFGSPCS but the separate 
converses may not be true in general.[7] The family of all IFGSPCSs of an  IFTS (X,τ) is 
denoted by IFGSPC(X). 
 
Definition 2.10:[7] The complement Ac of an IFGSPCS A in an IFTS (X,τ) is called an 
intuitionistic fuzzy generalized semi-pre open set (IFGSPOS for short) in X. 
 
Every IFOS, IFSOS, IFPOS, IFROS, IFαOS, IFSPOS is an IFGSPOS but the separate 
converses may not be true in general.[7] The family of all IFGSPOSs of an IFTS (X,τ) is 
denoted by IFGSPO(X). 
 
Definition 2.11:[5] Let f be a mapping from an IFTS (X, τ) into an IFTS (Y, σ). Then f is said 
to be intuitionistic fuzzy continuous (IF continuous for short) mapping if f -1(B) ∈ IFO(X) for 
every B ∈ σ. 
 
Definition 2.12:[7] If every IFGSPCS in (X, τ) is an IFSPCS in (X, τ), then the space can be 
Called as an intuitionistic fuzzy semi- pre T1/2 space (IFSPT1/2 space for short). 
 
Definition 2.13:[8]A mapping f : (X, τ) → (Y,σ) is called  an intuitionistic fuzzy generalized 
semi-pre continuous (IFGSP continuous for short) mapping if f -1(V) is an IFGSPCS in (X, τ) 
for every IFCS V of (Y, σ). 
 
Definition 2.14:[9] A map f : X  → Y is called an intuitionistic fuzzy closed mapping (IFCM 
for short) if f(A) is an IFCS in Y for each IFCS A in X.  



31 

 
Definition 2.15:[5] A map f: X  → Y is called an 

(i) intuitionistic fuzzy semi-open mapping (IFSOM for short) if f(A) is an IFSOS in Y 
for each IFOS A in X.  

(ii) intuitionistic fuzzy α-open mapping (IFαOM for short) if f(A) is an IFαOS in Y for 
each IFOS A in X.  

(iii) intuitionistic fuzzy preopen mapping (IFPOM for short) if f(A) is an IFPOS in Y for 
each IFOS A in X. 

 
Definition 2.16:[13] A mapping f: (X, τ) → (Y,σ) is called  an intuitionistic fuzzy pre regular  
closed mapping (IFPRCM for short) if f(V) is an IFRCS in (Y, σ) for every IFRCS V of (X,τ). 
 
Definition 2.17: [10] The IFS c(α, β) = 〈 x, cα, c1-β 〉 where α ∈ (0, 1],  β ∈ [ 0, 1) and  α + β ≤ 
1 is called an intuitionistic fuzzy point (IFP for short) in X.  
 
Note that an IFP c(α, β) is said to belong to an IFS A = 〈x, µA, γA〉 of X denoted by c(α, β) ∈ A 
if α ≤ µA and β ≥ γA. 
 
Definition 2.18:[9] Let c(α,β) be an IFP of an IFTS (X, τ). An IFS A of X is called an 
intuitionistic fuzzy neighborhood (IFN  for short) of c(α, β) if there exists an IFOS B in X such 
that c(α, β) ∈ B ⊆ A. 
 
Definition 2.19:[8] Let c(α,β) be an IFP in (X, τ). An IFS A of X is called an intuitionistic 
fuzzy semi neighborhood (IFSN for short) of c(α,β) if there is an IFSPOS B in X such that                   
c(α,β) ∈ B ⊆ A. 
 
Theorem 2.20: Let (X, τ) be an IFTS where X is an IFSPT1/2 space. An IFS A is an IFGSPOS 
in  
X if and only if A is an IFSN of c(α,β) for each IFP c(α,β) ∈ A. 
Proof: Necessity: Let c(α, β) ∈ A. Let A be an IFGSPOS in X. Since X is an IFSPT1/2 space, 

A is an IFSPOS in X. Then clearly A is an IFSN of c(α, β). 
 Sufficiency: Let c(α, β) ∈ A. Since A is an IFSN of c(α, β), there is an IFSPOS B in 

X such  that c(α, β) ∈ B ⊆ A. Now 
A = ∪{ c(α, β) | c(α, β) ∈ A} ⊆ ∪ {Bc(α, β) | c(α, β) ∈ A} ⊆ A. 

