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In this papar, Constant Intuitionistic Fuzzy Graphs (IFGs), and totally con-
stant IFGs are introduced. Necessary and sufficient conditions under which they
are equivalent is studied here. A characterization of constant IFGs on a cycle
is given. Some properties of constant IFGs with suitable illustrations are also
discussed.
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1 Introduction

Intuitionistic Fuzzy Graph theory was introduced by Krassimir T Atanassov in
[1]. In [4], Karunambigai M G and Parvathi R introduced intuitionistic fuzzy
graph as a special case of Atanassov’s IFG. In [6], these concepts had been applied
to find the shortest path in networks using Dynamic Programming Problem
approach. Further in [6], some important operatins on IFGs are defined and
their properties are studied.

Regular fuzzy graphs and totally regular fuzzy graphs, degree, size and order
of FGs were introduced by A.Nagoor Kani and K.Radha[10]. In this paper, con-
stant IFGs and totally constant IFGs are introduced with suitable illustrations.
Necessary and sufficient conditions for their equivalence is studied here.

The paper is organised as follows: Section 2 provides some preliminary con-
cepts which are required for our study. Section 3 gives the definitions of constant



IFG and totally constant IFG. A characterization of constant IFG on a cycle is
discussed in Section 4. Some important properties of constant IFG are dealt in
Section 5. The paper is concluded in Section 6.

2 Preliminaries

In this section, some basic definitions relating to IFGs are given. [4] A Minmax

Intuitionistic Fuzzy Graph (IFG) is of the form G = (V,E), where
(i) V = {v1, v2, . . . vn} such that µ1 : V → [0, 1] and γ1 : V → [0, 1] denote the degrees of
membership and non - membership of the element vi ∈ V respectively and 0 ≤ µ1(vi) +
γ1(vi) ≤ 1, for every vi ∈ V (i = 1, 2, . . . , n).
(ii) E ⊂ V × V where µ2 : V × V → [0, 1] and γ2 : V × V → [0, 1] are such that

µ2(vi, vj) ≤ min[µ1(vi), µ1(vj)] . . . (i)
γ2(vi, vj) ≤ max[γ1(vi), γ1(vj)] . . . (ii)

and 0 ≤ µ2(vi, vj) + γ2(vi, vj) ≤ 1 for every (vi, vj) ∈ E.
Here the triple (vi, µ1i, γ1i) denotes the degree of membership and degree of non - membership
of the vertex vi. The triple (eij, µ2ij , γ2ij) denotes the degree of membership and degree of
non - membership of the edge relation eij = (vi, vj) on V .

Notation: Here after an IFG, G=(V,E) means a Minmax IFG G=(V,E).

Note 1. (i) When µ2ij = γ2ij = 0 for some i and j, then there is no edge between vi and vj.
Otherwise there exists an edge between vi and vj.
(ii)If one of the inequalities is not satisfied in (i) and (ii), then G is not an IFG.

Definition 2.1. [4] An IFG, G = 〈V,E〉 is said to be a semi-µ strong IFG if µ2ij =
min(µ1i, µ1j) for every i and j.

Definition 2.2. An IFG, G = 〈V,E〉 is said to be a semi-γ strong IFG if γ2ij = max(γ1i, γ1j)
for every i and j.

Definition 2.3. An IFG, G = 〈V,E〉 is said to be strong IFG if µ2ij = min(µ1i, µ1j) and
γ2ij = max(γ1i, γ1j) for all (vi, vj) ∈ E.

Definition 2.4. An IFG, G = 〈V,E〉 is said to be a complete-µ strong IFG if µ2ij =
min(µ1i, µ1j) and γ2ij < max(γ1i, γ1j) for all i and j.

Definition 2.5. An IFG, G = 〈V,E〉 is said to be a complete-γ strong IFG if µ2ij <
min(µ1i, µ1j) and γ2ij = max(γ1i, γ1j) for all i and j.

Definition 2.6. An IFG, G = 〈V,E〉 is said to be a complete IFG if µ2ij = min(µ1i, µ1j)
and γ2ij = max(γ1i, γ1j) for every vi, vj ∈ V

Example 2.1. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4}, E = {(v1, v2),
(v2, v3), (v1, v4), (v3, v4), (v1, v4), (v4, v2)}.
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Figure 2.1: Complete Intuitionistic Fuzzy Graph G.

