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1 Introduction

The fuzzy coloring and total fuzzy coloring concepts is incited to intuitionistic fuzzy graphs, and
then analyzed with its fuzzy vertex chromatic number, fuzzy edge chromatic number and the total
fuzzy chromatic number with their indexes utilizing the concepts of fuzzy coloring and total fuzzy
coloring.
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2 Preliminaries

Definition 2.1. An Intuitionistic fuzzy graph is of the form G = (V, E), where
(i) V = {v,v9,...,0,} suchthaty, : V. — [0,1] andv; : V — [0,1] notate degrees of
membership and non-membership of the element v; € V, respectively, and 0 < pi1 (v;) 411 (v;) < 1,
forallv, € V,(i=1,2,...,n).
(i) E C V x V where p;; : V xV —[0,1] and v;; : V x V — [0, 1] such that

pij < min g, 5}

vi; < max{v;, v;}

Also 0 < py (v5,v5) + v (v;,v;) < 1forall (v;,v;) € E [6].
The triplets (v;, pt1;, v1;) and (e;5, f2:5, v2:;) denotes the degrees of membership and non-membership
of vertex v; and edge relation e;; = (v;,v;) on V' x V.

Note 2.1. [1] (i) When p9;; = v2;; = 0 for some ¢ and j, then there is no edge between v; and v;.
Otherwise there exists an edge between v; and v;.
(i1) If one of the inequalities is not satisfied in (i) and (ii), then G is not an IFG.

Definition 2.2. The family ' = {~;, 72,73, ..., 7} are fuzzy sets in V' called k-fuzzy coloring
of G = (V, E) when

1. vD=0
2. Yi /\’Yj =0
3. YV xy, the strong edge of G, A {; (2) iy =0,(1<i<k).

Definition 2.3. The family I" = {~1,72,73, ..., 7} of intuitionistic fuzzy sets on a set V' called
k-vertex coloring [5] of G = (V, E)) when

l. Vyi(z) =VVax eV
2. Yi /\’)/j =0

3. Vay, strong edge of G, min {y; (11(x)) , 3(s11 (y))} = 03 max {3 (1 (1)), 7i(v2 ()} = 1,
(1<i<k).

The Minimal utility of £ of G having k-vertex coloring is denoted by X(@), implies vertex
chromatic number of an intuitionistic fuzzy graph G.

Definition 2.4. The family I' = {~1,72,73, ..., } of intuitionistic fuzzy sets on E, the k-edge
coloring of G = (V, E) when

l. Vyi(zy) =EVaye E
2. Yi VAN Vi = 0
3. Vay, incident edges of E, min {~; (u2(xy))} = 0; max {v; (va2(zy))} =1, (1 <i<k).

The minimal utility of k of G having k- edge coloring denoted by x’ (@), implies edge chromatic
number of an IFG G.
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Definition 2.5. The family ' = {71,792, 73, - - - , 7 } of intuitionistic fuzzy sets on V and F, k-total
coloring of G = (V, E) when

. Vyi(x) Vyi(zy) =V VEVYz eV, zy e £
2. %Ay =0
3. V ay, strong and incident vertices and edges of G, min {7 (11 (2)) , vi(p1 (), % (pa(zy))} =
0; max {; (v1(2)), i(v1(y), % (v2(ay))} = 1, (1 <0 < k).
In G, the minimal utility of k£ having a k-total coloring denoted by XT(@ ), implies total chromatic
number of an IFG G.

3 Fuzzy coloring of an intuitionistic fuzzy graph

Generally, mixing any of two distinct colors, a new color is obtained. But, when white color is
mixed with any one of the distinct color, the solidity of the distinct color gets reduced to some
extent. Here the term solidity refers to the fuzzy term. Starting with a color Cy and w(<1) units of
color (Y is mixed with 1 — w units of white, we obtain a standard mixture of C, , and the resulting
color is a fuzzy color of C;, with membership value w.

3.1 Definition

Let C = C1,Co, ..., Cnyn > 1 be as set of distinct colors. The fuzzy set (C, f) is called the set of
fuzzy colors where f : C' — [0, 1], with f(¢;), the membership value of the color ¢; , is the amount
per unit of a standard mixture. The color ¢; = (¢;, f(¢;)) is called the fuzzy color corresponding to
the basic color ¢;. In contrast of fuzzy color, the membership value of a distinct color is 1. Thus
a distinct color is a fuzzy color whose membership value is taken as 1.

