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1 Introduction

The Interval Valued Intuitionistic Fuzzy Sets (IVIFSs) are extensions of the Intuitionistic Fuzzy
Sets (IFSs) (see [1, 2, 5] and their theory was enriched with a lot of operators that do not have
analogues in the standard fuzzy sets theory and in the rest of the fuzzy sets extensions. In the
present paper, we introduce two groups of operators that are extensions of the existing by the
moment interval-valued intuitionistic fuzzy modal operators from the two types.



2 Extensions of the interval-valued intuitionistic fuzzy

modal operators from the first type

The first of the extensions, introduced in the last years, was given in [3]. We use it as a basis of
our research, correcting some misprints in it. Here, we introduce new operators, one of which is
the operator from [3].
First, all forms of the operators are given and the conditions for the validity of each one of
them is discussed and after this, we will reduce the more detailed research to its simplest case.
Let exty, exts, exts, exty, exts, extg, extr, extg € {inf, sup}. Let

exty exty exty extq
exts extg exty extg

X(( a1 b1 1 di er f )
= {(z, [inf Mx (z),sup Mx(x)], [inf Nx(x),sup Nx(x)])|z € E}
= {(z,[a; inf Ma(x) + by (1 — exty Ma(x) — crextoNa(x)),

(4)

ag sup Ma(x) + ba(1 — extg My (x) — coextyNa(x))],
[diinf Ng(z) + e1(1 — frexts M4(z) — extgNa(z)),
dosup Na(z) + ea(1 — foext; Ma(x) — extgNa(x))]) |z € EY,

where ai, bl, C1, d17 €1, f17 as, bQ, Co, dg, €9, f2 € [O, ]_]
The definition will be correct, if

0 <inf Mx(x) <sup Mx(x) <1, (1)
0 <inf Nx(z) <sup Nx(z) <1, (2)
sup Mx(z) 4+ sup Nx(z) < 1. (3)

Not the most complex (while not the simplest either) form of the operator is:

exty exty extsy exty

X(( z; )55; )(A)
= {(z,[a; inf Ma(x) + by (1 — exty Ma(x) — crextoNa(x)),
assup Ma(z) + bo(1 — exts Ma(z) — coextyNa(z))],
[diinf Ng(z) + e1(1 — frexty M4 (z) — extaNa(z)),
dosup Na(z) + ea(1 — foextsMa(x) — extyNy(z))])|x € E}
_ y(ou on oen ou) ().

(a1 by e dy e f1)
as by co do e f2
For brevity, in the upper index of X we will write ¢ and s instead of inf and sup, respectively.
From the above records of the X-operator it is clear that in the first case it will have 256
different forms and in the second case — 16 different forms.



The simplest form of the X -operator is

exty exty exty exty
exty exty exty exty

X\

ai by c1 di e1 f1
az bz c2 d2 ez fa2

= {(x, [ay inf M4(z) + by (1 — exty M4 () — crext; Na(z)),

(4)

ag sup My () + ba(1 — extoMa(x) — coextaNa(x))],
[diinf Ng(z) + e1(1 — frexty M4 (z) — ext; Na(z)),
dosup Na(z) + ea(1 — faextoMy(z) — extaNa(z))])|x € E'}
= x( o o) (A).

<a1 by 1 di ey f1>
ag bo co do eo fo

So, here will take into consideration the simpler situation, that, obviously, has only 4 cases
that we will study sequentially.

Let everywhere for the 4 cases, a1, by, ¢1,dy, €1, f1, az, be, o, do, €2, fo € [0, 1]. Then

X((iali Zl et dier f >(A)

as by e dx e fo

= {(z,[ay inf Ma(x) 4+ by(1 — inf My(z) — ¢q inf Ny(x)),
ag sup My (z) + bo(1 — inf My (z) — coinf Ny(z))],
[dyinf Na(z) + e1(1 — frinf Ma(x) — inf Na(x)),

dysup Na(z) + ea(1 — foinf My(x) —inf Na(x))])|z € E}

and to see that the operator is correct, we must find the conditions under which the inequalities
(1) — (3) are valid. Below, we shall study the mentioned above four cases, each of which with
four sub-cases.
1.1. We see that

apinf Ma(xz) 4+ b1(1 — inf My (x) — ¢ inf Na(x))

> ayinf Ma(x) + by (1 — inf Ma(x) — inf Na(x))
> ay inf My(z) > 0.