Definition 2.7. [10] Let G = ((µ1, γ1) , (µ2, γ2)) be an IFG. The µ- degree of a vertex v1 is

dµ(vi) =
∑

(vi,vj)∈E

µ2(vi, vj)

The γ- degree of a vertex v1 is

dγ(vi) =
∑

(vi,vj)∈E

γ2(vi, vj)

The degree of a vertex is

d(vi) =

[

∑

vi,vj∈E

(µ2(vi, vj)) ,
∑

(vi,vj)∈E

(γ2(vi, vj))

]

and µ2(vi, vj) = γ2(vi, vj) = 0 for vivj /∈ E.

Example 2.2. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4}, E = {(v1, v2),
(v2, v3), (v4, v3), (v4, v1)}
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Figure 2.2: Degree of an Intuitionistic Fuzzy Graph G.

In this example, the degree of v1 is (0.8, 0.6). The degree of v2 is (0.4, 0.8). The degree of
v3 is (0.3, 0.7). The degree of v4 is (0.7, 0.5).

Definition 2.8. The minimum µ-degree is δµ(G) = ∧{dµ(vi)/vi ∈ V }
The minimum γ-degree is δγ(G) = ∧{dγ(vi)/vi ∈ V }
The minimum degree of G is δ(G) = ∧{dµ(vi), dγ(vi)/vi ∈ V }
The maximum µ-degree is ∆µ(G) = ∨{dµ(vi)/vi ∈ V }
The maximum γ-degree is ∆γ(G) = ∨{dγ(vi)/vi ∈ V }
The maximum degree of G is ∆(G) = ∨{dµ(vi), dγ(vi)/vi ∈ V }
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Definition 2.9. [11] Let G =< V,E > be an IFG. Then the order of G is defined to be
O(G) = (Oµ(G), Oγ(G)) where Oµ(G) =

∑

v∈V µ1(v) and Oγ(G) =
∑

v∈V γ1(v).

Definition 2.10. [11] The size of G is defined to be S(G) = (Sµ(G), Sγ(G)) where Sµ(G) =
∑

vi 6=vj
µ2(vi, vj) and Sγ(G) =

∑

vi 6=vj
γ2(vi, vj).

Definition 2.11. [4] If vi, vj ∈ V ⊆ G, the µ− strength of connectedness between vi and
vj is µ

∞
2 (vi, vj) = sup{µk

2(vi, vj) | k = 1, 2, . . . , n} and γ−strength of connectedness between
vi and vj is γ

∞
2 (vi, vj) = inf{γk

2 (vi, vj) | k = 1, 2, . . . , n}.
If u, v are connected by means of paths of length k then µk

2(u, v) is defined as sup{µ2(u, v1)∧
µ2(v1, v2)∧, µ2(v2, v3) . . . ∧ µ2(vk−1, v) | (u, v1, v2 . . . vk−1, v ∈ V )} and γk

2 (u, v) is defined as
inf{γ2(u, v1) ∨ γ2(v1, v2)∨, γ2(v2, v3) . . . ∨ γ2(vk−1, v) | (u, v1, v2 . . . vk−1, v ∈ V )}.

Definition 2.12. [4](vi, vj) is said to be a bridge in G, if either µ
′∞
2xy < µ∞

2xy and γ
′∞
2xy ≥ γ∞

2xy

or µ
′∞
2xy ≤ µ∞

2xy and γ
′∞
2xy > γ∞

2xy, for some vx, vy ∈ V .
In other words, deleting an edge (vi, vj) reduces the strength of connectedness between some
pair of vertices (or) (vi, vj) is a bridge if there exist vertices vx, vy such that (vi, vj) is an
edge of every strongest path from vx to vy.

Definition 2.13. [4] A vertex vi is said to be a cut-vertex in G if deleting a vertex vi reduces
the strength of connectedness between some pair of vertices or vi is a cut vertex if and only
if there exists vx, vy such that vi is a vertex of every strongest parth from vx to vy. In other
words, µ

′∞
2xy ≤ µ2xy and γ

′∞
2xy < γ2xy or µ

′∞
2xy < µ2xy and γ

′∞
2xy ≤ γ2xy, for some vx, vy ∈ V .

3 Constant IFG

Definition 3.1. Let Let G : [(µ1i, γ1i) , (µ2ij, γ2ij)] be an IFG on G∗ : (V,E). If dµ(vi) = ki
and dγ(vj) = kj for all vi, vj ∈ V i.e the graph is called as (ki, kj)-IFG (or) constant IFG of
degree (ki, kj)

Example 3.1. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4},
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Figure 3.1: Constant IFG G of degree (ki, kj).

