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Part I 

Abstract 

The definition of the notion of intuitionistic fuzzy set is the basis for defining intuitionistic fuzzy logics of different 
kinds. In this paper, we construct two versions of intuitionistic fuzzy propositional calculus (IFPC) and a version of 
intuitionistic fuzzy predicate logic (IFPL). © 1998 Elsevier Science B.V. 
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O. Introduction 

In this paper, we discuss logical issues related to the so-called intuitionistic fuzzy sets (cf. [-1, 2]). It is the 
first part of a series of papers devoted to the problem of logical systems with intuitionistic fuzzy semantics. In 
the sequel, we plan an exposition of systems of modal and temporal logic. Some generalizations of the notion 
of intuitionistic fuzzy logic will be considered, too. 

It should be mentioned that the term was coined with the idea of emphasizing a further liberalization of the 
notion of membership by the introduction of a "measure" of non-membership in addition to the "measure" of 
membership, with the provision that the sum of the two measures be less than 1. This restriction expresses 
a kind of "consistency" of the measures. 

Recently there appeared several papers on the so-called bilattice approach [8, 9, 12]. Bilattices, due to 
Ginsberg, are meant to express the interrelation between missing (incomplete) and conflicting (contradictory) 
information. 

The notion of intuitionistic fuzzy set is a particular case of this bilattice approach: membership is evaluated 
by pair of elements of the lattice Lo = ( [0, 1], rain, max),  restricted with the above condition. 
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1. Intuitionistic fuzzying of the validity of propositions 

Here we shall introduce the elements of an intuitionistic fuzzy propositional calculus (IFPC), basing our 
constructions on the definition of the IFSs and [.3, 5], and using the notations from the theory of 
propositional calculus after [14]. 

To each proposition (in the classical sense) one can assign its truth value: truth - denoted by 1, or falsity 
- 0. In the case of fuzzy logics this truth value is a real number in the interval [,0, 1] and can be called "truth 
degree" of a particular proposition. Here we add one more value - "falsity degree" - which will be in the 
interval [,0, 1] as well. Thus, one assigns to the proposition p two real numbers kt(p) and y(p) with the 
following constraint to hold: 

#(p) + y(p) ~ 1. 

Let this assignment be provided by an evaluation function V defined over a set of propositions S in such 
a way that 

V(p) = <~(p), ~(p) >. 

Hence, the function V: S --* [,0, 1] x [0, 1] gives the truth and falsity degrees of all propositions in S. 
We assume that the evaluation function V assigns to the logical truth T:  V ( T ) =  <1, 0>, and to F: 

V(F) = <0, 1>. 
We shall discuss below the truth and falsity degrees of propositions which result from the application of 

logical operations (unary and binary) over input propositions which have known values according to a given 
evaluation function. 

The evaluation of the negation -7 p of the proposition p will be defined through 

V(~p) = (~,(p), ~(p)>. 

When 7(P) = 1 - p(p), i.e., 

V(p) = (#(p),  1 - #(p)) ,  

for ~ p  we get 

V(Tp) = <1 - U(p),U(p)>, 

which coincides with the result for ordinary fuzzy logic from [,15]. 
When the values V(p) and V(q) of the propositions p and q are known, the evaluation function V can be 

extended also for operations "&", " v "  through the definition 

V(p & q) = <min(~(p), u(q)), max(~(p), ~(q))>, 

V(p v q) = <max(#(p), p(q)), min(7(p), y(q))>. 

Depending on the way of defining the operation " ~ " ,  different variants of IFPC can be obtained. 

2. sg-vadant of IFPC 

One possibility for the evaluation of the compound proposition p ~ q is given by 

V(p = q) = <1 - (1 - #(q))" sg(p(p) - #(q)), y(q)-sg(#(p) - la(q))'sg(y(q) - Y(P))>, 
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Table 1 

p V(p) q V(q) V(p ~ q) 

F (0,1) F (0,1) (1,0) 
F (0,1) T (1,0) (1,0) 
T (1,0) F (0,1) (0,1) 
T (1,0) T (1,0) (1,0) 
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where 

{ ;  if x > 0 ,  
sg(x) = if x ~< 0. 

While the two clauses concerning conjunction and disjunction are transferred from the classical and 
ordinary fuzzy cases and coincide entirely with the corresponding definitions there, the definition o f"  ~ "  is 
more complex. Nevertheless, the same is valid for it too when p, q e {F, T} the function V has the values 
given in Table 1. 

