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Abstract

This paper is an attempt to model to
what extent an intuitionistic fuzzy set is
self-contradictory, both in the case of self-
contradiction regarding a strong intuition-
istic negation, and without depending on a
specific negation. For this purpose, firstly,
a geometrical study on self-contradiction
regarding a negation is considered; after-
wards some functions to measure degrees
of self-contradictory depending on a nega-
tion are defined. Finally, the degree of self-
contradiction independently of any negation
is dealt with other functions, and in both
cases some properties are found.

Keywords: Intuitionistic fuzzy sets, intu-

itionistic fuzzy generators and fuzzy nega-

tions, degrees of contradiction.

1 Introduction

1.1 The intuitionistic fuzzy sets, as it is well
known, were introduced by K. T. Atanassov in
1983 as follows:

Definition 1.1. ([1]) An intuitionistic fuzzy set
(IFS) A, in the universe X 6= ∅, is a set given as
A = {(x, µA(x), νA(x)) : x ∈ X} such that, for
all x ∈ X, µA(x) + νA(x) ≤ 1, and where µA :
X → [0, 1], νA : X → [0, 1] are called functions of
membership and non-membership, respectively.

This set could be considered as a L-fuzzy set as
defined by Goguen ([7]) being, in this case, L =
{(α1, α2) ∈ [0, 1]2 : α1 + α2 ≤ 1}, with the partial
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order ≤L defined as follows: given α = (α1, α2),
β = (β1, β2) ∈ L,

α ≤L β ⇐⇒ α1 ≤ β1 & α2 ≥ β2 .

(L,≤L) is a complete lattice with smallest ele-
ment, 0L = (0, 1), and greatest element, 1L =
(1, 0).

So, an IFS A is a L-fuzzy set whose L-membership
function χA ∈ LX = {χ : X → L} is defined for
each x ∈ X as χA(x) = (µA(x), νA(x)). Let us
denote the set of all intuitionistic fuzzy sets on X
as IF (X).

Furthermore, recall that a decreasing function
N : L → L is an intuitionistic fuzzy nega-
tion (IFN) if N (0L) = 1L and N (1L) = 0L

hold. Moreover, N is a strong IFN if the equal-
ity N (N (α)) = α holds for all α ∈ L. Bustince
et al. in [2] introduced the intuitionistic fuzzy
generators, which can be used to build intuition-
istic fuzzy negations, and Deschrijver et al. in
[6] focus on this problem and proved that any
strong IFN N is characterized by a strong nega-
tion N : [0, 1] → [0, 1] by means of the for-
mula N (α1, α2) = (N(1 − α2), 1 − N(α1)), for
all (α1, α2) ∈ L. Regarding strong fuzzy nega-
tions, they were characterized by Trillas in [8].
He showed that N is a strong negation if and
only if there exists an order automorphism in
the unit interval, g : [0, 1] → [0, 1], such that
N(α) = g−1(1 − g(α)), for all α ∈ [0, 1]. So, a
strong IFN N is also determined by an order au-
tomorphism g in [0, 1].

1.2 Trillas et al. introduced and studied the
concept of contradictory set in [9] and [10] in
the framework of fuzzy sets. These papers for-
malise the idea that a set is self-contradictory
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(or contradictory to be short) if it violates the
principle of not contradiction in the following
sense: the statement “If x is P, then x is not P”
holds with some degree of truth. So, they estab-
lish that the fuzzy set associated with the predi-
cate P, and determined by µP , is contradictory if
“µP (x) → µ¬P (x) for all x” representing the im-
plication “→” by means of the reticular inequality
≤ of [0, 1], that is, µP is self-contradictory regard-
ing a strong negation N , or N -self-contradictory,
if µP ≤ N ◦ µP . The condition µ ≤ N ◦ µ is
equivalent to Sup

x
(µ(x)) ≤ αN , where αN is the

fixed point of N ; nevertheless, the extent to which
this condition holds, that is, how contradictory µ
is, is a matter for consideration, since µ can be-
have quite differently regarding this characteris-
tic. For example, if the fuzzy set determined by
µ verifies that Sup

x
(µ(x)) = αN , then a minimal

variation in this supreme could produce a non-
N -contradictory fuzzy set. But, if Sup

x
(µ(x)) is

much smaller than αN , then small changes in this
supreme do not modify the contradictoriness of
the disturbed µ. The need to speak not only of
contradiction but also of degrees of contradiction
was later raised in [3] and [4], where a function
was considered for the purpose of determining (or
measuring) this degree.