 This implies A = ∪{Bc(α, β) | c(α, β) ∈ A}. Since each B is an IFSPOS, A is an 
IFSPOS and  hence an  IFGSPOS in X. 

 
Theorem 2.21: For any IFS A in an IFTS (X, τ) where X is an IFSPT1/2 space, A ∈IFGSPO(X) 
if and only if for every IFP c(α, β) ∈ A, there exists an IFGSPOS B in X such that 

c(α, β) ∈ B ⊆ A. 

Proof: Necessity: If A ∈ IFGSPO(X), then we can take B = A so that c(α, β) ∈ B ⊆ A for 
every IFP c(α, β) ∈ A. 
Sufficiency: Let A be an IFS in X and assume that there exists B ∈ IFGSPO(X) such 
that c(α, β) ∈ B ⊆ A. Since X is an IFSPT1/2 space, B is an IFSPOS of X. Then 

A = ∪c(α, β) ∈A{c(α, β)} ⊆ ∪c(α, β)∈A B ⊆ A. 



32 

Therefore A = ∪c(α, β)∈A B is an IFSPOS [13] and hence A is an IFGSPOS in X.  Thus 
A ∈ IFGSPO(X). 

 
 
3 Intuitionistic fuzzy generalized semi-pre closed mappings and 

intuitionistic fuzzy generalized semi-pre open mappings. 
 
In this section we introduce intuitionistic fuzzy generalized semi-pre closed mappings and 
intuitionistic fuzzy generalized semi-pre open mappings. We study some of their properties 
 
Definition 3.1: A map f: X → Y is called an intuitionistic fuzzy generalized semi-pre closed 
mapping (IFGSPCM for short) if f(A) is an IFGSPCS in Y for each IFCS A in X. 
For the sake of simplicity, we shall use the notation A = 〈x,(µa,µb), (νa,νb)〉 instead of                        
A = 〈 x, (a/µa, b/µb), (a/νa, b/νb) 〉  in the following examples. Similarly we shall use the 
notation 
B = 〈y,(µu,µv), (νu,νv)〉 instead of  B = 〈 y, (u/µu, v/µv), (u/νu, v/νv) 〉  in the following examples.  
 
Example 3.2: Let X = {a, b}, Y = {u, v} and  

G 1  = 〈x, (0.5a, 0.6b), (0.5a, 0.4b) 〉, G2 = 〈 y, (0.3u, 0.4v), (0.7u, 0.6v) 〉. 

Then τ = {0~, G1, 1~} and σ = {0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping 
f: (X, τ)  → (Y,σ) by f(a) = u and f(b) = v. Then f is an IFGSPCM. 
 
Theorem 3.3: Every IFCM is an IFGSPCM but not conversely. 
Proof: Let f: X  → Y be an IFCM. Let A be an IFCS in X. Then f(A) is an IFCS in Y. Since 
every IFCS is an IFGSPCS, f(A) is an IFGSPCS in Y. Hence f is an IFGSPCM. 
 
Example 3.4: In Example 3.2 f is an IFGSPCM but not an IFCM, since G1

c = 〈x, (0.5a, 0.4b),          
(0.5a, 0.6b) 〉 is an IFCS in X, but f(G1

c) = 〈y, (0.5u, 0.4v), (0.5u, 0.6v) 〉 is not an IFCS in Y, 
since cl(f(G1

c)) = G2
c =   f(G1

c) 
 
Theorem 3.5: Every IFαCM is an IFGSPCM but not conversely. 
Proof: Let f: X   → Y be an IFαCM. Let A be an IFCS in X. Then f(A) is an IFαCS in Y. 
Since every IFαCS is an IFGSPCS, f(A) is an IFGSPCS in Y. Hence f is an IFGSPCM. 
Example 3.6: Let X = {a, b}, Y = {u, v} and  

G 1  = 〈 x, (0.5a, 0.4b), (0.5a, 0.6b) 〉, G2 = 〈 y, (0.8u, 0.7v), (0.2u, 0.3v) 〉. 

