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Abstract: A generalization of the notion of intuitionistic fuzzy sct is given in the spirit of
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1. Introduction

An intuitionistic fuzzy set (IFS) A, for a given underlying set E is represented
by a pair (u,, v4) of functions E— [0, 1]. For x € E, p,(x) gives the degree of
membership to A, v4(x) gives the degree of non-membership. This interpretation
entails the natural restriction

Ba(x) + va(x) <1.

Clcarly ordinary fuzzy sets (FS) over E may be viewed as special cases of
IFS’s — here the degree of membership is the only necessary data, i.e. ordinary
fuzzy sets are to be considered as IFS’s with the additional condition

Va(x) =1— pa(x).

The theory of IFS’s is developed in [1]. In the present paper we begin the
investigation of a generalization of this notion —-the interval valued IFS’s
(IVIFS’s), but we first consider the relationship between IFS’s and another
generalization of FS’s — the interval valued FS’s (IVFS’s, cf. e.g. [2]).

2. IVFS and IFS

A generalization of the notion of fuzzy set, proposed by some researchers in
the area in the seventies (cf. e.g. [2]), is the so-called interval valued fuzzy set.
Here we give a definition and establish that in a sense interval valued fuzzy sets

are a version of the IFS (or if you like — the other way around!).

0165-0114/89/$3.50 ©) 1989, Elsevier Science Publishers B.V. (North-Holland)



344 K. Atanassov, G. Gargov

Definition 1. An interval valued fuzzy set A (over a basic set E) is given by a
function M,(x). where M, : E— INT([0, 1]), the set of all subintervals of the unit
interval, i.e. for every x € E, M,(x) is an interval within [0, 1].

The justification of this generalization lies in the following observation:
sometimes it is not appropriate to assume that the degrees of membership for
certain elements of E are exactly defined, so we admit a kind of further
uncertainty — the value of M, is not a number anymore, but a whole interval. Let
us denote such objects by IVFS.

Definition 2. (a) The map f assigns to every IVFS A an IFS
B =f(A)

given by
ug(x) = inf Mu(x), va(x) = sup Mu(x).

(») The map g assigns to every IFS B an IVFS

A=g(B)

given by
Mu(x) = [#a(x), 1 — va(x)).

The relationship between the two generalizations mentioned above - the IFS
and the IVFS - is given in the following lemma.

Lemma . () For every IVFS A, g(f(A)) = A.
{b) For every IFS B, f(g(R))=B.

Proof. (a) Let A be an IVFS. Then for every x € E,

Mgran(x) = [rcar(x), 1= V) (x)]
= [inf My(x), 1 — 1 + sup M, (x)]
= M,(x),
since M,(x) is an interval.
(b) Let B be an IFS. Then for every x ¢ E,
Hren(x) = inf My(g)(x)
= influs(x), 1 - va(x)]
= up(x),
Treen(x) = 1 — sup Myg)(x)
=1 - sup[up(x). 1 = va(x)]
= vg(x).

This shows IFS and IVFS to be equipollent generalizations of the notion of ES.

But the definition of IFS allows a further generalization — to be considered in the
next section.
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3. The basic theory of IVIFS

Let a set E be fixed. An interval valued intuitionistic fuzzy sets (IVIFS) A over
E is an object having the form

A= {(x, Ma(x), No(x)): x € E},
where M4(x) = [0, 1] and N,(x) = [0, 1] are intervals and for every x € E,
sup My(x) +sup Ny(x) < 1.
For every two IVIFS’s A and B the following relations, operations and
operators are valid (by analogy from [1]):
A c B iff (Vx € E)(sup M,(x) < sup Mp(x) & inf M,(x) < inf Mp(x)
& sup N4(x) = sup Np(x) & inf Ny(x) = inf Ng(x));
A=B iff AcB&BcA;
A= {(x, No(x), Ms(x)): x € E};
AN B = {(x, [min(inf M4(x), inf Mp(x)), min(sup M, (x), sup Mz(x))],
[max(inf Ny(x), inf Np(x)), max(sup N,(x), sup Np(x))]): x € E};
AU B = {{x, [max(inf M4(x), inf Mp(x)), max(sup M,(x), sup Mp(x))],
[min(inf N4(x), inf Np(x)), min(sup N4(x), sup Np(x))]): x € F};
0A = {{x, M,(x), [inf N4(x), 1 — sup M,(x)]): x € E};
QA = {(x, [inf M4(x), 1 —sup Na(x)], Na(x)): x € E}.