By analogy with the operations over IFS, it will be convenient to define for the propositions p, q e S 

V(p)  = v ( - n p ) ,  

V(p) A V(q) = V (p& q) ,  

V(p) V V(q) = V(p v q), 

V(p) ~ V(q) = V(p ~ q). 

A given propositional form A (cf. [14]: each proposition is a propositional form; if A is a propositional 
form then -7 A is a propositional form; if A and B are propositional forms, then A & B, A v B, A ~ B are 
propositional forms) will be called a tautology if V(A) = (1, 0), for all valuation functions V. 

Theorem 1. I f  A and A ~ B are tautologies, then B is also a tautology. 

Proofi Since A and A 2 B are tautologies then for every V, 

i.e., 

V(A)  = V ( A  ~ B) = (1,  0) ,  

. ( A )  = 1, ~(A)  = 0, 

/~(A ~ B )  = 1 - (1 - / ~ ( B ) ) . s g ( # ( A )  - -  # ( B ) )  = 1, 

7 ( A  ~ B )  = 7 ( S ) . s g ( p ( A )  - I ~ ( B ) ) ' s g ( 7 ( B )  - -  y ( A ) )  = 0.  

Hence, 

1 - - p ( B ) = O  or sg(1-- /~(B))=0 

and at the same time 

y ( B ) = 0  or sg( /~(A)--p(B))=0 or sg(y(B) -- ?(A)) = O. 
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B u t  

1 - # ( B )  = s g ( 1  - # ( B ) )  = 0 

e x a c t l y  t h e n  w h e n  

# ( B )  = 1,  

f r o m  w h e r e  it  f o l l ows  d i r e c t l y  t h a t  

~ ( B )  = 0 ,  

i.e., B is a t a u t o l o g y .  
L e t  us  a s s u m e  e v e r y w h e r e  b e l o w  t h a t  

V(A)  = (a, b} ,  V(B) = (c, d} ,  V(C) = ( e , f ) .  

T h e o r e m  2. I f  A, B and C are arbitrary propositional forms then 
(a) A ~ A, 

(b) A ~ ( B ~ A ) ,  
(c) A & B  ~ A, 
(d) A & B  ~ B, 
(e) A = ( A v B ) ,  

(f) B ~ ( A ~ B ) ,  
(g) A ~ (B ~ (A & S)), 
(h) (A ~ C)  ~ ((B ~ C)  ~ ((A ~ B) ~ C)), 

(i) - - q ~ A  ~ A, 
(j) (A ~ (B ~ C)) ~ ((A ~ B) ~ . ( A  ~ C)), 

are tautologies. 

P r o o f .  W e  sha l l  p r o v e  (j), ( a ) - ( i )  a r e  p r o v e d  a n a l o g o u s l y .  

(j): V ( ( A  = (B ~ C)) ~ ((A ~ B) z (A ~ C))) 

= (V(A)  ~ (V(B) ~ V(C))) -+ ((V(A) --+ V(B)) --+ (V(A)  --+ V(C))) 

= ( ( a ,  b}  ~ (1  - ( l  - e) .  sg(c  - e) , f . sg (c  - e ) ' s g ( f -  d ) ) )  

( ( 1  - (1 - c ) .  sg (a  - c), d ' s g ( a  - c)" sg(d  - b)} 

( 1  - (1 - e) .  sg (a  - e) , f .  sg(a - e ) . s g ( f -  b ) } )  

= ( 1  - (1 - e) .  sg(c - e) .  sg (a  - 1 + (1 - e) .  sg(c  - e)), f '  sg(c  - e ) .  s g ( f -  d)  

• sg (a  - 1 + (1 - e)" sg(e  - e))" s g ( f '  sg(c  - e ) ' s g ( f -  d) - b ) )  

(1  - (1 - e)- sg(a  - e) .  sg((1 - e) .  sg (a  - e) - (1 - c)" sg (a  - c)), 

f - s g ( a  - e)" s g ( f -  b)" sg((1 - e)- sg (a  - e) - (1 - e)" sg (a  - c)) 

• s g ( f '  sg (a  - e)" s g ( f -  b) - d" sg (a  - c)" sg(d  - b))} 

= (1  - (1 - e)" sg (a  - e)" sg((1 - e)" sg (a  - e) - (1 - c ) - s g ( a  - c)) 