Then τ = {0~, G1, 1~} and σ = {0~, G2, 1~} are IFTs on X and  Y respectively. Define a mapping 
f : (X, τ)  → (Y, σ) by f(a) = u and f(b) = v. Then f is an IFGSPCM but not an IFαCM. Since 
G1

c is an IFCS in X but f(G1
c) = 〈y, (0.5u,0.6v), (0.5u, 0.4v)〉 is not an IFαCS in Y, since 

cl(int(cl(f(G1
c)))) = 1~ ⊆  f(G1

c) 
 
Theorem 3.7: Every IFSCM is an IFGSPCM but not conversely. 
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Proof: Let f : X → Y be an IFSCM. Let A be an IFCS in X. Then f(A) is an IFSCS in Y. Since 
every IFSCS is an IFGSPCS, f(A) is an IFGSPCS in Y. Hence f is an IFGSPCM. 
 
Example 3.8: In Example 3.6, f is an IFGSPCM but not an IFSCM, since Since G1

c is an 
IFCS in X but f(G1

c) = 〈y, (0.5u, 0.6v), (0.5u, 0.4v) 〉 is not an IFSCS in Y, since 
int(cl(f(G1

c))) = 1~ ⊆ f(G1
c). 

 
Theorem 3.9: Every IFPCM is an IFGSPCM but not conversely. 
Proof: Let f : X → Y be an IFPCM. Let A be an IFCS in X. Then f(A) is an IFPCS in Y. Since 
every IFPCS is an IFGSPCS, f(A) is an IFGSPCS in Y. Hence f is an IFGSPCM. 
 
Example 3.10: Let X = {a, b}, Y = {u, v} and  

G 1  = 〈 x, (0.5a, 0.4b), (0.5a, 0.6b) 〉, G2 = 〈 y, (0.2u, 0.3v), (0.8u, 0.7v)}. 

Then τ = {0~, G1, 1~}and σ = {0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping 
f : (X, τ) → (Y,σ) by f(a) = u and f(b) = v. Then f is an IFGSPCM but not an IFPCM, since 
f(G1

c) is an IFCS in Y but not an IFPCS in Y, since cl(int(f(G1
c))) ⊆  G2

c  ⊆  f(G1
c). 

 
Definition 3.11: A mapping  f : X → Y is said to be an intuitionistic fuzzy M-generalized semi-
pre closed mapping (IFMGSPCM, for short) if f(A) is an IFGSPCS in Y for every IFGSPCS A 
in X. 
Example 3.12: Let X = {a, b}, Y = {u, v} and  

G 1  = 〈 x, (0.5a, 0.6b), (0.5a, 0.4b) 〉, G2 = 〈y, (0.3u, 0.2v), (0.7u, 0.8v) 〉. 

Then τ = {0~, G1, 1~}and σ = {0~, G2, 1~} are IFTs on X and Y respectively. Define a mapping 
f: (X, τ)  → (Y,σ) by f(a) = u and f(b) = v. Then f is an IFMGSPCM. 
 
Theorem 3.13 : Every IFMGSPCM is an IFGSPCM but not conversely. 
Proof:  Let f : X → Y be an IFMGSPCM. Let A be an IFCS in X. Then A is an IFGSPCS in X. 
By hypothesis f(A) is an IFGSPCS in Y. Therefore f is an IFGSPCM. 
 
Example 3.14: Let X = {a, b}, Y = {u, v} and  

G 1  = 〈 x, (0.5a, 0.4b), (0.5a, 0.6b) 〉, 
G2 = 〈 y, (0.6u, 0.7v), (0.4u, 0.3v) 〉 

and  

G3= 〈 y, (0.7u, 08v), (0.3u, 0.2v) 〉. 

Then τ = {0~, G1, 1~} and σ = {0~, G2, G3, 1~} are IFTs on X and Y respectively. Define a 
mapping f: (X, τ)  → (Y,σ) by f(a) = u and f(b) = v. Then f is an IFGSPCM but not an 
IFMGSPCM. Since 
A = 〈x, (0.6a, 0.8b), (0.4a, 0.2b)〉 is IFGSPCS in X but f(A) = 〈y, (0.6u, 0.8v), (0.4u, 0.2v)〉 is not 
an IFGSPCS in Y, since f(A) ⊆ G3 but spcl(f(A)) = 1~ ⊆ G3. 
 

The relation between various types of intuitionistic fuzzy closedness is given in the following 
diagram.  
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The reverse implications are not true in general in the above diagram. 