Theorem 1. For every IVIFS A:

(a) (OA)™ = 04:
(b) (0A4)” =0A4;
(c) OAcAcQA;
(d) 00A =0A4;
(e) O0A = (A;
(f) 00A=D0A4;
(8) 004 =0A.
Proof. (a):

(OA)~ = (O{{x, Na(x), Ma(x));x € E})”
= {{x, N,(x), [inf Ms(x), 1 —sup Ny(x)]); x € E}~
= {<x’ [mf MA(x)! 1-—sup NA(x)]» NA(x»;x € E}
=(A;

(b): is proved analogically;
(c): From sup N4(x)<1 —sup M.(x) it follows that 0AcA. The other
inclusion foliows analogically:



346 K. Atanassov, G. Gargov
(@:
O0A = O{(x, M,(x), [inf Ny(x), 1 — sup Ms(x)]): x e E}
= {(x, M4(x), [inf[inf Ny(x), 1 — sup M4(x)], 1 —sup M,(x)]): x € E}
= {(x, My(x), [inf Ny(x), 1 —sup M4(x)]): x e E}
=[A;
(e)-(g) are proved analogically.

Theorem 2. For every two IVIFS’s A and B:
(a) (ANB) =AUB;
(b) (AUBY" =ANB.
Proof. (a):
(AN B) = {{x, No(x), Ms(x)): x € E} N {{x, Ng(x), Mg(x)): x € E}~
= {(x, [min(inf N4(x), inf Ng(x)), min(sup N4(x), sup Nz(x))],
[max(inf M4(x), inf Mp(x)), max(sup M4(x), sup Mz(x))};x € E}~
= {(x, [max(inf M,(x), inf Mp(x)), max(sup M,4(x), sup Mp(x))],
[min(inf N(x), inf Np(x)), min(sup N,(x), sup N3(x))]): x € £}
=AUB,;
(b} is proved analogically.
Theorem 3. For every two IVIFS's A and B:
(a) D(AUB)=DAUDOB; -
(b) CI(A N B)=0ANOB;
(c) 0(AUB)=(0AU {B;
(d) 0(ANB)=0AN OB.
Proof. (a):
0O(A U B) = O{(x, [max(inf M4(x), inf M5{x)), max(sup M4(x), sup Mz(x))],
[min(inf N4(x), inf Ng(x)), min(sup N,(x), sup Nz(x))]): x € E}
= {(x, [max(inf M,4(x), inf Mp(x)), max(sup M,(x), sup Mg(x))],
[inflmin(inf N,(x), inf Np(x)), min(sup N,(x), sup Ng(x))],
1 — sup[max(inf M4(x), inf Mg(x)),
max{(sup M,(x), sup Mz(x))]]): x € E}
= {(x, [max(inf M4(x), inf Mp(x)), max(sup M4(x), sup Mp(x))],
[min(inf N,4(x), inf Np(x)), 1 — max(sup M4(x), sup Mp(x))]): x € E}
= {(x, [max(inf M, (x). inf Ms(x)), max(sup M,(x), sup Mg(x))],
[min(inf N, (x), inf Np(x)),
min{l — sup M,(x), 1 — sup Mp(x))]): x € E}
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= {(x, My(x), [inf N,,(x), 1 —sup M,(x)]): x € E}
U {{x, Mp(x), [inf Np(x), 1 — sup Mp(x)]): x € E}
=0AU0OB; '

(b) is proved analogically;
(d): From (a) and from Thzorems 1(a, b) and 2 follows tiat:

0ANB)=(3(ANB)" )" =(0OAUB))
=(0AVDB) =(0A)" N(OB) = 0AN{B;
(c) is proved analogically.