In this example, the degree of v1,v2,v3,v4 is (0.6, 0.7).

Remark 3.1. G is a (ki, kj)-constant IFG iff δ = ∆ = k, where k = ki + kj.

Example 3.2. The following example shows that a complete IFG need not be a constant
IFG. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4}, . Refer figure 3.2.
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Figure 3.2: G is complete, but not constant IFG.

Definition 3.2. Let G be an IFG. The total degree of a vertex v ∈ V is defined as

td(v) =

[

∑

v1v2∈E

dµ2
(v) + µ1(v),

∑

v1v2∈E

dγ2(v) + γ1(v)

]

If each vertex of G has the same total degree (r1, r2), then G is said to be an IFG of total
degree (r1, r2) or a (r1, r2)-totally constant IFG.

Example 3.3. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4, v5, v6}. Refer
figure 3.3.

Theorem 3.1. Let G be an IFG. Then (µ1, γ1) is a constant function iff the following are
equivalent.

(i) G is a constant IFG.

(ii) G is a totally constant IFG.

Proof.
Suppose that (µ1, γ1) is a constant fuction. Let µ1(vi) = c1 and γ1(vi) = c2 for all vi ∈ V
where c1 and c2 are constants. Assume that G is a (k1, k2)-constant IFG. Then, dµ(vi) = k1
dγ(vi) = k2 for all v ∈ V .So, tdµ(vi) = dµ(vi)+µ1(vi), tdγ(vi) = dγ(vi)+γ1(vi) for all vi ∈ V ,
tdµ(vi) = k1 + c1, tdγ(vi) = k2 + c2 for all vi ∈ V . Hence G is a totally constant IFG. Thus
(i) ⇒(ii) is proved.
Now, suppose that G is a (r1, r2)-totally constant IFG. Then, tdµ(vi) = r1, tdγ(vi) = r2 for
all v ∈ V . dµ(vi) + µ1(vi) = r1, dµ(vi) + c1 = r1, dµ(vi) = r1 − c1. Similarly,dγ(vi) + γ1(vi) =
r2,dγ(vi)+ c2 = r2,dγ(vi) = r2− c2. So, G is a constant IFG. Thus (ii) ⇒(i) is proved. Hence
(i) and (ii) are equivalent.
Conversely, assume that (i) and (ii) are equivalent ie G is a constant IFG iff G is a totally
constant IFG.
Suppose (µ1, γ1) is not a constant function.Then, µ1(v1) 6= µ1(v2), γ1(v1) 6= γ1(v2) for atleast
one pair of vertices v1, v2 ∈ V .Let G be a (k1, k2)-constant IFG. Then, dµ(v1) = dµ(v2) = k1,
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Figure 3.3: Totally constant IFG G with total degree (r1, r2).

dγ(v1) = dγ(v2) = k2. So, tdµ(v1) = dµ(v1) + µ1(v1) = k1 + µ1(v1) and tdµ(v2) = k1 + µ1(v2).
Similarly,tdγ(v1) = k2 + γ1(v1),tdγ(v2) = k2 + γ1(v2). Since,µ1(v1) 6= µ1(v2),γ1(v1) 6= γ1(v2).
We have,tdµ(v1) 6= tdµ(v2), tdγ(v1) 6= tdγ(v2).So, G is not totally constant IFG which is a
contradiction to our assumption.
Now, let G be a totally constant IFG.Then, tdµ(v1) = tdµ(v2), dµ(v1) + µ(v1) = dµ(v2) +
µ(v2),dµ(v1)−dµ(v2) = µ(v2)−µ(v1)(ie 6= 0), dµ(v1) 6= dµ(v2). Similarly,dγ(v1) 6= dγ(v2). So,
G is not constant which is a contradiction to our assumption. Hence (µ1, γ1) is a constant
function.

Example 3.4. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4}, E = {(v1, v2),
(v2, v3), (v4, v3), (v4, v1)}
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Figure 3.4: (µ1, γ1) is a constant fuction, then G is constant and totally constant.