Theorem 3.15: Let f : X → Y be a mapping. Then the following are equivalent if Y is an 
IFSPT1/2 space 
(i) f is an IFGSPCM 
(ii) spcl(f(A)) ⊆ f(cl(A)) for each IFS A of X. 
Proof: (i) ⇒ (ii) Let A be an IFS in X. Then cl(A) is an IFCS in X. (i) implies that f(cl(A)) is 

an IFGSPCS in Y. Since Y is an IFSPT1/2 space, f(cl(A)) is an IFSPCS in Y. Therefore 
spcl(f(cl(A))) = f(cl(A)). Now spcl(f(A)) ⊆ spcl(f(cl(A))) = f(cl(A)). Hence spcl(f(A)) 
⊆ f(cl(A)) for each IFS A of X. 

 (ii)⇒ (i) Let A be any IFCS in X. Then cl(A) = A. (ii) implies that 
spcl(f(A)) ⊆ f(cl(A)) = f(A). 

 But f(A) ⊆ spcl(f(A)). Therefore spcl(f(A))  = f(A). This implies f(A) is an IFSPCS in 
Y. Since every IFSPCS is an IFGSPCS, f(A) is an IFGSPCS in Y. Hence f is an 
IFGSPCM. 

 
Theorem 3.16: Let f : X → Y be a bijection. Then the following are equivalent if Y is an 
IFSPT1/2     space 
(i) f is an IFGSPCM 
(ii) spcl(f(A)) ⊆ f(cl(A)) for each IFS A of X 
(iii) f -1(spcl(B)) ⊆ cl(f -1(B)) for every IFS B of Y. 
Proof: (i) ⇔ (ii) is obvious from Theorem 3.15. 
 (ii) ⇒ (iii) Let B be an IFS in Y. Then f -1(B) is an IFS in X. Since f is onto, 
 spcl(B) = spcl(f(f -1(B))) and (ii) implies spcl(f(f -1(B))) ⊆ f(cl(f -1(B))). Therefore                       

spcl(B) ⊆ f(cl(f -1(B))). Now  f -1(spcl(B)) ⊆  f -1(f(cl(f -1(B))). Since f is one to one,                     
f -1(spcl(B)) ⊆ cl(f -1(B)). 

 (iii) ⇒ (ii) Let A be any IFS of X. Then f(A) is an IFS of Y. Since f is one to one, (iii) 
implies that f -1(spcl(f(A))  ⊆ cl(f -1f(A)) = cl(A). Therefore f(f -1(spcl(f(A))))  ⊆ 
f(cl(A)). Since f is onto spcl(f(A)) = f(f -1(spcl(f(A))))  ⊆ f(cl(A)).  

 
Theorem 3.17:  Let f : X → Y be an IFGSPCM. Then for every IFS A of X, f(cl(A)) is an 
IFGSPCS in Y. 
Proof: Let A be any IFS in X. Then cl(A) is an IFCS in X. By hypothesis f(cl(A)) is an 
IFGSPCS in X. 
 

IFαCM 

IFCM IFPCM IFGSPCM IFMGSPCM 

IFSCM 
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Theorem 3.18:  Let f : X → Y be an IFGSPCM where Y is an IFSPT1/2space, then   f is an 
IFCM if every IFSPCS is an IFCS in Y. 
Proof:  Let  f be an IFGSPCM.  Then for every IFCS A in X, f(A) is an IFGSPCS in Y. Since 
Y is an IFSPT1/2 space, f(A) is an IFSPCS in Y and by hypothesis f(A) is an IFCS in Y. Hence 
f is an IFCM. 
 
Theorem 3.19: Let f : X → Y be an IFGSPCM  where Y is an IFSPT1/2 space. Then f is an 
IFPRCM if every IFSPCS is an IFRCS in Y. 
Proof: Let A be an IFRCS in X. since every IFRCS is an IFCS, A is an IFCS in X. By 
hypothesis f(A) is an IFGSPCS in Y. Since Y is an IFSPT1/2 space, f(A) is an IFSPCS in Y and 
hence is an IFRCS in Y, by hypothesis. This implies that f(A) is an IFPRCM. 
 
Theorem 3.20: If every IFS is an IFCS, then an IFGSPCM is an IFGSP continuous mapping. 
Proof:  Let A be an IFCS in Y. Then f -1(A) is an IFS in X. Therefore f-1(A) is an IFCS in X. 
Since every IFCS is an IFGSPCS, f -1(A) is an IFGSPCS in X. This implies that f is an IFGSP 
continuous mapping. 
 