The study of contradiction in the framework of
intuitionistic fuzzy sets was initiated in [5]. Sim-
ilarly to fuzzy case, an IFS A ∈ IF(X) is said to
be a self-contradictory set with respect to some
strong IFN, N , if χA(x) ≤L (N ◦ χA)(x) for all
x ∈ X, where χA is the L-membership function
of A. Since it is interesting to know not only
if a set is contradictory, but also the extend to
which this property holds, in this work, we deal
with the problem of measuring the contradiction
in the case of IFS.

2 Measuring N -self-contradiction in
IF(X)

In this section we analyse firstly the regions of L in
which the contradictory sets for a given negation
are located. The purpose of this study is to find
some relation suggesting the way to measure how
contradictory an IFS is. Secondly, we will propose

some measures to determine the searched degrees
of contradiction.

2.1 Regions of N -contradiction

In [3], it is proved that, given A ∈ IF(X), with
χA = (µA, νA) ∈ LX , and N a strong IFN, asso-
ciated with the strong negation N , then

(i) A is N -contradictory ⇔ N(µA(x))+νA(x) ≥ 1
for all x ∈ X.

(ii) A is N -contradictory ⇔ g(µA(x)) + g(1 −
νA(x)) ≤ 1 for all x ∈ X, provided g is the gener-
ator of N .

Above inequalities, that are equivalent, determine
a region free of contradiction in L and other one
where the contradictory sets must remain. Let
us see those regions for some particular negations
and afterwards in the general case.

(a) Ns-contradiction with standard nega-
tion Ns(α1, α2) = (α2, α1)

If we consider the standard negation, Ns, that is
given by N = 1 − id, where g = id; then the
above statements become: A is N -contradictory
if and only if 1 − µA(x) + νA(x) ≥ 1, or νA(x) ≥
µA(x) ∀x ∈ X.

0L

         c   (X)
remains in
this area

A

L

1L

a =a1        2

Figure 1: Ns-contradiction area.

So, A is N -contradictory if and only if χA(X) =
{χA(x) : x ∈ X} ⊂ {(α1, α2) ∈ L : α1 ≤ α2};
therefore, the image of X under χA, that we
also call range of A, should be inside of the re-
gion showed in figure 1, and line α1 = α2 is
the boundary between the contradictory and non-
contradictory regions.

(b) Ng-contradiction being Ng the strong
IFN associated with a Sugeno’s negation

The order automorphism g(α) = ln(1+α)
ln 2 deter-
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mines the strong Sugeno’s negation Ng(α) =
1−α
1+α . In this case, the set A ∈ IF(X) is Ng-
contradictory if and only if

1 − µA(x)

1 + µA(x)
+ νA(x) ≥ 1 ∀x ∈ X

So, A is Ng-contradictory if and only if

χA(X) ⊂ {(α1, α2) ∈ L : α1 + α1α2 − 2α1 ≥ 0}

=

{

(α1, α2) ∈ L : α2 ≥ 2α1

1 + α1

}

(c) Nr-contradiction with Nr determined
by gr(α) = αr, r > 0

Let us consider the family of strong negations
{Nr}r>0, where for each r > 0 the automorphism
determining Nr is gr(α) = αr. This family col-
lects as particular case the negation given in (a),
and for each r > 0 is Nr(α) = (1 − αr)1/r with
fixed point αNr = 1

21/r .

A ∈ IF(X) is Nr-contradictory, where Nr is the
IFN associated with Nr (or with gr), if and only
if

χA(X) ⊂ {(α1, α2) ∈ L : αr
1 + (1 − α2)

r ≤ 1}

For each r > 0 the curve αr
1 +(1−α2)

r = 1 is the
boundary which delimit the contradiction region,
and if an IFS has some L-value under that curve,
then it is not Nr-contradictory.

In particular, A is N2-contradictory if and only
if the image of X under χA is inside or on the
circumference with centre 1L and radius 1 (fig.
2).

0L

         c   (X)
remains in
this area

A

L

1L

1/ 2 1/ 2(          ,1-         )

1                 2
a  +(1-a )  =1

2                      2

Figure 2: N2-contradiction area with N2 determined

by g2(α) = α2.