Fuzzy coloring and total fuzzy coloring is performed with the identification of type of the edges
of an intuitionistic fuzzy graphs (i) all strong edges, (ii) some strong edges (iii) all weak edges or
no edges.

Case 1: Intuitionistic Fuzzy Graph with all strong edges. In fuzzy coloring and total coloring

concept, a crisp graph, fuzzy graph, intuitionistic fuzzy graph containing only strong edges, the
coloring is with the full solidity with any two distinct fuzzy colors.

Case 2: Intuitionistic Fuzzy Graph with some strong edges. Let V = {V;,i=1,2,...,n} the

neighborhood vertices set assuming that only (v,u;), (v, us) have strong edges incident to v
and all other edges (v,w;),i = 3,4,...,n are weak edges. The vertex v can be colored by the
fuzzy color (C,1) and u; by another different fuzzy color (Cy, 1). The same applies for (v, us)
where v by the fuzzy color (C,1) and uy by another different fuzzy color (Cs, 1) . But at (v, us),
where it is a weak edge, the fuzzy color could be (C,1) and (C,0.9) at the other end of the vertex.

Case 3: Intuitionistic Fuzzy Graph with all weak edges or no edges. In an IFG, having all weak

edges or no edges choose a vertex V and color with any of the fuzzy color say (C,1), then all other
vertices can be colored with the same fuzzy color Cj, by reducing its solidity. In the coloring of an
IFG by fuzzy coloring, the membership value in the fuzzy color is the solidity of the color used.
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3.2 Chromatic number in fuzzy coloring and total fuzzy coloring

The verrtex chromatic number, edge chromatic number and total chromatic number is the minimal
set of colors needed to properly color the vertex, edge and both vertex and edge of an IFG denoted
by x(G), x'(G) and x7(G). Minimal value of k, in coloring vertices is vertex chromatic number
of G = (V, E), has a k-vertex coloring denoted by x(G) and its fuzzy vertex chromatic number is
denoted by y(G) with fuzzy vertex chromatic index, I[yr(G)] = {z, (Cy, 1)} where z denotes
the fuzzy vertex chromatic number. Minimal value of k£ in coloring edges is edge chromatic
number of G = (V, E), has a k-edge coloring notated by x'(G) and its fuzzy edge chromatic
number is denoted by x'(G) with fuzzy edge chromatic index I[x}(G)] = {«’, (Ck,1)} where
2’ denotes the fuzzy edge chromatic number. Minimal value of k in coloring both vertices and
edges [3] is total chromatic number of G = (V, E), has a k-total coloring notated by x”(G)
and its total fuzzy chromatic number is denoted by X;(CA}), with total fuzzy chromatic index

Xp(G) = {27, (Cy, 1)} where 27 denotes the total fuzzy chromatic number.

4 Some various types of the intuitionistic fuzzy graph

In this paper, depending on the number of vertices and edges connectivity, some various types
of intuitionistic fuzzy graphs [2], such as Null, Trivial, Directed, Undirected, Simple, Connected,
Disconnected, Constant, Totally Constant, Complete, Cycle, Wheel, Cyclic, Acyclic and Star are
discussed. For each type of an intuitionistic fuzzy graph here, Fuzzy coloring and Total Fuzzy
coloring are introduced. With the Fuzzy coloring, the fuzzy vertex chromatic number and the
fuzzy edge chromatic number with its indexes of an intuitionistic fuzzy graph are found and with
the total fuzzy coloring, the total fuzzy chromatic number with its index is found. The fuzzy
coloring to vertices in an intuitionistic fuzzy graph gives the fuzzy vertex chromatic number, the
fuzzy coloring to edges in an intuitionistic fuzzy graph gives the fuzzy edge chromatic number and
the total fuzzy coloring to both vertices and edges in an intuitionistic fuzzy graph gives the total
fuzzy chromatic number. Depending upon the coloring to vertices and edges to an intuitionistic
fuzzy graph, the values of the fuzzy vertex chromatic number Y F(G‘), fuzzy edge chromatic
number /(G and the total fuzzy chromatic number y%(G) are determined.