Theorem 3.21: Let A be an IFGCS in X. An onto mapping f : X → Y is both IF continuous 
mapping and IFGSPCM, then f(A) is an IFGSPCS in Y. 
Proof:  Let f(A) ⊆ U where U is an IFOS in Y, then A ⊆ f -1(U) where f -1(U) is an IFOS in X, 
by hypothesis. Since A is an IFGCS, cl(A) ⊆ f -1(U) in X. Hence, f(cl(A)) ⊆ f(f -1(U)) = U. But 
f(cl(A)) is an IFGSPCS in Y, since cl(A) is an IFCS in X and f is an IFGSPCM. We have 
therefore  spcl(f(cl(A))) ⊆ U. Now spcl(f(A)) ⊆ spcl(f(cl(A))) ⊆ U. Hence f(A) is an IFGSPCS 
in Y. 
 
Theorem 3.22:  A mapping f : X → Y is an IFGSPCM if and only if for every IFS B of Y and 
for every IFOS U containing f -1(B), there is an IFGSPOS A of Y such that B ⊂ A and 
f -1(A) ⊂ U. 
Proof: Necessity: Let B be any IFS in Y. Let U be an IFOS in X such that f -1(B) ⊂U, then Uc 

is an IFCS in X. By hypothesis f(Uc) is an IFGSPCS in Y. Let A = (f(Uc))c, then A is 
an IFGSPOS in Y and B ⊂ A. Now f -1(A) = f -1(f(Uc))c = (f -1(f(Uc)))c ⊂ U. 

 Sufficiency: Let A be any IFCS in X, then Ac is an IFOS in X and f -1(f(Ac))c ⊂ Ac. By 
hypothesis there exists an IFGSPOS B in Y such that f(Ac) ⊂ B and f -1(B) ⊂ Ac. 
therefore A ⊂ (f -1(B))c. Hence Bc ⊂ f(A) ⊂ f(f -1(B))c ⊂ Bc. This implies that f(A) = Bc. 
Since Bc is an IFGSPCS in Y, f(A) is an IFGSPCS in Y. Hence f is an IFGSPCM. 

 
Theorem 3.23: If f : X → Y is an IFCM and g: Y→ Z is an IFGSPCM, then g ο f is an 
IFGSPCM. 
Proof: Let A be an IFCS in X, then f(A) is an IFCS in Y, Since f is an IFCM. Since g is an 
IFGSPCM, g(f(A)) is an IFGSPCS in Z. Therefore g ο f is an IFGSPCM. 
 
Theorem 3.24: Let f : X → Y be a bijective map where Y is an IFSPT1/2 space. Then the 
following are equivalent. 
(i) f is an IFGSPCM 
(ii) f(B) is an IFGSPOS in Y for every IFOS B in X. 
(iii) f(int(B)) ⊆ cl(int(cl(f (B)))) for every IFS B in X. 
Proof: (i) ⇒ (ii) is obvious. 
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 (ii) ⇒ (iii) Let B be an IFS in X, then int(B) is an IFOS in X. By hypothesis f(int(B)) 
is an IFGSPOS in Y. Since Y is an IFSPT1/2 space, f(int(B)) is an IFSPOS in Y. 
Therefore f(int(B)) = spint(f(int(B))) = f(int(B)) ∩ cl(int(cl(f(int(B))))) ⊆ 
cl(int(cl(f(int(B))))) ⊆ cl(int(cl(f(B)))). 

 (iii) ⇒ (i) let A be an IFCS in X. Then A c is an IFOS in X. By hypothesis, f(int(Ac)) = 
f(Ac) ⊆ cl(int(cl(f(Ac))))). That is int(cl(int(f(A)))) ⊆ f(A). This implies f(A) is an 
IFSPCS in Y and hence an IFGSPCS in Y. Therefore f is an IFGSPCM. 

 
Theorem 3.25: Let f : X → Y be a bijective map where Y is an IFSPT1/2 space. Then the 
following are equivalent. 
(i) f is an IFGSPCM 
(ii) f(B) is an IFGSPCS in Y for every IFCS B in X. 
(iii) int(cl(int(f (B)))) ⊆ f(cl(B))  for every IFS B in X. 
Proof: (i) ⇒ (ii) is obvious. 
 (ii) ⇒ (iii) Let B be an IFS in X, then cl(B) is an IFCS in X. By hypothesis f(cl(B)) is 

an IFGSPCS in Y. Since Y is an IFSPT1/2 space, f(cl(B)) is an IFSPCS in Y. 
Therefore f(cl(B)) = spcl(f(cl(B))) = f(cl(B)) ∪ int(cl(int(f(cl(B))))) ⊇ 
int(cl(int(f(cl(B))))) ⊇ int(cl(int(f(B)))). 