1.2. We check
assup Ma(x) 4+ bo(1 — inf My (z) — coinf Na(x))

= agsup My (x) — byinf My (x) — bycoinf Ny(x) + be
< agsup My(x) + by < ag + bo.
Therefore, the condition is as + by < 1. Analogously, if dy 4+ e; < 1, then

dysup Ny(z) + ea(1 — foinf Ma(z) —inf Na(z)) < 1.

1.3. We obtain
agsup Ma(z) 4+ be(1 — inf My(x) — coinf Na(x))
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—ayinf My(x) — by (1 —inf My (x) — ¢y inf Na(z))
= agsup My(x) — apinf My(x) 4+ (by — b1)(1 — inf Ma(z)) + (bycy — bace) inf Ny(x)) > 0

for as > ai, bg > bl and b161 > bQCQ; and
dosup Na(z) + ea(1 — foinf Ma(x) — inf Na(x))

—dyinf Na(x) — e1(1 — frinf M4(x) — inf Na(x)) > 0,

fordy > di,es > ey and e1 f1 > ey fo.
1.4. We have
agsup Ma(x) + ba(1 — inf Ms(x) — cyinf Na(z))

+dysup Na(z) + ea(1 — foinf Ma(x) — inf Na(x))
< agsup My(z) + dasup Na(z) + by + €3
< max(ag, dy) + bs + €.

Hence, the condition is max(asg, dy) + by + €3 < 1.
Therefore, for this first case, the inequalities (1) — (3) have the concrete forms

ag > a1,by > by,dy > dy, ez > ey, (4)
as +by <1, ()

dy + ey < 1, (6)

bici > baca, (7)

e1f1 > eafo, (8)

max(ag, ds) + by + €5 < 1. (9)

We must mention immediately, that the validity of conditions (5) and (6) follows directly from
(9), i.e., these two conditions can be omitted.
The second X -operator is

X(( AETEY )
= {(x, [ay inf M4(x) + by (1 — inf M4(x) — ¢y inf Na(x)),
ag sup My () 4 ba(1 — sup My () — casup Na(z))],
[dyinf Na(z) + e1(1 — frinf Ma(x) — inf Na(x)),
dysup Na(z) + ea(1 — fosup Ma(x) — sup Na(x))])|z € E}.

2.1 We see that this case coincides with case 1.1.
2.2 This case follows directly from

ag sup Ma(z) + ba(1 — sup Ma(x) — cosup Na(x)) < agsup Ma(x) + by < 1.
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Therefore, the conditions are ay + by < 1 and, respectively, for the second inequality
dy+e <1
2.3. We obtain

Z = agsup Ma(z) + ba(1 — sup Ma(x) — cosup Na(x))

—ayinf Ma(x) — by(1 — inf My(z) — ¢q inf Na(x))
= (ag — by) sup Ma(z) — (ay — by)inf My(x) + by — by
—bocasup Ny(z) + bycy inf N(x)
> (ag — by — ay + by) inf Ma(z) + by — by — bacasup N4(x)
(from sup Ny (z) < 1 —sup My(z) <1 —inf Ma(x))

Z (CL2 — bg — a1 + bl) inf MA(I) -+ 62 — b1 — bQCQ -+ bQCQ inf MA(SL')

= (a2 — bz —ay + b1 + bQCQ) inf MA(.T) + b2 - b1 - bgCQ.

If Ao — aq Z bg — b1 — bQCQ, then
A4 2 b2 — bl — bQCQ.

Therefore, Z7 > 0if ay — a1 > by — by — bycy > 0.
If Ao — A S b2 — bl — bQCQ, then

Zl Zag—al.