• sg((1 - e ) '  sg (a  - e)" sg((1 - e) '  sg (a  - e) - (1 - c ) '  sg ( a  - c)) 

- (1 - e)" sg(c  - e ) '  sg (a  - 1 + (1 - e)" sg(c - e))),f" sg (a  - e)" s g ( f -  b) 

• sg((1 - e)" sg (a  - e) - (1 - e) .  sg (a  - c))" s g ( f -  sg (a  - e ) - s g ( f -  b) - d" sg (a  - c)" sg(d  - b)) 
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• sg((1 - e)" s g ( a  - e)" sg((1 - e) .  s g ( a  - e) - (1 - c ) . s g ( a  - c)) 

- (1 - e) .  sg(c - e)" sg (a  - 1 + (1 - e)- sg(c - e)))- s g ( f "  sg (a  - e ) - s g ( f -  b) 

• sg((1 - e ) '  s g ( a  - e) - (1 - c ) '  s g ( a  - c))" s g ( f - s g ( a  - e)" s g ( f -  b) - d .  s g ( a  - c) .  sg (d  - b)) 

- f - s g ( c  - e) .  s g ( f -  d) .  s g ( a  - 1 + (1 - e) .  sg (c  - e)). s g ( f .  sg (c  - e)" s g ( f -  d) - b)) )  

= ( 1 , 0 )  i fa<<,e. 

= ( 1  - (1 - e)" sg((1 - e) - (1 - c ) . s g ( a  - c ) ) - sg( (1  - e ) ' ( sg ( (1  - e) 

- (1 - c)- sg(a  - c))) - sg (c  - e) .  sg(a  - 1 + (1 - e)" sg(c - e))),f" s g ( f -  b) 

- sg((1 - e) - (1 - c)" s g ( a  - c)). s g ( f "  s g ( f -  b) - d" sg (a  - c)" sg (d  - b)) 

• sg((1 - e ) '  sg((1 - e) - (1 - c ) . s g ( a  - c)) - (1 - e)" sg (c  - e)" s g ( a  - 1 + ( i  - e) 

• sg (c  - e)))" s g ( f "  s g ( f -  b) .  sg((1 - e) - (1 - c) .  sg (a  - c ) ) - s g ( f ,  s g ( / -  b) 

- d . s g ( a  - c ) . s g ( d -  b ) ) - f - s g ( c  - e ) ' s g ( f -  d ) - s g ( a -  1 + (1 - e ) ' s g ( c  - e)) 

• s g ( f - s g ( c  - e ) - s g ( f -  d ) -  b ) ) )  i f a  > e 

I f  a ~ < c  ( h e n c e  c > e ,  a n d  in v i e w  o f  t h e  e q u a l i t y ,  fo r  x ~ > O  x - s g ( x ) = x  w e  ge t  

sg((1 - e) - sg (c  - e) .  s g ( a  - 1 + (1 - e ) '  sg (c  - e))) = sg(1 - e - sg (a  - e)) = sg(1 - e - 1 )  = sg(  - e) = O) 

= (1 ,  0 ) .  

I f  a > c ( for  t h e  s a m e  e x p r e s s i o n  w e  ge t  sg((1 - e ) . sg ( (1  - e) - (1 - c)) - sg (c  - e) .  sg (a  - 1 + (1 - e) 

- sg ( c  - e))) = sg((1 - e)- sg (c  - e) - sg (c  - e)" s g ( a  - 1 + (1 - e ) .  s g ( c  - e))); i f  c ~< e t h e  e x p r e s s i o n  is 

sg(0)  = 0; i f  c > e ( b e c a u s e  a > e) = sg((1 - e) - sg (a  - 1 + 1 - e)) = sg(1 - e - 1) = s g ( -  e) -= 0) 

= <1, 0>.  [ ]  

I n  th i s  w a y  w e  f ind  t h a t  s o m e  o f  t h e  b a s i c  t a u t o l o g i e s  in  t h e  c l a s s i c a l  p r o p o s i t i o n a l  c a l c u l u s  a r e  t a u t o l o g i e s  

in  t h e  I F P C .  M o r e o v e r ,  as  T h e o r e m  1 s h o w s ,  t h e  se t  o f  t a u t o l o g i e s  is c l o s e d  u n d e r  m o d u s  p o n e n s .  