An operator which associates to every IVIFS and IFS can be defined. Let A be
an IVIFS. Then we set

* A = {(x, inf M,(x), inf Ny(x)): x € E}.

Theorem 4. For every IVIFS A:

(a) *[0A=#%A;

(b) *QA=*A;

(c) *A=*A.
Proof. (a):

*0A = *[(x, My(x), [inf Na(x), 1 - sup M,(x)]): x € E}
= {(x, inf M4(x), inf Ny(x)): x = E}
= %A;
(b) is proved analogically;
(c):
%A = »{(x, No(x), Ma(x)): x € E}
= {(x, inf Ny(x), inf My(x)): x € E}
= {(x, inf M4(x), inf Ny(x)): x e E}~
= %A,
Theorem 5. For every two IVIFS’s A and B:
(a) *(AUB)=*AU *B;
(b) *(ANB)=*AN *B.
Proof. (a):
*(A U B) = * {{x, [max(inf M,(x), inf Mp(x)), max(sup M,(x), sup Mg(x))],
(min(inf N4(x), inf Ng(x)), min(sup N4(x), sup Ng(x))]): x e E}
= {(x, max(inf M,(x), inf Mg(x)), min(intf N4(x), inf Ng(x))): x € E}
= {(x, inf M4(x), inf Ny(x)):x € E}U {{x, inf Mg(x)), inf Ng(x)):x € E}
=*xAU *B.
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Definition 3. Let A be an IFS. We shall define:

#(A) = {B: B = {(x, Mp(x), Ng(x)): x € E}

& (Vx € E)(sup Mg(x) + sup Np(x)<1)

& (Vx € E)(inf Mp(x) = ua(x) & sup Np(x) =< v4{z))},
V(A) = {B: B = {{x. Mg(x), Np(x)): x € E}

& (Vx € E)(sup Mg(x) + sup Ng(x)<1)

& (Vx € E)(sup Mp(x) < pa(x) & inf Np(x) = v,(x)))

Theorem 6. For every IFS A:
(a) #(A)={B:Ac *B};
(b) V(A) = {B: *Bc A}.

Proof. (a) Let C € #(A). Then
C = {(x, Mc(x), Nc(x)): x e E}

and
(Vx € E)(sup Mc(x) + sup Ne(x) <1)
& (Vx € E)(inf Mc(x) = pa(x) & sup Ne(x) < v, (x))}.

Then C is an IVIFS and
* C = {{x, inf Mc(x), sup Nc(x)): x € E}

andAc *C, i.e. Ce {B:Ac B},
In the opposite direction we argue analogically.
(b) is proved in the same manner.

Definition 4. A non-empty set X of subsets of a certain set is called a filte- if it
has the following properties:

(1) fae X and ac b, then b € X;;

(2) a, b e X impliesanb e X.

Definition 5. A non-empty set X of subsets of a certain set is called an ideal if it
has the following properties:

(1) faeXand bca, then be X;

(2) a, be X impliesaUb e X.

Theorem 7. For every IFS A:
(a) #(A) is a filter,
(b) V(A) is an ideal.

Proof. {2) Obviously A € #(A), i.e. #(A4) is non-empty. Let C e #(4) and
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C c D. Then
(Vx € E)(inf Mc(x) < inf Mp(x) & sup Mc(x) < sup Mp(x)
& inf Nc(x) = inf Np(x) & sup Ne(x) = sup Np(x)),
i.e.
(Vx € E)(ua(x) < inf Mp(x) & sup Np(x) = v,(x)).

Hence D € #(A).
Let C, D € #(A). Then

C N D = {(x, [min(inf Mc(x), inf Mp(x)), min(sup Mc(x), sup Mp(x))),
[max(inf Ne(x), inf Np(x)), max(sup Nc(x), sup Np(x))]): x € E},
from which
*(C N D) = {{x, min(inf Mc(x), inf Mp(x)), max(inf Nc(x), inf Np(x))): x € E}.
From
pa(x) < min(inf Mc(»), inf Mp(x)), va(x) = max(sup N¢(x), sup Np(x))

it fcllows that A ¢ *(C N D), i.e. CN D e #{A). Therefore #(A) is a filter.
(b) is proved analogically.
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