Therefore, the condition is min(ay — ay, by — by — bacy) > 0.
2.4. We check
ag sup Ma () + bo(1 — sup Ma(x) — cosup Na(z))]

+dysup Na(z) + ea(1 — fosup Ma(z) — sup Na(z))
= (ag — by — eafo) sup Ma(x) + (dy — €2 — baca) sup Na(z) + by + ey
< HlaX<CL2 — bg — 62f2, dg — €y — bQCg) + bQ + €9,

i.e., now the condition is max(ay — by — ey fo, do — €3 — bacy) + by + €5 < 1.
Therefore, for the second case, the inequalities (1) — (3) have the concrete forms

min(&z — ag, bg — bl — bQCQ) 2 0, (10)
min(ds — dy,ea — e; — eafa) >0, (11)
max(a2 — bg — egfg, dg — €9 — 6202) + b2 + ey S 1. (12)
The third X -operator is

ap b1 e di er fi
az by c2 d2 ez f2

= {(z, [ay; inf Ma(x) 4+ b(1 — sup M4(z) — ¢y sup Na(x)),
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agsup My () + bo(1 — inf My (z) — coinf Ny(z))],
[dyinf Na(z) + e1(1 — frsup Ma(x) — sup Na(x)),
dysup Na(z) + ea(1 — foinf Ma(z) — inf Na(z))])|z € E}.
3.1. We obtain directly that

ajinf Ma(z) 4+ b1(1 — sup M4 (x) — ¢y sup Na(x)) > aqinf My(x) >0

and

diinf Ny(z) + e1(1 — fisup Ma(x) —sup Na(x)) > dyinf Ny(x) > 0.

3.2. This case coincides with 1.2.
3.3. We have:
assup Ma(z) 4+ bo(1 — inf My (x) — coinf Na(x))
— b

—ay inf My (x) (1 —sup Ma(x) — ¢ sup Na(z))
= by — by + (ag + by) sup Ma(x) — (a1 + by) inf M (x)
+bicysup Na(x) — bacginf Ny(x) > 0

foray > ai,by > by, ¢ > .
3.4. We check
ag sup My (z) + ba(1 — inf My (z) — coinf Ny(z))

+dysup Na(z) + ea(1 — foinf Ma(x) — inf Na(x))
= by + es + agsup My (x) + dosup Na(x)
—(by + eafo)inf My(x) — (baca + €2) inf Ny(z))
< by + €9 + agsup My (x) + dysup Ny(x)

< max(ag, dy) + bs + €.

Therefore, for the third case, the inequalities (1) — (3) have the concrete forms

ag > ay, by > by, ¢ > ¢y,
as +by <1,
dy+ e <1,
max(ag, ds) + by + €5 < 1.

The fourth X -operator is

s s ) (A)

ai by e di er f1
az by c2 d2 e2 f2

= {(z, [a inf Ma(x) 4+ by (1 — sup M4(z) — ¢y sup Na(x)),

X

assup Ma(x) 4 bo(1 — sup My (x) — casup Na(x))],



[dl inf NA(ZL‘) + 61(1 — fl sup MA(x) — sup NA<x)>7
dysup Na(z) + ea(1 — fasup Mu(z) — sup Na(z))])|z € E}.

4.1. This case coincides with 3.1.
4.2. This case coincides with 2.2.
4.3. We obtain directly that

az sup Ma(z) + ba(1 — sup Ma(x) — cosup Na(z))

—ay inf Ma(x) + b1(1 —sup Ma(x) — ¢y sup Na(x)) > 0

for as > ay,by > by,c1 > co.
4.4. This case coincides with 2.4.

Therefore, for the fourth case, the inequalities (1) — (3) have the forms of (10) — (12), as for
the third case.

For all cases, one basic condition must be valid

b2+62 S 1. (17)

From all these checks it follow the validity of the following theorem.

Theorem 1. For each IVIFS A and for each one of the four X -operators,

X( exty exto ) (A)

al b1 c1 dy  er f1
az by ca da ez fa2

is an IVIFS.