The relationship between the chromatic number of an intuitionistic fuzzy graph and the fuzzy
chromatic number of an intuitionistic fuzzy graph is analysed by the following theorem.

Theorem 4.1. Let G be an intuitionistic fuzzy graph. Then X(G) <x F(G‘)

Proof. Let G = <V, E ) be an intuitionistic fuzzy graph.

Let G has n edges and then X(G’) = k with £ < n. If all the edges of G are strong, the
chromatic number of G is equal to the fuzzy chromatic number of an intuitionistic fuzzy graph G.
An additional value of fuzzy coloring is, it gives the name of the color and its solidity used with a
notation. Also, two end vertices of an edge must be colored by two fuzzy colors obtained from the
single color if the edge is weak or there is no edge. This also implies the chromatic number and
the fuzzy chromatic number of an intuitionistic fuzzy graph are same, as the color used is same,
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if the edges are weak and there is no edge, but the solidity of the colors at the vertices or edges
differ, which is the novel concept of fuzzy coloring. Thus, if G has n strong edges or weak edges

N A N ~

or no edges, then x(G) may be less than xr(G). So, x(G) < xr(G). O

Note 4.1. The number of weak edges of an intuitionistic fuzzy graph can be calculated if the
chromatic number of an intuitionistic fuzzy graph and fuzzy chromatic number of the same
intuitionistic fuzzy graph are well known.

Note 4.2. If all the edges of a complete intuitionistic fuzzy graph G = (V, E) are strong, then
x(G) and (@) is the number of vertices of G.

Note 4.3. Chromatic number of a crisp path is always 2. But, chromatic number of an intuitionistic
fuzzy path is less than or equal to 2. If an intuitionistic fuzzy path has at least one strong edge,
then the end vertices of that edge are colored by two distinct colors or two distinct fuzzy colors.
So, the intuitionistic fuzzy path is 2-chromatic. If an intuitionistic fuzzy path has all weak edges
or no edges, then it is 1-chromatic.

The various types of intuitionistic fuzzy graph are as follows.

4.1 Null intuitionistic fuzzy graph

A phrase “Null Intuitionistic Fuzzy Graph” refers to an IFG with no edges.

v1 (0.3,0.5) v1 (R,1)
o [
o o o o
v3 (0.7,0.2) v (0.4,0.6) vz (R,0.b) v3 (R,0.2)
Figure 4.1 Figure 4.2

In Figure 4.1, there are three vertices vy, v9, v3 and there are no edges between them. For
Figure 4.2, the vertex chromatic number of G is X(G) = 1 and the fuzzy vertex chromatic number

is xp(G) = 1 with its fuzzy vertex chromatic index I[]x(G)] = {1, (R, 1)} when fuzzy coloring
is applied.

4.2 Trivial intuitionistic fuzzy graph

The term “Trivial Intuitionistic Fuzzy Graph” refers to an IFG with only precisely a single vertex.
In Figure 4.3, there is only vertex v, and there are no edges.

v1 (0.3,0.5) v1 (R.1)
[ o
Figure 4.3 Figure 4.4

The vertex chromatic number of ( is X(G’) = 1 and the fuzzy vertex chromatic number is

Xr(G) = 1 with the fuzzy vertex chromatic index I[x(G)] = {1, (R, 1)} when fuzzy coloring is
applied as shown in Figure 4.4.
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4.3 Directed intuitionistic fuzzy graph

A “Directed Intuitionistic Fuzzy Graph” is an IFG in which each edge has a direction. It is to be
noted that in a Directed Intuitionistic Fuzzy Graph in Figure 4.5, v,v, is different from vov;.