 (iii) ⇒ (i) let A be an IFCS in X. By hypothesis, f(cl(A)) = f(A) ⊆ int(cl(int(f(A)))). 
This implies f(A) is an IFSPCS in Y and hence an IFGSPCS in Y. Therefore f is an 
IFGSPCM. 

 
Definition 3.26: A mapping f : X → Y is said to be an intuitionistic fuzzy open mapping 
(IFOM for short) if f(A) is an IFOS in Y for each IFOS A in X. 
Definition 3.27: A mapping f : X → Y is said to be an intuitionistic fuzzy generalized semi-pre 
open mapping (IFGSPOM for short) if f(A) is an IFGSPOS in Y for each IFOS in X. 
 
Theorem 3.28:  If f : X → Y is a mapping. Then the following are equivalent if Y is an 
IFSPT1/2 space 
(i) f is an IFGSPOM 
(ii) f(int(A)) ⊆ spint(f(A)) for each IFS A of X 
(iii) int(f -1(B)) ⊆ f -1(spint(B)) for every IFS B of Y. 
Proof: (i) ⇒ (ii) Let f be an IFGSPOM. Let A be any IFS in X. Then int(A)  is an IFOS in 

X. (i) implies that f(int(A)) is an IFGSPOS in Y. Since Y is an IFSPT1/2 space, 
f(intA)) is an IFSPOS in Y. Therefore spint(f(int(A))) = f(int(A)) ⊆ f(A). Now 
f(int(A)) = spint(f(int(A))) ⊆ spint(f(A)) 

 (ii) ⇒ (iii) Let B be any IFS in Y. Then f -1(B) is an IFS in X. (ii) implies that 
f(int(f -1(B))) ⊆ spint(f(f -1(B))) = spint(B). 

 Now int(f -1(B)) ⊆ f -1(f(int(f -1(B)))) ⊆ f -1(spint(B)) 
 (iii) ⇒ (i) Let A be an IFOS in X. Then int(A) = A and f(A) is an IFS in Y. (iii) 

implies that int(f -1(f(A))) ⊆ f -1(spint(f(A))). Now A = int(A) ⊆ int(f -1(f(A))) ⊆ f -

1(spint(f(A))). Therefore f(A) ⊆ f(f -1(spint(f(A)))) = spint(f(A)) ⊆ f(A). This implies 
spint(f(A)) = f(A). Hence f(A) is an IFSPOS in Y. Since every IFSPOS is an 
IFGSPOS, f(A) is an IFGSPOS in Y. Thus f is an IFGSPOM. 

 



37 

Theorem 3.29: A mapping f : X → Y is an IFGSPOM if f(spint(A)) ⊆ spint(f(A)) for every        
A ⊆ X 
Proof: Let A be an IFOS in X. Then int(A) = A. Now f(A) = f(int(A)) ⊆ f(spint(A)) ⊆ 
spint(f(A)), by hypothesis. But spint(f(A)) ⊆ f(A). Therefore f(A) is an IFSPOS in X. That is 
f(A) is an IFGSPOS in X. Hence f is an IFGSPOM. 
 
Theorem 3.30: A mapping f : X → Y is an IFGSPOM if and only if int(f -1(B)) ⊆ f -1(spint(B)) 
for every B ⊆ Y, where Y is an IFSPT1/2 space. 
Proof: Necessity: Let B ⊆ Y. Then f -1(B) ⊆ X and int(f -1(B)) is an IFOS in X. By 

hypothesis, f(int(f -1(B))) is an IFGSPOS in Y. Since Y is an IFSPT1/2 space, f(int(f -

1(B))) is an IFSPOS in Y. Therefore f(int(f -1(B))) = spint(f(int(f -1(B)))) ⊆ spint(B). 
This implies int(f -1(B)) ⊆ f -1(spint(B)). 

 Sufficiency: Let A be an IFOS in X. Therefore int(A) = A. Then f(A) ⊆ Y. By 
hypothesis int(f -1(f(A))) ⊆ f -1(spint(f(A))). That is 

int(A) ⊆ int(f -1(f(A)))  ⊆ f -1(spint(f(A))). 
 Therefore A ⊆ f -1(spint(f(A))). This implies f(A) ⊆ spint(f(A)) ⊆ f(A). Hence f(A) is 

an IFSPOS in Y and hence an IFGSPOS in Y. Thus f is an IFGSPOM. 
 
