A new operator over intitionistic fuzzy sets

Lilija Atanassova
Institute of Information and Communication Technologies, Bulgarian Academy of Sciences
Acad. G. Bonchev Str., Bl. 2, Sofia-1113, Bulgaria
e-mail: l.c.atanassova@gmail.com

Received: 3 February 2020
Accepted: 28 March 2020

Abstract

A new operation is introduced over the intuitionistic fuzzy sets. Some of its properties are studied. It is a basis for introducing a new operator from the "weight-center" topological operator type over an intuitionistic fuzzy set.

Keywords: Intuitionistic fuzzy operation, Intuitionistic fuzzy operator, Weight-center operator. 2010 Mathematics Subject Classification: 03E72.

1 Introduction

In [1] some operations were introduced over Intuitionistic Fuzzy Sets (IFSs, see [1, 2]) and their properties were studied. In [2] it was mentioned that a part of these operations had not been used for any real purposes, and in the second book, they were omitted.

In the present research, a new operation is introduced and we hope that it will find its real applications.

2 Main results

First, following [1, 2], we mention that if the set E is fixed, then the IFS A in E is defined by:

$$
A=\left\{\left\langle x, \mu_{A}(x), \nu_{A}(x)\right\rangle \mid x \in E\right\},
$$

where functions $\mu_{A}: E \rightarrow[0,1]$ and $\nu_{A}: E \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu_{A}(x)+\nu_{A}(x) \leq 1 .
$$

Now, for two IFSs A and B such that for each $x \in E$:

$$
\begin{equation*}
\mu_{A}(x)+\nu_{A}(x)+\mu_{B}(x)+\nu_{B}(x)>0, \tag{1}
\end{equation*}
$$

we define
$A \triangle B=\left\{\left.\left\langle x, \frac{\mu_{A}(x)+\mu_{B}(x)}{\mu_{A}(x)+\nu_{A}(x)+\mu_{B}(x)+\nu_{B}(x)}, \frac{\nu_{A}(x)+\nu_{B}(x)}{\mu_{A}(x)+\nu_{A}(x)+\mu_{B}(x)+\nu_{B}(x)}\right\rangle \right\rvert\, x \in E\right\}$.
Let us assume that if the condition (1) is not satisfied for some $y \in E$, then

$$
\left\langle y, \frac{\mu_{A}(x)+\mu_{B}(x)}{\mu_{A}(x)+\nu_{A}(x)+\mu_{B}(x)+\nu_{B}(x)}, \frac{\nu_{A}(x)+\nu_{B}(x)}{\mu_{A}(x)+\nu_{A}(x)+\mu_{B}(x)+\nu_{B}(x)}\right\rangle=\langle y, 0,0\rangle .
$$

We can check that operation \triangle is commutative, but not associative.
For the case of Intuitionistic Fuzzy Pairs (IFPs, see [3]), it has the form

$$
\langle a, b\rangle \triangle\langle c, d\rangle=\left\langle\frac{a+c}{a+b+c+d}, \frac{b+d}{a+b+c+d}\right\rangle,
$$

where $a, b, c, d \in[0,1]$ and $a+b \leq 1, c+d \leq 1$ such that $a+b+c+d>0$. For the case, when $a+b+c+d=0$ we can assume as above that

$$
\langle 0,0\rangle \triangle\langle 0,0\rangle=\langle 0,0\rangle .
$$

For this (simpler) case, checking that operation \triangle is not associative is easier.
We check that

$$
\begin{aligned}
\langle a, b\rangle \triangle\langle 1,0\rangle & =\left\langle\frac{a+1}{a+b+1}, \frac{b}{a+b+1}\right\rangle \\
\langle a, b\rangle \triangle\langle 0,0\rangle & =\left\langle\frac{a}{a+b}, \frac{b}{a+b}\right\rangle \\
\langle a, b\rangle \triangle\langle 0,1\rangle & =\left\langle\frac{a}{a+b+1}, \frac{b+1}{a+b+1}\right\rangle \\
\langle a, b\rangle \triangle\langle a, b\rangle & =\left\langle\frac{a}{a+b}, \frac{b}{a+b}\right\rangle
\end{aligned}
$$

Having in mind the well-known IFS-triangular interpretation from Figure 1, we will show step-by-step the way for receiving a point

$$
\left\langle\frac{a+c}{a+b+c+d}, \frac{b+d}{a+b+c+d}\right\rangle
$$

when we have points $\langle a, b\rangle$ and $\langle c, d\rangle$.

