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Abstract: A lot of operations are defined oved the intuitionistic fuzzy sets. Here, five equalities
with participation of some of these operations are introduced and proved. The paper is a contin-
uation of [4, 5], where two new operations over Intuitionistic Fuzzy Sets (IFSs, see [1, 2]) are
introduced. The operations and their properties may find applications as the operations An, n.A
and 1

n
.A find their places and play role in contrast enhancement and defining statistical tools in

intuitionistic fuzzy environment.
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1 Introduction

Let a set E be fixed. The IFS A in E is defined by (see, e.g., [1, 2]):

A = {〈x, µA(x), νA(x)〉|x ∈ E},
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where functions µA : E → [0, 1] and νA : E → [0, 1] define the degree of membership and the
degree of non-membership of the element x ∈ E, respectively, and for every x ∈ E:

0 ≤ µA(x) + νAEx) ≤ 1.

Different relations and operations are introduced over the IFSs. Some of them are the follow-
ing:

A = B iff (∀x ∈ E)(µA(x) = µB(x)&νA(x) = νB(x)),

¬A = {〈x, νA(x), µA(x)〉|x ∈ E},

n.A = {〈x, 1− (1− µA(x))
n, (νA(x))

n〉 | x ∈ E},

An = {〈x, (µA(x))
n, 1− (1− νA(x))n〉 | x ∈ E},

n
√
A = {〈 n

√
µA(x), 1− n

√
1− νA(x), 〉|x ∈ E},

1

n
.A = {〈x, 1− n

√
1− µA(x),

n
√
νA(x)〉|x ∈ E},

where n is a natural number.
Operations n.A and An are introduced for a first time in [3] by Supriya Kumar De, Ranjit

Biswas and Akhil Ranjan Roy, while operations n
√
A and 1

n
.A – in [4] and [5], respectively, by

the first two authors.

2 Main results

The four new operations possess some interesting properties, as given in the following theorems.
We start with the following:
Theorem 1: For every IFS A and for every natural number n ≥ 1:

(a) ¬ 1
n
.¬A = n

√
A,

(b) ¬ n
√
¬A = 1

n
.A,

(c) ¬n.¬A = An,

(d) ¬(¬A)n = n.A.

Proof. (a)

¬ 1
n
.¬A

= ¬ 1
n
.{〈x, νA(x), µA(x)〉|x ∈ E}

= ¬{〈x, 1− n
√
1− νA(x), n

√
µA(x)〉|x ∈ E}

= {〈x, n
√
µA(x), 1− n

√
1− νA(x)〉|x ∈ E}

=
n
√
A.
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(b), (c) and (d) are proved by analogy.
Theorem 2: For every IFS A and for every natural number n

¬n.(¬ 1
n
.

n
√
A)n = A = ¬ 1

n
.

n
√
¬n.An.

Proof.

¬n.(¬ 1
n
.

n
√
A)n

= ¬n.(¬ 1
n
.{〈x, n

√
µA(x), 1− n

√
1− νA(x)〉|x ∈ E})n

= ¬n.(¬{〈x, 1− n

√
1− n

√
µA(x),

n

√
1− n

√
1− νA(x)〉|x ∈ E})n

= ¬n.({〈x, n

√
1− n

√
1− νA(x), 1−

n

√
1− n

√
µA(x)〉|x ∈ E})n

= ¬n.{〈x, 1− n
√

1− νA(x), 1− (1− 1 +
n

√
1− n

√
µA(x))

n〉|x ∈ E}

= ¬n.{〈x, 1− n
√

1− νA(x), 1− 1 + n
√
µA(x)〉|x ∈ E}

= ¬n.{〈x, 1− n
√
1− νA(x), n

√
µA(x)〉|x ∈ E}

= ¬{〈x, 1− (1− 1 + n
√
1− νA(x))n, ( n

√
µA(x))

n〉|x ∈ E}

= ¬{〈x, 1− ( n
√

1− νA(x))n, µA(x)〉|x ∈ E}

= ¬{〈x, 1− 1 + νA(x), µA(x)〉|x ∈ E}

= ¬{〈x, νA(x), µA(x)〉|x ∈ E}

= {〈x, µA(x), νA(x)〉|x ∈ E}

= A

= {〈x, µA(x), νA(x)〉|x ∈ E}

= ¬{〈x, νA(x), µA(x)〉|x ∈ E}

= ¬ 1
n
.{〈x, 1− 1 + νA(x), µA(x)〉 | x ∈ E}

= ¬ 1
n
.{〈x, 1− n

√
1− 1 + (1− νA(x))n), n

√
(µA(x))n〉 | x ∈ E}

= ¬ 1
n
.{〈x, 1− (1− νA(x))n, µA(x))

n〉 | x ∈ E}

= ¬ 1
n
.{〈x, 1− (1− νA(x))n, 1− 1 + (µA(x))

n〉 | x ∈ E}

= ¬ 1
n
.{〈x, n

√
(1− (1− νA(x))n)n, 1− n

√
1− 1 + (1− (µA(x))n)n〉 | x ∈ E}

= ¬ 1
n
. n
√
{〈x, (1− (1− νA(x))n)n, 1− (1− (µA(x))n)n〉 | x ∈ E}

= ¬ 1
n
. n
√
¬{〈x, 1− (1− (µA(x))n)n, (1− (1− νA(x))n)n〉 | x ∈ E}

= ¬ 1
n
. n
√
¬n.{〈x, (µA(x))n, 1− (1− νA(x))n〉 | x ∈ E}

= ¬ 1
n
.

n
√
¬n.An.
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