Theorem 3.31: Let f : X → Y be an onto mapping where Y is an IFSPT1/2 space. Then f is an 
IFGSPOM if and only if for any IFP c(α, β) ∈ Y and for any IFN B of f -1(c(α, β)), there is an 
IFSN A of c(α, β) such that c(α, β) ∈ A and f -1(A) ⊆ B. 
Proof: Necessity: Let c(α, β) ∈ Y and let B be an IFN of f -1(c(α, β)). Then there is an IFOS 

C in X such that f -1(c(α, β)) ∈ C ⊆ B. Since f is an IFGSPCM, f(C) is an IFGSPOS in 
Y. Since Y is an IFSPT1/2 space, f(C) is an IFSPOS in Y and 

c(α, β) ∈ f(f -1(c(α, β))) ⊆ f(C) ⊆ f(B). 

 Put A = f(C). Then A is an IFSN of c(α, β) and c(α, β) ∈ A ⊆ f(B). Thus c(α, β) ∈ A 
and  f -1(A) ⊆ f -1(f(B)) = B. That is f -1(A) ⊆ B. 

 Sufficiency: Let B ⊆ X be an IFOS. If f(B) = 0~ then there is nothing to prove. 
Suppose that  c(α, β) ∈ f(B). This implies f -1(c(α, β)) ∈ B. Then B is an IFN of 
f -1(c(α, β)). By hypothesis there is an IFSN A of c(α, β) such that c(α, β) ∈ A and 
f -1(A) ⊆ B. Therefore there is an IFSPOS C in Y such that 

c(α, β) ∈ C ⊆ A = = f(f -1(A)) ⊆ f(B). 

 Hence f(B) = ∪{c(α, β) | c(α, β) ∈ f(B} ⊆ ∪{Cc(α, β) | c(α, β) ∈ f(B)} ⊆ f(B). Thus 
f(B) = ∪{Cc(α, β) | c(α, β) ∈ f(B)}. Since each C is an IFSPOS, f(B) is also an IFSPOS 
and hence is an IFGSPOS in Y. Therefore f is an IFGSPOM. 

 
Theorem 3.32: If f : X → Y is a mapping, then the following are equivalent. 
(i) f is an IFMGSPCM 
(ii) f(A) is an IFGSPCS in Y for every IFGSPCS A in X 
(iii) f(A) is an IFGSPOS in Y for every IFGSPOS A in X 
Proof: (i) ⇔ (ii) is obvious from the Definition 3.11. 
 (ii) ⇒ (iii) Let A be an IFGSPOS in X Then Ac is an IFGSPCS in X. By hypothesis, 

f(Ac) is an IFGSPCS in Y. That is f(A)c is an IFGSPCS in Y and hence f(A) is an 
IFGSPOS in Y. 
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 (iii) ⇒ (i) Let A be an IFGSPCS in X Then Ac is an IFGSPOS in X. By hypothesis, 
f(Ac) is an IFGSPOS in Y. That is f(A)c is an IFGSPOS in Y and hence f(A) is an 
IFGSPCS in Y. Hence f is an IFMGSPCM. 

 
Theorem 3.33: Let f : X → Y be a bijective mapping, where X is an IFSPT1/2 space. Then the 
following are equivalent. 
(i) f is an IFMGSPCM 
(ii) for each IFP c(α, β) ∈ Y and every IFSN A of f -1(c(α, β)), there exists an IFGSPOS B in 

Y such that c(α, β) ∈ B ⊆ f(A). 
(iii) for each IFP c(α, β) ∈ Y and every IFSN A of f -1(c(α, β)), there exists an IFGSPOS B in 

Y such that c(α, β) ∈ B and f -1(B) ⊆ A. 
Proof: (i) ⇒ (ii) Let c(α, β) ∈ Y and A the IFSN of f -1(c(α, β)). Then there exists an 

IFSPOS C in X such that f -1(c(α, β)) ∈ C ⊆ A. Since every IFSPOS is an IFGSPOS, 
C is an IFGSPOS in X. Then by hypothesis, f(C) is an IFGSPOS in Y. Now 
c(α,β) ∈ f(C) ⊆ f(A). Put B = f(C). This implies c(α, β) ∈ B ⊆ f(A). 