U n f o r t u n a t e l y ,  t h e  c l a s s i c a l  t a u t o l o g y  (see [14 ] )  

(k) ( - - T A ~ B ) ~ ( ( - - T A D B ) ~ A )  

is n o t  va l i d ,  so  t h e r e  a r e  d i f f e r e n c e s  b e t w e e n  t h e  t w o  n o t i o n s  - c l a s s i c a l  {0, l}  t a u t o l o g y  a n d  our s .  

3. (max-min) version of IFPC 

U s i n g  t h e  a b o v e  d e f i n i t i o n s  fo r  " & "  a n d  " ~ "  he re ,  a n o t h e r  v e r s i o n  o f  I F P C  is c o n s t r u c t e d  by  g i v i n g  t h e  

f o l l o w i n g  d e f i n i t i o n  fo r  " ~ " :  

V ( p  D q) = ( m a x ( ? ( p ) ,  p(q)) ,  m i n ( # ( p ) ,  ? ( q ) ) )  

V(p)  ~ V(q)  = V ( p  D q). 

F o r  t h e  n e e d s  o f  t h e  d i s c u s s i o n  b e l o w ,  w e  s h a l l  d e f i n e  t h e  n o t i o n  o f  i n t u i t i o n i s t i c  f u z z y  t a u t o l o g y  ( I F T )  

t h r o u g h  

" A  is an  I F T "  iff " i f  V(A)  = ( a ,  b ) ,  t h e n  a ~> b ' .  
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Theorem 3. I f  A, B and C are propositional forms, then (a)-(j) from Theorem 2 and the classical tautology (k) 
are IFTs.  

Proof. We shall prove (h) and (k). The other assertions are proved analogously. 

(h): V((A = C) ~ ((B ~ C) ~ ((A ~ B) = C))) 

= (max(b, e) ,min(a, f ) )  ~ ((max(d, e) ,min(c, f ) )  ~ ((max(a, c),min(b, d)) --+ <e,f)))  

= (max(b, e), min(a , f ) )  ~ ((max(d, e), min(c , f ) )  --, (max(e, rain(b, d)),min(f, max(a, c))>) 

= (max(b, e), min(a,f)  ) ~ (max(min(c,f) ,  e, rain(b, d)), min(max(d, e), f, max(a, c)) ) 

= (max(min (a, f) ,  rain (c,f), e, min(b, d)), rain(max(b, e), max(d, e), f, max(a, c))) 

and 

and 

max(min(a, f ) ,  min(c,f),  e, min(b, d)) ~> max(min(a,f), min(c,f)) = min(f, max(a, c)) 

>~ min(max(b, e), max(d, e),f, max(a, c))). 

(k) V((--1A ~ - T B )  = ((-~A = 13) ~ A)) 

= (<b,a> ~ <d,c)) -o (<max(a,c),min(b,d)} ~ <a, b}) 

= <max(a, at), min(b, c) ) ~ <max(a, min(b, d)), min(b, max(a, e)) ) 

= <max(min(b, c), a, min(b, d)), min(b, max(a, c), max(a, d)) ) 

max(min(b, c), a, min(b, d))/> max(a, min(b, c)) 

>1 min(b, max(a,c)) >1 min(b, max(a,c),max(a,d)) ). [] 

With this choice of operations, notion of tautology, and evaluation, it turns out that the modus ponens is 
not valid. On the other hand, a well-known fact from classical logic is also valid here: 

(a, b) ~ <0, 1) = (b, a). 

Some approximations (in different respects) of modus ponens are valid for this notion of tautology: 

Theorem 4. (a) I f  A and (A & B) are IFTs ,  then B is an IFT.  
(b) I f  A and-7 (A ~ B) are IFTs,  then --qB is an IFT.  
(c) ( A & ( A  = B)) = B is an IFT .  

Proof. (a) Let us assume that c < d and by the above conditions 

a/> b, min(a, c) >t max(b,d). 

are valid. Then 

d > c 1> min(a,c) >i max(b,d)/> d, 

which is a contradiction, i.e. c ~> d. Hence B is an IFT. 
(b) Let us assume that c > d and by the above conditions 

a/> b, min(a, d) >t max(b,c). 
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Then 

d >/min(a,d) >~ max(b,c) >~ c > d, 

which is a contradiction, i.e. c ~< d. Hence -7 B is an IFT. 

(c): V((A& (A = B)) ~ B) = ((a,b> A (<a,b> -* (c ,d)))  --* <c,d> 

= ( (a ,b)  A <max(b,c),min(a,d)>) --, (c,d> 

= (min(a, max(b, c)), max(b, min(a, d))> ~ (c, d > 

= (max (b, c, rain(a, d)), min (a, d, max(b, c))>. 