3 Extensions of the interval-valued intuitionistic fuzzy

modal operators from the second type

Now, having in mind the four forms of the X -operator, here, for a first time we will introduce an

extension of the operator [©] / .
1 B o 1 e Cl)

az P2 y2 b2 2 (2

Let again ext;, exty € {inf, sup}. We define

( exty exty )

@(Oq B1 v 61 e1 G )A

az P2 y2 S22 ez (2
= {(z, [y inf M a(x) — e1exty Na(z) + 71, ag sup Ma(x) — egexta Na(z) + 2],
[Brinf Na(x) — Gexty M a(x) + 01, Basup Na(z) — (eextoMa(z) + d2))|z € E}. (18)

The components of this operator must satisfy the following conditions in a general form:
0 < ayinf Ma(x) — erext; Na(z) + 711
< agsup Mu(x) — egextoNa(z) + 72 < 1, (19)
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0 < Byinf Ny(z) — Grexty My (z) + 6
< Bysup Na(z) — GoextaMa(x) +J9 < 1,
g sup Ma(z) — egextaNa(x) + 72
+Bysup Na(z) — GeextoMa(z) + 09 < 1.

For example, for the case with operator (9] (( inf sup )

a B om s oe1 G
az B2 v2 b2 2 (2

max(a; — G, B — &) + v +0; < 1,
ar+7 <1, Ba+dy <1,
Vi = €iy 0 > G
72_71_82207
72+52217

ar < ag, Bi < Pa, < va, 01 K02, 1262, G < (o

) the conditions are

In this section, following [4] and correcting some misprints in it, we introduce and prove the

following theorem.

Theorem 2. The two most extended modal operators

(i s)

x (i) >and@(a1 Br w81 e @)

(a1 b1 ec1 di e1 fi

ay by co do ez fao a2 B2 Y1 o2 €1 ¢1

defined over IVIFSs are equivalent.

Proof. Letay, by, c1,dy, ey, f1,a9,ba,Ca,da, ea, fo € [0,1] and satisfy (10) — (12). Let fori = 1, 2:

Q; = G — bz', ﬁz =d; — €, Vi = bi; 51’ =€ & = bici; Cz = €z'fz’.

Also, let
X1 = aginf Ma(x) — e1inf Ny(x) 4+ 71,
Y1 = Brinf Na(x) — ¢ inf Ma(x) + 01,
Xo = agsup My (x) — egsup Ny(z) + v,
Yy = Bysup Na(x) — Gysup Ma(z) + 02,
Then

X1 = (a; — by)inf My(x) — bycyinf Ny(x) + by,
Y1 = (dy — e1)inf Na(x) — ey frinf My(z) + e,
Xy = (ag — by) sup My (x) — bacy sup Na(x) + by,
Yo = (dy — e3) sup Na(x) — ea fosup Ma(z) + es.

We obtain sequentially the following inequalities.
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If aq Z bl,then
X1 > =bicy +by =b1(1 —¢;) >0.

If aq S bl, then
X1 Z (a1 — bl) inf MA(ZL‘) — blcl + b101 inf MA(I) + b1

= (al — bl + blcl) inf MA(.’L’) — blcl -+ bl.

If ay — b1 + 6101 Z 0, then
X1 > —=bieg + by > 0.

If a; — b1 + b161 S 0, then
X1 >a, —by +bicy —bicg +by =a1 >0,

i.e., in all cases X; > 0.

X2 S (CLQ - bQ) sup MA(LU) -+ bz.

If ay — by > 0, then
Xo<ag—by+by=uay <1

If a9 — bg S 0, then
Xy <by <1,

i.e. X9 <1 and analogously, Y, < 1.

Xy — X = (ag — by) sup Ma(x) — bacag sup Na(z) + be
—(a1 — bl) inf MA(JI) + b161 inf NA(I) — b1
> (ag — by — ay + by) sup Ma(x) — bacgsup Na(z) + by — by
= (CLQ — bg — a1 + b1 + bQCQ) sup MA(JZ) — bQCQ + bg — bl.
If ag — a1 > by — by — bycy, then from (10) it follows
XQZbQ_bl_bQCQ ZO
If ag — ay < by — by — baco, then again from (10) it follows
Xo > as — by —ay + by + bacy — baco + by — by > as —a; > 0,

i.e., always Xo > X;. By the same manner we check that Y5 > Y.