Theorem 3.2. If an IFG is both constant and totally constant, then (µ1, γ1) is a constant
function.
Proof.
Let G be a (k1, k2)-constant and (r1, r2)-totally constant IFG. So, dµ(v1) = k1, dγ(v1) = k2,
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for v1 ∈ V and tdµ(v1) = r1, tdγ(v1) = r2, for all v ∈ V . tdµ(v1) = r1, for v ∈ V ,
dµ(v1) + µ1(v1) = r1, for all v ∈ V . k1 + µ1(v) = r1, for all v ∈ V . µ1(v) = (r1 − k1), for all
v ∈ V . Hence µ1(v1) is a constant function. Similarly, γ1(v1) = (r2 − k2), for all v ∈ V .

Remark 3.2. Converse of Theorem 3.2 need not be true.

Example 3.5. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4}, E = {(v1, v2),
(v2, v3), (v4, v3), (v4, v1)}
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Figure 3.5: (µ1, γ1) is a constant fuction, but G is neither constant IFG nor totally constant
IFG.

4 A Characterization of constant IFG on a cycle

Theorem 4.1. Let G be an IFG where crisp graph G is an odd cycle. Then G is constant
IFG iff (µ2, γ2) is a constant function.
Proof.
If (µ2, γ2) is a constant function say µ2 = c1 and γ2 = c2 for all (vivj) ∈ E, then,dµ(vi) = 2c1
and dγ(vi) = 2c2 for every vi ∈ V , So G is a constant IFG.
Conversely, suppose that G is a (k1, k2)-regular IFG. Let e1, e2, ......e2n+1 be the edges of G in
that order. Let µ2(e1) = c1, µ2(e2) = k1−c1, µ2(e3) = k1−(k1−c1) = c1, µ2(e4) = k1−c1 and
so on. Similarly, γ2(e1) = c2, γ2(e2) = k2 − c2, γ2(e3) = k2 − (k2 − c2) = c2, γ2(e4) = k2 − c2
and so on.

Therefore

µ2(ei) =

{

c1, if i is odd
k1 − c1, if i is even

.

Hence µ2(e1) = µ(e2n+1) = c1. So, if e1 and e2n+1 incident at a vertex v1, then dµ(v1) = k1,
d(e1) + d(en+1) = k1,c1 + c1 = k1, 2c1 = k1, c1 =

k1
2
.

Remark 4.1. The above theorem does not hold for totally constant IFG.

Example 4.1. Consider an IFG, G = (V,E), such that V = {v1, v2, v3},and E = {(v1, v2),
(v2, v3), (v1, v3)}.

Theorem 4.2. Let G be an IFG where crisp graph G is an even cycle. Then G is constant
IFG iff either (µ2, γ2) is a constant function or alternate edges have same membershp values
and non-membership values.
Proof.
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Figure 4.1: (µ2, γ2) is a constant fuction, but not totally constant IFG.

If either (µ2, γ2) is a constant function or alternate edges have same membershp values
and non-membership values, then G is a constant IFG. Conversely, suppose G is a (k1, k2)
constant IFG. Let e1, e2, ......e2n be the edges of even cycle G∗ in that order. Proceeding as
in the above theorem,

µ2(ei) =

{

c1, if i is odd
k1 − c1, if i is even

.

Similarly,

γ2(ei) =

{

c2, if i is odd
k2 − c2, if i is even.

.

If c1 = k1 − c1, the (µ2, γ2) is a constant function. If c1 6= k1 − c1, then alternate edges have
same membershp values and non-membership values.

Remark 4.2. The above theorem does not hold for totally constant IFG.

Example 4.2. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4}, E = {(v1, v2),
(v2, v3), (v4, v3), (v4, v1)}

b b

bb

(0.4, 0.6)v1
(0.3, 0.3)

v2(0.3, 0.2)

v3(0.5, 0.3)(0.7, 0.2)v4

(0
.3
,
0.
3)

(0.3, 0.3)

(0
.3
,
0.
3)

Figure 4.2: (µ2, γ2) is a constant fuction, then G is a constant IFG. But it is not totally
constant IFG.

5 Properties of constant IFG

Theorem 5.1. The size of a (k1, k2) constant IFG is
(

pk1
2
, pk2

2

)

where p = |V |.
Proof
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The size of G is S(G) =

[

∑

v1v2∈E

µ2(v1v2),
∑

v1v2∈E

γ2(v1v2)

]

, since G is (k1, k2) regular IFG,

dµ(v) = k1, dγ(v) = k2 for all v ∈ V. We have,
∑

v∈E

dG(v) = 2 [
∑

µ2(v1v2),
∑

γ2(v1v2)]= 2

S(G). So, 2S(G) =
∑

v∈E

dG(v),

[

∑

v∈V

k1,
∑

v∈V

k2

]

, [pk1, pk2], S(G) =
(

pk1
2
, pk2

2

)

.