(0.2,0.4)
v1 (0.3,0.5) vz (0.3,0.5)
(0.1,0.3) (0.1,0.3)

4 (0.3,0.5) v3 (0.3,0.5)
(0.2,0.4)

Figure 4.5

According to fuzzy coloring and total fuzzy coloring ideas, based on Figures 4.6 (a), (b),
(c), the vertex chromatic number of G is X(@) = 2 and the fuzzy vertex chromatic number is
xr(G) = 2 with fuzzy vertex chromatic index [x#(G)] = {2, (R, 1), (B, 1)}, the edge chromatic
number of G is '(G) = 2 and the fuzzy edge chromatic number is y(G) = 2 with fuzzy edge
chromatic index I[y(G)] = {2, (R, 1), (B, 1)}, the total chromatic number of G is x*(G) = 3
and the total fuzzy chromatic number is x%(G) = 3 with total fuzzy chromatic index I[y%(G)] =

{3,(R,1),(B,1),(G,1)}.

(0.2,0.4)

R,D) G,
v1 (R,1) va B, w1 v2 v RD) @ @ »:3B)
(0.1,0.3) (0.1,0.3) (B,1) (B,1) (G.,1) (G.1)
vg (B,0.a) v3 (R0.a) v4 v3 vy (B0.a) @ @ s R0.a)
0.2,0.4) ®R.D (G.1)
(a) (b) (©)
Figure 4.6

4.4 Undirected intuitionistic fuzzy graph

An IFG with no direction to each edge is an Undirected Intuitionistic Fuzzy Graph. It is to be
noted that in an Undirected Intuitionistic Fuzzy Graph in Figure 4.7, v,v, is same as vov;.

(0.2,0.4)
1 (03,0.5) v2 (03,0.5)
(0.1,0.3) (0.1,0.3)
v4 (03,0.5) v3 (03,0.5)
(0.2,0.4)

Figure 4.7
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According to fuzzy coloring and total fuzzy coloring ideas, based on Figures 4.8 (a), (b),
(c), the vertex chromatic number of G is X(G‘) = 2 and the fuzzy vertex chromatic number
is xr(G) = 2 with fuzzy vertex chromatic index I[x#(G)] = {2,(R,1),(B,1)}, the edge
chromatic number of G is x'(G) = 2 and the fuzzy edge chromatic number is x/»(G) = 2 with
fuzzy edge chromatic index I[x»(G) = {2, (R,1),(B,1)}, the total chromatic number of G is
X" (@) = 3 and the total fuzzy chromatic number is x%(G) = 3 with total fuzzy chromatic index

I[X?‘(G) = {37 (R’ 1) ) (Bv 1) ) (Ga 1)}

(0.2,0.4) ®1) G.D)
v1 R,1) va (B,1) w1 vz v R @ @ 2B
(0.1,0.3) (0.1,0.3) (B.1) B.1) (G.1) (G.1)
vq (B,0.2) vz (R0.2) v4 v3 vy (B,0.a) @ @ v: R0.a)
(0.2.0.4) ®D G.1)
(a) (b) (©)

Figure 4.8

4.5 Simple intuitionistic fuzzy graph

“Simple Intuitionistic Fuzzy Graph” is one that has no loops or parallel edges as in Figure 4.9.

v1 (0.3,0.5)

(0.2,0.5)

(0.2,0.5)

v3 (0.7,0.2) vz (0.4,0.6)

(0.2,0.5)
Figure 4.9

Figures 4.10 (a), (b), (c), illustrate the fuzzy coloring and total fuzzy coloring notions.

~

According to these concepts, the graph’s vertex chromatic number is x(G) = 3 and the fuzzy

A N

vertex chromatic number is xr(G) = 3 with fuzzy vertex chromatic index [xr(G)] =

~

{3,(R,1),(B,1),(G,1)}, the edge chromatic number is x'(G) = 3 and its fuzzy edge chromatic
number is x/»(G) = 3 with fuzzy edge chromatic index I[x»(G)] = {3, (R,1),(B,1),(G,1)},
the total chromatic number is 7 (G') = 4 and its total fuzzy chromatic number is y%(G) = 4 with

total fuzzy chromatic index I[x%(G)] = {4, (R,1),(B,1),(G,1),(Y,1)}.

v1 R,1) v1 v1 R,1)
®
R,1) (G,1) (Y,1) (Y.1)
v3 @ uBHE v2 (G,1)
vz (B,1) v (G,1) (B.1) (Y.
(a) (b) ()
Figure 4.10
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4.6 Connected intuitionistic fuzzy graph

An IFG is connected, if there exists a path between every pair of vertices as in Figure 4.11.