Let us note that the boundary curve of the contra-
diction region, with equation α2

1 + (1 − α2)
2 = 1,

intersects the line with equation α1+α2 = 1 at the
point (αNg , 1 − αNg) =

(

1/
√

2, 1 − 1/
√

2
)

, where
αNg is the fixed point of Ng.

Let us note that the more r increases , the more
the curves αr

1 + (1 − α2)
r = 1 come closer to axis

α1 (except for α1 = 1); to be precise, the family
of functions {1 − (1 − αr

1)
1/r}r>0 pointwise con-

verges, when r → ∞, to the null function for
all α1 ∈ [0, 1) and to 1 at α1 = 1; therefore,
the not Nr-contradiction region decreases. Fur-
thermore, when r → 0, the family of functions
{(1−(1−α2)

r)1/r}r>0 converges for all α2 ∈ [0, 1)
to null function, and for α2 = 1 converge to 1;
that is, the more r decreases, the more the curves
delimiting the contradiction region come closer to
axis α2 (except for α2 = 1), and then the not Nr-
contradiction region spreads when r decreases.

On the other hand, if 0 < r < s the curve αs
1 +

(1−α2)
s = 1 is under the curve αr

1+(1−α2)
r = 1

(in figure 3 some of them are showed), and, if A ∈
IF(X) is Nr-contradictory, it is Ns-contradictory
for all s > r. Indeed, if r < s it is αr

1 > αs
1 for

all α1 ∈ (0, 1), and, as g 1

r
is increasing and 1/s <

1/r, it is (1 − αr
1)

1/r < (1 − αs
1)

1/r < (1 − αs
1)

1/s,
from which it follows that the coordinate α2 of the
curve related to s is below that the one related to
r.

0L

L

1L

    r=1/3

         r=1/2

              r=1

                    r=2

                        r=3

Figure 3: Curves αr

1
+ (1 − α2)

r = 1.

Finally, let us observe that the aforementioned
family of curves almost “cover” the lattice L with
the exception of the axis without the origin, that
is:

∪r>0 {(α1, α2) ∈ L : αr
1 + (1 − α2)

r = 1} =

L \ {(α1, α2) 6= (0, 0) : α1 = 0 or α2 = 0}.

(d) General case of N -contradiction

If N is a strong IFN associated with the strong

457



negation N , a set A ∈ IF(X) is N -contradictory
if and only if

χA(X) ⊂ {(α1, α2) ∈ L : N(α1) + α2 ≥ 1},
and the boundary curve delimiting the non-
contradiction region, N(α1)+α2 = 1, and that we
name N -boundary curve (or, to simplify, bound-
ary curve, if it is not misleading), verifies the fol-
lowing properties:

1) It is increasing at the variable α1.

2) Its range contains the point (0,0).

3) The intersection of N(α1) + α2 = 1 and α1 +
α2 = 1 is the point (αN , 1 − αN ), being αN the
fixed point of N .

2.2 Degrees of N -contradiction

As we noted in the introduction, it is important to
measure how much contradictory a set is, and not
only in the fuzzy case, but also in the intuitionistic
one. In fact, the IFS with a constant null L-value,
χ0L(x) = 0L for all x ∈ X, is N -contradictory
for any IFN N , and A ∈ IF(X) taking all its
L-values on the contradiction boundary curve,
N(α1) + α2 = 1 (where N is the strong nega-
tion associated with N ), is also N -contradictory.
Nevertheless, small disturbances in the L-values
of A on the boundary curve will return a new
set, very similar to A, but not N -contradictory,
whereas small disturbances will never change the
contradictoriness of 0L. So, it seems quite suit-
able to assign the value 0 as the degree of N -
contradiction of A, and also, of any set taking
L-values on the area underneath the boundary
curve. Analogously, it seems appropriate to as-
sign positive degree to a set whose range is above
the boundary curve and it will be as much higher
as the range is farther away from the curve. Tak-
ing in account these comments, we will define dif-
ferent functions that could be used to determine
the contradiction degrees.