Xo + Yy = (ag — by) sup My (x) — bacogsup Na(x) + bo
+(dy — ez) sup Na(z) — e fosup Ma(z) + eo
= (ag — by — eafa) sup Ma(x) + (dy — ez — baca) sup Na(z) + by + €.

Now, there are four cases that we must study sequentially.
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If a9 — bg — €2f2 Z 0 and dg — €9 — bQCQ Z 0, then
Xo+Ys <(ag — by — eafy — dy + €g + bacy) sup Ma(x)

+dy — €3 — bacy + by + e
SCLQ—bg—€2f2—d2+€2+b262+d2—62—6202+b2+62

(from (12))
:a2—€2f2+€2 < 1.

Ifay — by —esfo > 0 and dy — e; — bacy < 0, then as above
Xo + Y5 < (ag — by — eafa)sup Ma(x) + by + €2

<ag —by —eafo+by+es =ay —exfo+ex < max(ag,ds) + by + e < 1.

If a9 — bg — 62f2 S 0 and dg — €9 — bQCQ Z 0, then
Xo+ Y5 < (dy — €3 — baco) sup Na(x) + by + e

§d2—€2—b262+b2+€2
SdQ_b202+b2 Smax(aQ,d2)+b2+eg < 1 < 1.

If Ay — b2 — €2f2 < 0 and d2 — €9 — bQCQ < 0, then from (12)
Xo+ Yy <by+e <1,

i.e., always Xo + Yo < 1.
Also, from (12) we obtain that for i = 1, 2:

a;+% — G+ 0 = (a; — b)) + b —eifi +e

=a; — e fi+e < as—eafa+es <max(ay — by — eafo,dy — €2 — bacy) + by + €5 < 1

and analogously
Bi+vi—ei+0; = (di_ei)+bi_bici+€i
Hence,
max<a1 - Cl?ﬂl - 51) +v —é€&1+ 51 < 17

i.e. (22) is valid.
On the other hand,
062+’}/2:a2—bg+b2:a2 <1

and
Po+ 0y =dy —eg+ey=dy <1,

1.e. (23) is valid.
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Vi —€&i =b; —bic; >0

and
0i—G=e—¢€fi >0,
1.e. (24) is valid.
From (10)
Y2 — 1 — €2 = by — by — by >0,
i.e. (25) is valid.
Inequality (17) follows directly from (27).
i s )

a1 B 1 61 e1 G
az B2 y1 2 1 G

The rest conditions for the operator [9] & ) are checked directly.

Thus, we obtain

@((i‘llszzl noos e cl)(A)

a2 F2 m b2 e G
= {(x, [y inf M4(z) —eyinf Ng(z) + 71, g sup M4 (z) — easup Na(z) + 2],
[B1inf Na(z) —Crinf Ma(z) + 61, B2 sup Na(x) — G sup Ma(x) + 6o])|z € E}
= {(z,[(a; — by) inf Ma(x) — bycyinf Ny(z) + by,
(ag — by) sup Ma(x) — bacasup Na(z) + by,
[(di — e1)inf Ny(z) — ey frinf My(z) + ez, b
(do — e5) sup Na(2) — eafo sup Ma(z) + ea)|a € E}
= {(x, [a; inf M(x) + b1(1 — inf Ma(x) — ¢qinf Na(x)),
ag sup Ma(x) + ba(1 — sup My (x) — casup Na(x))],
(dy inf Na(2) + e1(1 — fy inf Ma(x) — inf Na(z)),
dysup Na(z) + es(1 — fosup Ma(x) — sup Na(z))])|z € E},
xtr ) (A).