v (0.3,0.6) v9

(0.4,0.5)

(0.7,0.2)

0.2,0.7)

v4 (0.8,0.1) U3

Figure 4.11

Figures 4.12 (a), (b), (c), show for G, the vertex chromatic number is X(G) = 3 and

fuzzy vertex chromatic number is y(G) = 3 with fuzzy vertex chromatic index I[yp(G)] =

{3,(R,1),(B,1),(G, 1)}, the edge chromatic number is x #(G) = 4 and the fuzzy edge chromatic

~ ~

number is xp(G) = 4 with fuzzy edge chromatic index I[x=(G)] = {4,(R,1),(B,1),(G,1),
(Y, 1)}, the total chromatic number is x” (G') = 5 and total fuzzy chromatic number is x4 (G) = 5
with the total fuzzy chromatic index I[x%L(G)] = {5, (R,1),(B,1),(G,1), (Y,1),(BL,1)} all
in accordance with the fuzzy coloring and total fuzzy coloring ideas.

v1 (G,1) v2 (B,1) v1 (G,1)
(Y,1)
(B,1)
vs (G,1)
v4 (B,0.a) v3 (R,1) V4 G.1)
(a) (b)
vi BLD)  (G,1)  v2R]D)

(Y.1)
(B.1)

v4 (R,0.2) G,1)
(©)
Figure 4.12

4.7 Disconnected intuitionistic fuzzy graph

When an intuitionistic fuzzy graph has at least two vertices that are not linked by an edge, we term

it as a Disconnected intuitionistic fuzzy graph as in Figure 4.13.
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v1(0.4,0.5)

(0.0,0.0)

(0.3,0.3)

4(0.6,03) 2(0.6,0.3)
(0.0,0.0)
03(0.5,0.5)
Figure 4.13
The vertex chromatic number is X(é’) = 2 and the fuzzy vertex chromatic number is

~ N

Xr(G) = 2 with fuzzy vertex chromatic index /[y r(G)] = {2, (R, 1), (B, 1)}, the edge chromatic

A A

number is }'(G) = 1 and the fuzzy edge chromatic number is x%»(G) = 1 with fuzzy edge
chromatic index I[\/x(G)] = {1, (G, 1)}, the total chromatic number of G is (&) = 3 and
the total fuzzy chromatic number is \%L(G) = 3 with total fuzzy chromatic index I[y%(G)] =
{3,(R,1),(B,1),(G,1)} from Figures 4.14 (a), (b), (c).

vi(R,1) v1 vi(R,1)

[ ]

G
vy .
v4(G,0.2) v2(R,0.a2) v2(R,0.2)

(G,0.2)

®

v3(G,1) v3

(@) (b)

Figure 4.14

4.8 Constant Intuitionistic Fuzzy Graph

A constant IFG has the same degrees at every vertex. It charts the degree A = k, where k = k;+k;
in all vertices [1]. In Figure 4.15, the degree of vy, vo, v3, v4 is (0.6, 0.7).

(03.0.3)
01 (0.4,0.5) v2 (0.6,0.3)
(03,0.4) (03,0.4)
v4 (0.6,0.3) v3 (0.5,0.5)
(03,0.3)
Figure 4.15
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By the fuzzy coloring and total fuzzy coloring concepts, from Figures 4.16 (a), (b) and (c),

~ ~

the vertex chromatic number is x(G) = 2, and the fuzzy vertex chromatic number is yr(G) = 2

N

with fuzzy vertex chromatic index I[xr(G)] = {2, (R,1),(B, 1)}, the edge chromatic number

~ ~

is X'(G) = 2 and the fuzzy edge chromatic number is y»(G) = 2 with fuzzy edge chromatic
index I[x»(G)] = {2,(R.1),(B,1)}, the total chromatic number of G is x7(G) = 3 and
the total fuzzy chromatic number is X7 (G) = 3 with total fuzzy chromatic index I[y%(G)] =

3,(R,1),(B,1),(G, 1)}

R,1) (G.1)
v1 (R,1) vy (B,1) w1 va v R @ @® B

(B,1) (B,1) (G, (G,

v4 (B,0.2) vz (R0.2) v4 v3 vy (B0.2) @ @ v RO2)
R.1) G.1)