 (ii) ⇒ (iii) Let c(α, β) ∈ Y and A the IFSN of f -1(c(α, β)). Then there exists an 
IFSPOS C in X such that f -1(c(α, β)) ∈ C ⊆ A. Since every IFSPOS is an IFGSPOS, 
C is an IFGSPOS in X. Then by hypothesis, f(C) is an IFGSPOS in Y. Now 

c(α, β) ∈ f(C) ⊆ f(A). 
Put B = f(C). This implies c(α, β) ∈ B ⊆ f(A). Now f -1(B) ⊆ f -1(f(A)) ⊆ A. That is 
f -1(B) ⊆ A. 

 (iii) ⇒ (i) Let A be an IFGSPOS in X. Since X is an IFSPT1/2 space, A is an IFSPOS 
in X. Let c(α, β) ∈ Y and f -1(c(α, β)) ∈ A. That is c(α, β) ∈ f(A). This implies A is an 
IFSN of f -1(c(α, β)). Then by hypothesis, there exists an IFGSPOS B in Y such that 
c(α, β) ∈ B and f -1(B) ⊆ A. Hence by Theorem 2.21, f(A) is an IFGSPOS in Y. 
Therefore f is an IFMGSPCM 

 
Theorem 3.34: If f : X → Y  is a bijective mapping, then the following are equivalent. 
(i) f is an IFMGSPCM 
(ii) f(A) is an IFGSPOS in Y for every IFGSPOS A in X 
(iii) for every IFP c(α, β) ∈ Y and for every IFGSPOS B in X such that f -1(c(α, β)) ∈ B, 

there exists an IFGSPOS A in Y such that c(α, β) ∈ A and f -1(A) ⊆ B. 
Proof: (i) ⇒ (ii) is obvious by Theorem 3.32. 
 (ii) ⇒ (iii) Let c(α, β) ∈ Y and let B be an IFGSPOS in X such that f -1(c(α, β)) ∈ B. 

This implies  c(α, β) ∈ f(B). By hypothesis, f(B) is an IFGSPOS in Y. Let A = f(B). 
Therefore  c(α, β) ∈ f(B) = A and f -1(A) = f -1(f(B)) ⊆ B. 

 (iii) ⇒ (i) Let B be an IFGSPCS in X. Then Bc is an IFGSPOS in X. Let c(α, β) ∈ Y 
and f-1(c(α, β)) ∈ Bc. This implies c(α, β) ∈ f(Bc). By hypothesis there exists an 
IFGSPOS A in Y such that c(α, β) ∈ A and f -1(A) ⊆ Bc. Put A = f(Bc). Then c(α, β) ∈ 
f(Bc) and A = f(f-1(B c)) ⊆ f(B c). Hence by Theorem 2.21, f(Bc) is an IFGSPOS in Y. 
Therefore f(B) is an IFGSPCS in Y. Thus f is an IFMGSPCM. 

 
Theorem 3.35: If f : X → Y is a bijective mapping, then the following are equivalent. 
(i) f is an IFMGSPCM 
(ii) f(A) is an IFGSPOS in Y for every IFGSPOS A in X 
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(iii) f(spint(B)) ⊆ spint(f(B)) for every IFS B in X 
(iv) spcl(f(B)) ⊆ f(spcl(B)) for every IFS B in X. 
Proof: (i) ⇒ (ii) is obvious. 
 (ii) ⇒ (iii) Let B be any IFS in X. Since spint(B) is an IFSPOS, it is an IFGSPOS in 

X. Then by hypothesis, f(spint(B)) is an IFGSPOS in Y. Since Y is an IFSPT1/2 space, 
f(spint(B)) is an IFSPOS in Y. Therefore f(spint(B)) = spint(f(spint(B))) ⊆ spint(f(B)). 

 (iii) ⇒ (iv) can easily proved by taking complement in (iii). 
 (iv) ⇒ (i) Let A be an IFGSPCS in X. By hypothesis, spcl(f(A)) ⊆ f(spcl(A)). Since X 

is an IFSPT1/2 space, A is an IFSPCS in X. Therefore, 

spcl(f(A)) ⊆ f(spcl(A)) = f(A) ⊆ spcl(f(A)). 
 Hence f(A) is an IFSPCS in Y and hence an IFGSPCS in Y. Thus f is an IFMGSPCM. 
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