Definition 2.1. Let A ∈ IF(X) be an IFS de-
termined by χA = (µA, νA) ∈ LX ; then

i) CN
1 (A) = Max

(

0, Inf
x∈X

(N(µA(x)) + νA(x) − 1)

)

is the N -contradiction degree of A according to
the strong negation N associated with N .

ii) CN
2 (A)=Max

(

0,1−Sup
x∈X

(g(µA(x)) + g(1 −νA(x))

)

is the N -contradiction degree of A according to
the automorphism g determining N .

iii) The contradiction degree according to the
distance to the contradictory boundary curve is
CN

3 (A) = 0, provided A is non-N -contradictory,
and in other case

CN
3 (A) =

d(χA(X),LN )

d(0L,LN )
,

where d is the euclidean distance, and

LN = {α = (α1, α2) ∈ L : N(α1) + α2 = 1}
is the boundary curve; so,

d(χA(X),LN )=Inf
{

d(χA(x), α) : x ∈ X, α∈ LN
}

and

d(0L,LN ) = Inf {d(0L, α) : α ∈ LN }.
Remark

The three above functions take their values in
[0, 1]. The function CN

1 is motivated by the
characterization of the contradiction (i) of 2.1,
whereas CN

2 is originated by (ii). Although both
characterizations are equivalent, CN

1 and CN
2 do

not match up, as it is showed in the next example
(2.3). Besides, CN

3 represents a relative distance:
the euclidean distance between the range of a
IFS and the boundary curve, relative to the dis-
tance between the “most contradictory” set and
the same curve, whereas CN

1 represents the infi-
mum of the distances between the ordinates of
the L-values of the IFS and those of the bound-
ary curve (see the figure 4). Regarding CN

2 , it is
possible to find some geometrical interpretations
in some particular cases.

Proposition 2.2. Let Ns be the standard IFN,
then for all A ∈ IF(X) degrees of contradiction
of A by means of the formula in definition 2.1
verify that

CNs
1 (A) = CNs

2 (A) = CNs
3 (A).

Nevertheless, in general, the three measures are
different, as the following example shows.

Example 2.3. Let A ∈ IF([0, 1]) with L-
membership function χA(x) = (x/4, 1 − x/2),
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and let us consider the strong IFN N determined
by the fuzzy negation N(x) =

√
1 − x2, with

g(x) = x2. Then:

CN
1 (A)=Max

(

0, Inf
x∈[0,1]

(√

1 − (x
4 )2 − x

2

)

)

=
√

15−2
4 ,

CN
2 (A)= Max

(

0, 1 − Sup
x∈[0,1]

(

(

x
4

)2
+

(

x
2

)2
)

)

= 11
16 .

And, as A is N -contradictory, then

CN
3 (A) =

d(χA(X),LN )

d(0L,LN )
= 1 −

√
5

4
. ⊳

0L

c   (X)A

C  (A)
N

3

1L

1                 2
a  +(1-a )  =1

2                      2

C  (A)
N

1

Figure 4: Geometrical interpretation of different con-

tradiction degrees

The following properties of above measures of N -
self-contradiction can be proved.

Proposition 2.4. For i = 1, 2, 3, the function
CN

i : IF(X) → [0, 1] given for each A ∈ IF(X)
as in the definition 2.1 verifies:

(i) If 0L denotes the IFS such that χ0L(x) = 0L

for all x ∈ X, then CN
i (0L) = 1.

(ii) CN
i is anti-monotonic with respect to the or-

ders ≤L in L and the usual one of R: If A, B ∈
IF(X) with χA ≤L χB (that is, χA(x) ≤L χB(x)
for all x ∈ X), then CN

i (B) ≤ CN
i (A).

(iii) If A ∈ IF(X) verifies that Inf
x∈X

νA(x) = 0,

then CN
i (A) = 0.

3 Measuring Self-contradiction in
IF(X)

The previous section establishes the contradiction
of an IFS related to a chosen negation. We now

address contradiction more generally, without de-
pending on a specific IFN. In [5] an IFS A ∈
IF(X) was defined self-contradictory (or contra-
dictory to be short) if it was N -self-contradictory
regarding some strong IFN N , and the following
result was proved.

Proposition 3.1. ([5]) Let A ∈ IF(X) be, with
L-membership function χA = (µA, νA) ∈ LX , the
following holds:
(i) If A is self-contradictory, then Sup

x∈X
µA(x) < 1.

(ii) If Inf
x∈X

νA(x)> 0, then A is self-contradictory.