(a) (b) ()
Figure 4.16

4.9 Totally constant intuitionistic fuzzy graph

An IFG is Totally Constant iff each of its vertices has the same degree. The Totally Constant
Intuitionistic Fuzzy Graph in Figure 4.17 has the same degree in each of its vertices.

v1(0.5,0.2)

(0.3,0.2) (0.2,0.5)

v6(0.4,0.3) v2(0.4,0.6)

(0.2,0.3) (0.3,0.1)

v5(0.4,0.6)
73(0.3,0.3)

(0.3,0.3) (0.3,0.4)

v4(0.4,0.2)

Figure 4.17

Figures 4.18 (a), (b), (c), imply that when using fuzzy coloring and total fuzzy coloring ideas,

A N

the vertex chromatic number is x(G) = 2 and the fuzzy vertex chromatic number is xp(G) = 2

~

with fuzzy vertex chromatic index I[xr(G)] = {2,(R,1),(B,1)}, the edge chromatic number

N ~

is X'(G) = 5 and the fuzzy edge chromatic number is y»(G) = 5 with fuzzy edge chromatic
index I[x(G)] = {5,(R,1),(B,1),(G,1),(Y,1),(BL,1)}, the total chromatic number is
X% (@) = 5 and the total fuzzy chromatic number of the graph is y%(G) = 5 with the total fuzzy

chromatic index I[x%(G)] = {5, (R,1),(B,1),(G,1),(Y,1),(BL,1)}.
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v1(B,1)

vg(R,1) v2(R,1)
vs(B,1)
v3(B,1)
vaR,1)
(a) (b)
v1(G,1)
(B.1)
vs(R.1) (BL,1)
(Y.1)
"y \ |
v5(G,1)
v53(G,1)
va(B,1)
(©
Figure 4.18

4.10 Complete intuitionistic fuzzy graph

The term Comprehensive or Complete refers to an intuitionistic fuzzy graph connects to other
vertices. In simple words, all the vertex are connected to any other vertices, then it is a Complete
intuitionistic fuzzy graph as in Figure 4.19.

(0.4,0.5)
1 (0.7,0.3) V vz (0.4,0.5)
(0.5,0.3) (0.4,0.5)

4 (0.5,0.2) v3 (0.9,0.1)
(0.5,0.2)

Figure 4.19

According to the fuzzy coloring and total fuzzy coloring ideas, Figures 4.20 (a), (b), (c)

N

show that, the vertex chromatic number is x(G) = 4 and the fuzzy vertex chromatic number is

~ ~

xr(G) = 2 with fuzzy vertex chromatic index I [xr(G)] = {4, (R, 1),(B,1),(G,1),(Y, 1)}, the
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~ ~

edge chromatic number is x'(G) = 4 and the fuzzy edge chromatic index is x’»(G) = 4 with fuzzy
edge chromatic index I[y(G)] = {4, (R,1),(B,1),(G,1),(Y,1)}, the total chromatic number
is XT(G) = 4 and the fuzzy total chromatic number is x4(G) = 4 with total fuzzy chromatic

index I[x7(G)] = {4, (R, 1),(B,1), (G, 1), (¥, 1)}

(G,1) (B.1)

v1 R1) va (G,1) w1 va vy (R1) \_.w ®R,1)
(Y1) (R,l)\
R,1) B.D IR, B,1) @G (v,1)
vy (Y,1) vg (B,1) v4 vs vy (Y1) vs (B,1)
(G,1) ®R,1)
(a) (b) ()
Figure 4.20

4.11 Cycle intuitionistic fuzzy graph

An IFG which has vertices vy, ..., v, and also n > 3 i.e., there should be minimum three vertices
and three edges to form a cycle. This shows that two edges will eventually create a cycle starting
at a vertex which implies a Cycle Intuitionistic Fuzzy Graph. In Figure 4.21, there are five vertices
and five edges which is developing a cyclev,vs, Vo3, V304, V45, V501 .

v1 (0.5,0.5)

(0.5,0.3) (0.1,0.1)

vs (0.7,0.3) v (0.7,0.2)

(0.4,0.4) (0.2,0.2)

v4 (0.4,0.6) v3 (0.5,0.4)