From 

max(b, c, min(a, d)) I> min(a, d)/> min(a, d, max(b, c)) 

it follows that (A & (A ~ B)) D B is an IFT. [] 

Theorem 5. A ~ (-7 A ~ B) is an I F T. 

Proof. 

V(A ~ (--7A ~ B)) = (a,b> ~ (max(a,c),min(b,d)> = (max(a,b,c),min(a,b,d)>. 

The validity of the assertion follows from the inequalities: max(a, b, c) ~> a/> min(a, b, d). 
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4. A characterization of the set of propositional IFTs 

The definition of IFT is a generalization of the corresponding notion in ordinary fuzzy logic, where 
a propositional form A is assumed to be a fuzzy tautology, if for any evaluation, V(A)~> 0.5. A fuzzy 
tautology is also a classical two-valued tautology. Moreover, we have the well-known fact: "if A is a classical 
two-valued tautology, then it is a fuzzy tautology" [15]. 

The case of intuitionistic fuzzy tautological propositional forms is more complicated. Again we have that 
an IFT is at the same time a (0, 1)-tautology, but the converse implication is not true, as can be shown by an 
example. 

It can be established that if A and B are IFTs, then A & B is not necessarily an IFT, e.g. we have p v 7 p and 
q ~-7 q, for different propositions p and q are IFT's. Indeed, 

V(p ~ 7 p) = (max(#(p), #(--n p)), min(7(p), ?(-7 p))) = (max(#(p), 7(P)), min(~ (p), #(--7 p))) 

and obviously, for any a, b max(a, b) ~> min(a, b). 
Nevertheless the form A = (pv- - -7p)&(qv  .-7p) is not an IFT. Take for e.g. V(p) = <0.4,0.4>, V(q) = 

(0.2,0.2>. Then V(pv--7p)  = <0.4,0.4>, V(q g--7 q) = <0.2,0.2>, but V(A) = (0.2,0.4>. 
Let us call two propositional forms A and B equivalent (A ~ B), if for all evaluation functions 

V : V(A) = V(B), i.e. V(A) >~ V(B) and V(B) >~ V(A). Any propositional form A generates a function fA which 
maps a subset of ([0, 1] x [0, 1])" ~ ([0, 1] x [0, 1]), where n is the number of propositional variables Offa. 

Thus equivalent forms represent one and the same function, and the relation "¢*-" is indeed, an 
equivalence relation. 

Easily provable facts about equivalence of forms show that the set of equivalence classes, with the 
operations "&", " g  ", " 7 "  defined in the usual way, is a de Morgan lattice, i.e., modulo, the equivalence, the 
laws of idempotency, commutativity, associativity, distributivity (for & and g)  hold as well as de Morgan 
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laws: --7(A&B) .¢,. ~ A ~ B ; - 7 ( A v B )  .¢~ - -TA&-7B and the law of double negation -7---7A ~¢, A. 
Moreover, we have A = B ,~, -7 A v B. 

A conjunctive normal form (CNF) A is of the sort Di & ... & D,,, where Di = 1~, 1 v ... v l~,k, - is a clause 
of literals (a literal is either a propositional variable or a negated variable -7p). The literals p and --Tp are 
called opposite. Two clauses C and D are called connected if they contain a common variable occuring in 
opposite literals (e.g. p in C and --7 p in D). 

Lemma 1. A clause C is an I F T  iff it is a classical two-valued tautology iff C contains a pair of opposite literals. 

Lemma 2. A conjunction of two literals C and D which are I F T s  is an I F T  iff they are connected. 

Proof. If C and D are IFTs and are connected, then C & D  is an IFT. Consider an arbitrary V. Let 
C = p  V A, D = - 7 p  V B, where V(A) = (a ,b) ,  V(B) = ( c , d )  and let V(p) = @ , y ) .  Then 

max(#, a) ~> #/> min(~t,d) 

max(y, c) >/y/> rain(7, b) 

max(#, a) ~> rain(y, b) 

max(y, c)/> rain(#, d) 

and from 

V(C & D) = <min(max(#, a), max(y, c)), max(min(y, b), rain(#, d))) 

and 

min(max(#, a), max(7, c)) i> max(rain (7, b), rain(#, d)) 

it follows that C & D is an IFT. 