Theorem 5.2. If G is a (k, k
′

)-totally constant IFG, then 2S(G) + O(G) = (pk, pk
′

) where
p = |V |.

Proof
Since G is a (k, k

′

) totally constnat IFG, k = tdµ(v) = dµ(v) + µ1(v) and k
′

= tdγ(v) =
dγ(v) + γ1(v), for all v ∈ V . Therefore,

∑

v∈V

k =
∑

v∈V

dG(v) +
∑

v1∈V

µ1(v1),
∑

v∈V

k
′

=
∑

v∈V

dG(v) +
∑

v1∈V

γ1(v1).

pk
′

= 2Sµ(G) + Oµ(G). pk = 2Sγ(G) + Oγ(G) and thus pk + pk
′

= 2 [Sµ(G) + Sγ(G)] +
Oµ(G) +Oγ(G).

Corollary 5.3. If G is a (k1, k2) constant and a (r1, r2)-totally constant IFG, then Oµ(G) =
p(r1 − k1), Oγ(G) = p(r2 − k2).

From the above theorem, 2S(G) =
[

pk1
2

]

or 2S(G) = pk1, 2S(G) =
[

pk2
2

]

or 2S(G) = pk2.
2Sµ(G) + Oµ(G) = pr1, 2Sγ(G) + Oγ(G) = pr2. So, Oµ(G) = pr1 − 2Sµ(G),pr1 − pk1,
p(r1−k1). Similarly, Oγ(G) = p(r2−k2), O(G) = Oµ(G)+Oγ(G),⇒= pr1−pk1+pr2−pk2,
⇒ p [r1 − k1 + r2 − k2].

Theorem 5.4. A constant IFG on an odd cycle does not have a IF bridge. Hence it does
not have an IF cut vertex.
Proof
Assume that G is a constant IFG on an odd cycle of crisp graph G. Then (µ2, γ2) is a constant
function. So removal of any edge does not reduce the strength of connectedness between any
pair of vertices. Hence G has no IF bridge. Hence by definition 2.12, G does not have a IF
cut vertex.

Remark 5.1. The above theorem does not hold for totally constant IFG.

Example 5.1. Consider an IFG, G = (V,E), such that V = {v1, v2, v3},and E = {(v1, v2),
(v2, v3), (v1, v3)}. Refer figure 5.1.

Theorem 5.5. Let G be a constant IFG on an even cycle of a crisp graph G. Then either
G does not have an IF bridge or it has q/2 IF bridges where q =|E|. Also G does not have
an IF cutvertex.
Proof
Assume that G is a constant IFG on an even cycle of crisp graph G. Then by Theorem 4.2,
either (µ2, γ2) is a constant function or alternate edges have same membership values and
non-membership values.
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Figure 5.1: (µ2, γ2) is a constant fuction, but neither an IF bridge nor an IF cutvertex.

Case 1: (µ2, γ2) is a constant function. Then the removal of any edge does not reduce
the strength of connectedness between any pair of vertices. So G does ot have a IF bridge
and hence does not have an IF cut vertex.

Case 2: Alternate edges have same membership values and non-membership values. Then
by Theorem 2.11, edges with greater membership values and smaller non-membership values
are the IF bridges of G. There are q/2 such edges where q = |E|. Hence G has q/2 IF
bridges. But then no vertex is a common vertex of two IF bridges. So G does not have an
IF cut vertex.

Remark 5.2. The above theorem does not hold for totally constant IFG.

Example 5.2. Consider an IFG, G = (V,E), such that V = {v1, v2, v3, v4}, E = {(v1, v2),
(v2, v3), (v4, v3), (v4, v1)}

b b

bb

(0.5, 0.2)v1
(0.4, 0.3)

v2(0.4, 0.3)

v3(0.7, 0.3)(0.8, 0.2)v4

(0
.3
,
0.
2)

(0.7, 0.3)

(0
.2
,
0.
3)

Figure 5.2:

6 Conclusion

The concept of constant IFG in graphs is very rich both in theoretical developments and
applications. In this paper, we introduced constant IFG and totally constant IFG and some
interesting properties of these new concepts are proved.
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