(0.3,0.3)

Figure 4.21

A

Figures 4.22 (a), (b), (c), show that the vertex chromatic number is x(G) = 3 and the fuzzy

~ N

vertex chromatic numberis x (G) = 3 with fuzzy vertex chromatic I [xr(G)| = {3, (R, 1), (B, 1),

~

(G,1)}, the edge chromatic number is x'(G) = 3 and the fuzzy edge chromatic number is
X;(G) = 3 with fuzzy edge chromatic index I[\»(G)] = {3,(R,1),(B,1),(G,1)}, the total
chromatic number is x7(G) = 4 and its total fuzzy chromatic number of the graph is Y1(G) = 4
with total fuzzy chromatic index I[x%(G)] = {4, (R,1),(B,1), (G, 1), (Y,1)} all in accordance

with the fuzzy coloring and total fuzzy coloring ideas.

394



v1 (R,1)

vs (B,1) v2 (G.1)

v4 (G,0.2) v3 (R,0.a)

(a) (b)

v1(G,1)

(B.1) (B.1)
B.1)

(c)
Figure 4.22

v5(Y,1) v2(R,1)

v4(R,0.2) v3(G,0.a)

4.12 Wheel intuitionistic fuzzy graph

Cycle intuitionistic fuzzy graphs are said to have the shape of a wheel when an additional vertex
is added and it links each of the vertices through edges. In the wheel intuitionistic fuzzy graph in
Figure 4.23, the vertex vy is called as the hub of all the vertices.

v1 (0.5,0.3)

(0.3,0.5)

(0.4,0.6)

v2 (0.4,0.

(0.3,0.6)'

v3 (03.0.5) 03.05) v4 (0.7.0.2)

Figure 4.23

By fuzzy coloring and total fuzzy coloring concepts, from Figures 4.24 (a), (b), (c), the vertex

A ~

chromatic number is x(G) = 4 and the fuzzy vertex chromatic number is xr(G) = 4 with
fuzzy vertex chromatic index I[x»(G)] = {4, (R,1),(B,1),(G,1),(Y,1)}, the edge chromatic
number of G is \/(G) = 3 and the fuzzy edge chromatic number is /,(G) = 3 with fuzzy
edge chromatic index I[x}(G)] = {3, (R, 1), (B, 1), (G, 1)}, the total chromatic number of G is
X% (@) = 4 and the total fuzzy chromatic number is x%(G) = 4 with total fuzzy chromatic index

IXF(G)] = {4,(R.1),(B,1), (G, 1), (Y. 1)}.
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v1 (G,1) U1 v1 (G,1)

(G,1) (B,1)

v2 (Y,1)

(B,
~e

v3 (R,1) vg B,1) U3 R, V4 w3 R,

(a) (b)
Figure 4.24

4.13 Cyclic intuitionistic fuzzy graph

For a Cyclic IFG, atleast one cycle is required it to be considered cyclic. In Figure 4.25, there are

two CYCICS V1 — Uy — VU3 —Ug — V1 and V3 — U — Vg — U7y — V3.

v2(0.9,0.2) v5(0.5,0.4)

(0.4,0.5) (0.4,0.5) (0.5,0.4)
(0.5,0.4)
v3(0.5,0.2)
0.6,0.2)

v1(0.7,0.3) v6(0.7,0.3)

(0.5,0.3) (0.5,0.2)

(0.6,0.3)
v4(0.4,0.5) v7(0.6,0.1)

Figure 4.25

N

Figures 4.26 (a), (b), (c), demonstrate that the vertex chromatic number is x(G) = 2 and the

fuzzy vertex chromatic number is y(G) = 2 with fuzzy vertex chromatic index I[yp(G)] =
{2,(R,1),(G,1)}, the edge chromatic number of G is \'(G) = 4 and the fuzzy edge chromatic
number is \/; (G) = 4 with fuzzy edge chromatic index I [y} (G)] = {4, (R, 1), (B, 1), (G, 1), (Y, 1)},
total chromatic number of G is X7 (G) = 3 and the total fuzzy chromatic number is y%(G) = 3
with total fuzzy chromatic index I[x%(G)] = {3, (R,1),(B,1),(G, 1)} according to the fuzzy

coloring and total fuzzy coloring ideas.