Let C and D be two IFT clauses. Let us define the following evaluation W. For  variables p which occur in 
both positive and negative literals in C let W(p) = (0.2, 0.2). For  variables q that appear in both positive and 
negative in D: W(q) = (0.4, 0.4). Note  that the sets of such variables are disjoint. For  variables which occur 
positively in C or D let W be (0.2, 0.4) and for variables occuring negatively in C or D (0.4, 0.2). It is a simple 
check that shows that W ( C & D )  = (0.2,0.4). Thus, the conjunction of C and D is not an IFT. 

A CNF A is called totally connected if every pair of clauses C, D in it are connected. 

Theorem 6. A CNF A is an I F T  iff all clauses in it are I F T s  and A is totally connected. 

Proof. Assume that all clauses of A are IFTs and that A is totally connected. If we assume that for some 
evaluation function W : W ( A )  = (kt,7) is such that # < 7, then it can be easily seen that there is a pair of 
clauses C and D of A such that C & D is already not IFT (due to W); but this is impossible by Lemma 2. In the 
opposite direction: if at least two clauses in A are not connected, then their conjunction will not be an IFT; 
hence A will not be an IFT, too. 

Theorem 7 (for characterization of IFL). The set of propositional IFT s  is decidable. 

Proof. Follows easily from the above reduction of the notion of an IFT to classical validity and syntactic 
restrictions. 
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5. Var iants  of  intuit ionist ic  f u z z y  modus  ponens  

Two variants of IFPC were given above, an sg-variant and a (max-min)-variant and there it was shown 
that the modus ponens (MP) is not valid in the case of (max-min) version of the operation "implication". 
Under "a valid rule" we understand here a rule that preserves the following property: if for a given valuation 
on all premises are with # >~ 7, then for the conclusion we have the same. Validity is essential if one is 
interested in passing from hypothesis to conclusions without loss in the degree of truth. 

Following [6, 13] we shall here introduce five different definitions of the implication (in the case of 
intuitionistic fuzziness) and point the ones for which MP is valid. 

Def in i t ion  1. V(A = B) = ( m a x ( 1  - #(A),y(B)),min(p(A), 1 - 7 (B) ) ) .  

Check for correctness of the definition: 

max(1 - p(A),y(B)) + min(p(A), 1 -- 7(B)) ~< max(1 -- #(A),7(B)) + 1 - max(1 - #(A),7(B)) = 1. 

Check for correctness of MP: Let p(A) ~> y(A) and let max(1 - p(A), y(B))/> min(p(A), 1 - 7(B))- 
If, for example, #(A) = ~,(A) = 0.5,#(B) = O.O,7(B ) = 0.5. Then both of the last inequalities are valid, but 
#(B) < 7(B), i.e., MP  is not valid. 

Def in i t ion  2. V(A ~ B) = (7(A) + p(A).#(B),p(A).~(B)). 
Check for correctness of the definition: 

0 <~ 7(A) + p(A).p(B) + p(A).7(B ) <~ 7(A) + #(A).(#(B) + ~(B)) ~< p(A) + 7(A) ~< 1. 

Check for correctness of MP: Let #(A)>~ ?(A) and let 7 (A)+ #(A). #(B) >1 #(A).?(B). If for example 
#(A) = 7(A) = 0.5, #(B) = 0.0, y(B) = 0.5. Then both of the last inequalities are valid, but #(B) < 7(B), i.e., 
MP is not valid. 

Def in i t ion  3. V(A ~ B) = ( m i n ( 1 , y ( A )  + # ( B ) ) , m a x ( 0 ,  1 - 7(A)  - # ( B ) ) ) .  

Check for correctness of the definition: 

min(1,7(A ) + #(B)) + max(0, 1 - 7(A) - #(B)) <~ min(1,y(A) + #(B)) + 1 - min(1,7(A ) + #(B)) = 1. 

Check for correctness of MP: Let #(A) >~ 7(A) and let min(1,y(A) + #(B)) >~ max(0, 1 - 7(A) - #(B)), If, 
for example, #(A) = 7(A) = 0.5, #(B) = 0.0, 7(B) = 0.5. Then both of the last inequalities are valid, but 
p(B) < 7(B), i.e., MP is not valid. 

Def in i t ion  4. 

t (~(A),#(A)) if #(B) < 7(B), 
V(A ~ B) = (#(B) ,y(B))  if #(A) >~ 7(A), 

(max(7(A),#(B)),min(p(A),~(B))), otherwise. 