Figure 1. Geometric interpretation of the element x ofthe IFS A.

In Figure 2, we draw section with length $a+c+b+d$ (see Figure 2). There are different cases for the length of this section in comparison with 1 , but the procedure for all they is similar.

Figure 2. First step of the algorithm for determining the element x from the geometric interpretation of the element x of the IFS $A \triangle B$.

We fit together the point with coordinates $\langle a+b+c+d, 0\rangle$ with the point with coordinates $\langle 0,1\rangle$ (see Figure 3), constructing a line. After this, we construct a line from point $\langle a+c, 0\rangle$ that is parallel with the previous one. It cut the ordinate in point P. It is calculated easy that the coordinates of point P are

$$
\left\langle 0, \frac{a+c}{a+b+c+d}\right\rangle .
$$

Figure 3. Second step of the algorithm for determining the element x from the geometric interpretation of the element x of the IFS $A \triangle B$.

We construct a line from point P that is parallel to the hypothenuse of the IFS-interpretation triangle. The line cut the absciss in point Q (see Figure 4). Its coordinates are

$$
\left\langle\frac{a+c}{a+b+c+d}, 0\right\rangle .
$$

Finally, we construct a perpendicular from point Q to the hypothenuse of the IFS-interpretation triangle. The perpendicular cut the hypothenuse in point R (see Figure 5). Its coordinates are

$$
\left\langle\frac{a+c}{a+b+c+d}, \frac{b+d}{a+b+c+d}\right\rangle .
$$

Figure 4. Third step of the algorithm for determining the element x from the geometric interpretation of the element x of the IFS $A \triangle B$.

Figure 5. Fourth step of the algorithm for determining the element x from the geometric interpretation of the element x of the IFS $A \triangle B$.

Therefore, point R represents the IFP that is a result of $\langle a, b\rangle \triangle\langle c, d\rangle$.
We can extend operation \triangle from binary to n-ary form for n IFPs $\left\langle a_{1}, b_{1}\right\rangle,\left\langle a_{2}, b_{2}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle$, as follows:

$$
\triangle\left(\left\langle a_{1}, b_{1}\right\rangle,\left\langle a_{2}, b_{2}\right\rangle, \ldots,\left\langle a_{n}, b_{n}\right\rangle\right)=\left\langle\frac{\sum_{i=1}^{n} a_{i}}{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)}, \frac{\sum_{i=1}^{n} b_{i}}{\sum_{i=1}^{n}\left(a_{i}+b_{i}\right)}\right\rangle .
$$

Now, we return to the IFS-form of the operation \triangle. When E is a finite set, we define the operator

$$
\boldsymbol{\otimes} A=\left\{\left.\left\langle x, \frac{\sum_{x \in E} \mu_{A}(x)}{\sum_{x \in E}\left(\mu_{A}(x)+\nu_{A}(x)\right)}, \frac{\sum_{x \in E} \nu_{A}(x)}{\sum_{x \in E}\left(\mu_{A}(x)+\nu_{A}(x)\right)}\right\rangle \right\rvert\, x \in E\right\} .
$$

We can see that

$$
\triangle \otimes A=\triangle A .
$$

3 Conclusion

In [4] a procedure for de-i-fuzzification is described. It juxtaposes to each IFP $\left\langle\mu_{A}(x), \nu_{A}(x)\right\rangle$ related to element $x \in E$ the IFP

$$
\left\langle\frac{\mu_{A}(x)}{\mu_{A}(x)+\nu_{A}(x)}, \frac{\nu_{A}(x)}{\mu_{A}(x)+\nu_{A}(x)}\right\rangle .
$$

Therefore, we can represent the results of this procedure by one of both formulas

$$
A \triangle A
$$

or

$$
A \otimes O^{*},
$$

where

$$
O^{*}=\{\langle x, 0,1\rangle \mid x \in E\} .
$$

References

[1] Atanassov, K. (1999). Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg.
[2] Atanassov, K. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
[3] Atanassov, K., Szmidt, E. \& Kacprzyk, J. (2013). On Intuitionistic Fuzzy Pairs, Notes on Intuitionistic Fuzzy Sets, 19 (3), 1-13.
[4] Atanassova, V. \& Sotirov, S. (2012). A new formula for de-i-fuzzification of intuitionistic fuzzy sets. Notes on Intuitionistic Fuzzy Sets, 18 (3), 49-51.