va(G,1) v5(G,1)
v1(R,1) v3(R,0.2) v6(R,0.b)
v4(G,0.a) v7(G,0.a)
(a)
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v2 U5

(G,1) (R,1) Y,1)

®B.D
U1 v3 v6
(Y.1)
®R,1) (G,1) (B,1)
V4 vr
(b)
v2(R,1) v5(G,1)

(G,1) (B,1)
v1(B,1) @ ve(R,1)
(G,1) (G.1)
va(R,1) v7(R,1)

()

Figure 4.26

4.14 Acyclic intuitionistic fuzzy graph

An IFG is acyclic iff it has no cycles in it. In Figure 4.27, the graph is not a proper cycle. Hence,
it is acyclic.

v2(0.9,0.2) v5(0.5,0.4)

(0.4,0.5)

01(0.7,0.3) v3(0.5,0.2)

(0.6,0.2)

v6(0.7,0.3)

(0.5,0.2) (0.6,0.3)

v4(0.4,0.5) v7(0.6,0.1)

Figure 4.27

By the fuzzy coloring and total fuzzy coloring concepts, from Figures 4.28 (a),(b),(c), the

A ~

vertex chromatic number is x(G) = 2 and the fuzzy vertex chromatic number is x r(G) = 2 with
fuzzy vertex chromatic index I[yr(G)] = {2, (R,1),(G,1)}, the edge chromatic number of G

N A

is X'(G) = 3 and the fuzzy edge chromatic number is y»(G) = 3 with fuzzy edge chromatic
index I[x(G)] = {3.(R,1),(B,1),(G,1)}, total chromatic number of G is x7(G) = 3 and

~

the fuzzy total chromatic number is Y% (G) = 3 with total fuzzy chromatic index I[xL(G)] =
{3,(R,1),(B,1), (G, 1)}.
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v2(G,1) v5(G,0.2)

v1(R,1) v3(R,0.2) v6(R,0.b)

v4(G,0.¢) v7(G,0.b)

(a)

(G,1)
v1 .
v2(R,1) v5(R,0.2)
B,1) B,1) w
v1(G,1) v3(G,0.2) v6(G,0.b)
(B.,1)
(B.,1) B.,1)
v4(R,0.) v7(R,0.b)
(c)
Figure 4.28

4.15 Star intuitionistic fuzzy graph

Intuitionistic fuzzy graphs are said to be a star if every edge connects to the same single vertex [7].
In Figure 4.29, all the vertices v9, v3, v4 are connected to a single star vertex v;.

v1(0.9,0.05)

(0.2,0.02) (0.2,0.03)

(0.4,0.02)
v2(0.2,0.01) ‘ v4(0.25,0.015)
v3(0.4,0.02)

Figure 4.29
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From Figures 4.30 (a), (b), (c), we can infer that the graph has a vertex chromatic number
x(G) = 2 and the fuzzy vertex chromatic number is x»(G) = 2 with fuzzy vertex chromatic
index I[xr(G)] = {2,(R,1),(B,1)}, the edge chromatic number of G is y'(G) = 3 and the
fuzzy edge chromatic number is \/»(G) = 3 with fuzzy edge chromatic index I[y}(G)] =
{3,(R,1),(B,1),(G,1)}, the total chromatic number of G is x”(G) = 3 and the total fuzzy
chromatic number is (G = 3 with total fuzzy chromatic index I[\%L(G)] = {3, (R,1),(B,1),

(G, 1)} using the fuzzy coloring and total fuzzy coloring ideas.
v1(R,1) V1 v1(R,1)

B.1) (G,1) , (B,0.b)

R,1) (B,0.2)
bt |
v2(B,1) va(BOb) V2 Vs y(Gl) v4(G,0.b)
v3(B,0.a) v3 v3(G,0.2)
(a) (b) (©)
Figure 4.30

5 Conclusion

In this article, the chromatic number, chromatic index and total chromatic number of intuitionistic
fuzzy graphs are found along with their vertex fuzzy chromatic number, edge fuzzy chromatic
index and total fuzzy chromatic number and also their indexes by applying the methods of fuzzy
coloring and total fuzzy coloring.
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