(oo n)
Conversely, let aq, 51, Y1, 51, €1, Cl: g, 52, Y2, 52, £9, Cg S [O, 1], and let them satisfy (22) —
(27).
Then, let v;, 9; > 0 and
a; =a; +7 (< 1),

bi = Vi,
&
Ci = — (S 1)7
Yi

d; =0+ (<1),
€; 251‘»

fz:g—z(él).
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Let
X1 = ayinf My(z) + by (1 —inf Ma(z) — ¢1inf Ny(z)),

Y1 = dyinf Na(x) + e1(1 — frinf Ma(x) — inf Na(z)),

Xz = azsup Mu(z) + ba(1 — sup Ma(x) — czsup Na(z)),
Yy = dysup Na(x) + ea(1 — fosup Ma(x) — sup Na(x)).

Then

X1 = (a1 + 1) inf Ma(z) + 7 (1 — inf Ma(z) — i—linf Na(z)),
1

Y1 = (61 4 61)inf Na(z) + 61 (1 — %inf Ma(z) —inf Na(x)),
1

€
Xy = (ag + 72) sup Ma(x) + v2(1 — sup My (z) — 7—25up Na(z)),
2

Yy = (B + 82) sup Na(z) + (1 g—p Ma(z) — sup Na(x)).

Using (23) and (24), we obtain sequentially:

0<y —e <Xy=aoqinf My(z)+v —erinf Na(z) < a3 +7 <1,

0<0— ¢ <Y1 =p81inf Ny(z) + 61 — Ginf My(z) < 1 +6, <1,
0<vm—e <Xy <aysupMa(z)+7 <ay+v <1,
0< 0y — <Yy < fBysupNa(z) + 62 < B+ 02 < 1.

Xy — X1 = (g + ) sup Ma(@) + 7(1 — sup Ma(x) - 7p Na(z))

— (o + ) inf Ma(z) — 3 (1 — inf Ma(z) — %inf Na(z))
1

= agsup Ma(x) — aginf Ma(x) 4+ vo — 1 — easup Na(z) + €1 inf Ny(z)
> agsup My(z) — aysup Ma(x) + 72 — 71 — €2 + g sup Ma(x)
= (g — ay +eg)sup Ma(x) + 72 — 71 — &2

(from (25))
> v —7 —¢e2 > 0.
X + Yy = (g + ) sup Ma(x) + 72(1 — sup My (z) — i—qup Na())
2
(B + 82) sup Na(z) + 8a(1 — g—p Ma(x) — sup Na(z))
= (g — G2) sup My (z) + (B2 — €2) sup Na(z) + 2 + 62
(from (22))

< max(ag — (o, 2 — €2) + 72 + 02 < 1.

12



Also, (10) that is valid because from (27) it follows that
ap—a =0+ —ar—7 =0

and from (25)

€
52—51—5202:72—’71—72-7—2:72—71—52ZO,
2

Le.
min(a2 — ag, bg — bl — bQCQ) 2 0.

By analogy we check the validity of (11).
For (12) we obtain

max(ag — bg — €2f27 dg — €9 — bQCQ) + bg + €9

:max(a2+72—72—(2,ﬁ2+52—§2—52)+72+52
= max(ag — (3, fa+2) + 72+ 02 < 1

from (22).
Inequality (27) follows directly from (17).
Then, we obtain

Koo o)W
ar by ca dy cr fa
= {(z, [a; inf M4(z) + b1 (1 — inf M4(z) — ¢y inf Na(z)),
as sup Ma(x) + by(1 — sup Ma(x) — cosup Na(z))],
[dy inf Na(z) + er(1 — fuinf Ma(z) — inf Na(x)),
dysup Na(z) + ea(1 — fosup Ma(x) — sup Na(x))])|z € E},
= {{x,[(ay — by) inf M4(z) — bicy inf Ny(z) + by,
(a2 — by) sup Ma(x) — baca sup Na(x) + ba,
[(dy — e1)inf Na(x) — e fy inf Ma(z) + e2,b
(dy — e3) sup Na(x) — eafosup Ma(x) + ex))|z € E}
= {(x, [y inf My (z) — e1inf Na(x) + 1, agsup Ma(x) — eg sup Na(z) + o],
[B1inf Na(x) —(yinf Ma(x) + 01, B2 sup Na(z) — (o sup Ma(x) + 62))|z € E}
AR ER

as B2 m1 2 &1 G

Therefore, the two operators are equivalent.
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