With the purpose of measuring how much contra-
dictory an IFS is, and taking in account the pre-
ceding proposition, we will define some functions;
nevertheless, before that a corollary is given.

Corollary 3.2. If A ∈ IF(X), with member-
ship function µA ∈ [0, 1]X , is contradictory, then
Sup
x∈X

(µA(x) − νA(x)) < 1.

An important aspect to take into account, and
that could clarify the definition of these functions
measuring the contradiction degree, is collected
by the following result.

Proposition 3.3. If A ∈ IF(X), with L-
membership function χA = (µA, νA) ∈ LX , is self-
contradictory then for all {xn}n∈N ⊂ X such that
lim

n→∞
νA(xn) = 0, then lim

n→∞
µA(xn) = 0 holds.

Definition 3.4. Let A ∈ IF(X) be the set de-
termined by χA = (µA, νA) ∈ LX ; the following
contradiction degrees of A are proposed:

i) C1(A) = Inf
x∈X

νA(x).

ii) C2(A) = 0 if there exists {xn}n∈N ⊂ X such
that lim

n→∞
νA(xn) = 0, and, in other case

C2(A) = Inf
x∈X

1 − µA(x) + νA(x)

2
.

Example 3.5. Let A, B ∈ IF([0, 1]) be the sets
determined by χA(x) = (1/4, 1/4) and χB(x) =
(3/4, 1/4) for all x ∈ [0, 1], respectively. Then
C1(A) = C1(B) = 1/4; however, C2(A) = 1/2
and C2(B) = 1/4. How could we explain these
results? As both sets are contradictory, it is ob-
vious that the two measures should be positive
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for them. The first one measures how much each
set needs to stop being self-contradictory, as that
is just what is missing to “touch” the axis α1.
But, how to interpret that the degree for C2 is
greater for A? The answer is that the set A is N -
contradictory for the same negations N that B
and, furthermore, for a lot more of them, that is,
there are more negations N that make A contra-
dictory than that make B contradictory. In this
sense, the measure C2 provides more information
than C1 about contradictoriness. ⊳

Remark

On the one hand, it is evident that the function
C1 measures the euclidean distance from the range
of a contradictory set A ∈ IF(X) to the axis α1

(that we denote L1):

C1(A) = d(χA(X),L1) =
d(χA(X),L1)

d(0L,L1)
.

On the other hand,

C2(A) =
d1(χ

A(X),1L)

2
=

d1(χ
A(X),1L)

d1(0L,1L)
,

that is, the function C2 measures the reticular dis-
tance between the range of A and 1L, relative to
the reticular distance from 0L to 1L (let us remind
that d1(α, β) = |α1 −β1|+ |α2 −β2|). These geo-
metrical interpretations of the measures C1 y C2

suggest another way to measure the contradiction
degree.

Definition 3.6. The function C3 : IF(X) →
[0, 1] is defined for each A ∈ IF(X), with L-
membership function χA = (µA, νA), as follows:

C3(A) =











0 if ∃{xn}n∈N ⊂ X/ lim
n→∞

νA(xn) = 0,

d(χA(X),1L)

d(0L,1L)
in other case.

In a similar way to proposition 2.1 the following
result can be proved.

Proposition 3.7. For each i = 1, 2, 3, the above
defined functions Ci : IF(X) → [0, 1] verify:

(i) Ci(0L) = 1.

(ii) Ci is anti-monotonic respect to the orders ≤L

into L and the usual of R: If A, B ∈ IF(X) such
that χA ≤L χB, then Ci(B) ≤ Ci(A).

(iii) If A ∈ IF(X) verifies Inf
x∈X

νA(x) = 0, then

Ci(A) = 0.
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gación en la teoŕıa de conjuntos difusos”, Sto-
chastica III/1, 47-60 (in Spanish). Reprinted
(English version) (1998) in Avances of Fuzzy
Logic (eds. S. Barro et altri), 31-43 (Ed. Uni-
versidad de Santiago de Compostela).

[9] Trillas, E., Alsina, C. and Jacas, J. (1999),
“On Contradiction in Fuzzy Logic”, Soft
Computing, 3(4), 197-199.

[10] Trillas, E. and Cubillo, S. (1999), “On
Non-Contradictory Input/Output Couples in
Zadeh’s CRI”, Proceedings NAFIPS, 28-32,
New York.

460


	Main Menu
	Table of Contents
	Author Index