Check for correctness of the definition: Obviously, 

0 ~< max(~(A),#(S)) + min(p(A),7(S)) <~ 1. 

Check for correctness of MP: Let #(A) >1 ?(A) and let #(A ~ B) 1> 7(A ~ B). Then #(B) = #(A ~ B) >~ 
y(A ~ B) = 7(B), i.e., MP  is valid. 
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(1 ,0)  if #(A) ~< #(B)&7(A ) >~ 7(B), 

V(A ~ B) = (/~(B)'7(A)) if #(A) > # ( B ) & y ( A )  >1 y(B), 
(/~(A),y(B)) if #(A) ~< #(B)&7(A ) < 7(B), 
<0, 1) if #(A) > #(B)&7(A) < y(B). 

Check for correctness of  the definition: obvious. 
Check for correctness of  MP: Let #(A)/> 7(A) and let #(A ~ B)/> 7(A ~ B). 

If #(A) ~< #(B) & 7(A) >~ 7(B), then #(B) t> #(A) t> 7(A) ~> (B); 
if #(A) > #(B) & 7(A)/> y(B), then #(B) i> y(A) 1> 7(B); 
if #(A) ~< #(e) & ?(A) < 7(B), then #(B) ~> #(A)/> 7(B); 
the case #(A) > #(B) & 7(A) < 7(B) is impossible by the second assumption, i.e., MP is valid. 

In [7] the operation "symmetric sum" is used. A sixth variant of implication is based on this operation. 

D e f i n i t i o n  6. (Let V(A) = (a ,b )  and V(B) = ( c , d ) )  

V ( A ~ B ) =  b ' c + ( l - - b ) . ( 1 - c ) ' a . d + ( 1 - a ) ' ( 1 - d  " 

Check for correctness of  the definition: From 

(b 'c  + (1 - b).(1 - c)) .(a 'd + (1 - a)'(1 - d)) - a . d . ( b . c  + (1 - b).(1 - c)) 

- b . c . ( a . d  + (1 - a).(1 - d)) 

= ( 1 - a ) ' ( 1 - b ) ' ( 1 - c ) ' ( 1 - d ) - a ' b ' c ' d  ( f r o m a + b ~ < l  a n d c + d ~ < l )  

> > , b . a . d . c - a . b . c . d = O .  

Check for correctness of  MP: Let #(A) ~> 7(A) and let #(A ~ B) ~> y(A ~ B), i.e., 

b . c  cl.d 
a>~b and ~> 

b . c + ( 1 - b ) . ( 1 - c )  a . d + ( 1 - a ) ' ( 1 - d )  

and let us assume that c < d. Then 

0 <<. b . c . ( a . d  + (1 - a).(1 - d ) ) -  a . d . ( b . c  + (1 - b)-(1 - c)) 

= b . c . ( 1 -  a ) . ( 1 -  d) - a ' d . ( 1 -  b ) - ( 1 -  c) (from a ~ b and d > c) 

< b .c ' (1  - a).(1 - d ) -  b .c . (1  - b).(1 - c) 

< b.c . (1  - a).(1 - d ) -  b .c . (1  - a).(1 - d) = 0, 

which is a contradiction, i.e. c ~> d. Therefore, MP is valid. 
A modification of Definition 6 is 

D e f i n i t i o n  7 .  

V(A B) 
(1 - -  a ) . ( 1  - -  d ) ~ - - ( 1  - b ) . ( 1  - c ) '  (1 - -  b ) . ( 1  - c)  + (1 - a ) . ( 1  - d )  

i 
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Check for correctness of the definition: 

b'c a'd + 
( 1 -  a) - ( 1 -  d) + ( 1 -  b) . ( 1 -  c) ( 1 -  b) " ( 1 -  c) + ( 1 -  a) . ( 1 -  d) 

b'c + a'd (1 - a).(1 - d) + (1 - b).(1 - c) 

= (1 - a).(1 - d) + (1 - b)'(1 - c) ~< (1 - a) ' (1 - d) + (1 - b).(1 - c) = 1. 

Check for correctness of MP: Let #(A) >~ y(A) and let #(A ~ B) ~> 7(A D B), i.e., 

b'c a.d 
a >~ b and >/ 

( 1 -  a) . ( 1 -  d) + ( 1 -  b). ( 1 -  c) ( 1 - b ) - ( 1 - c ) + ( 1 - a ) ' ( 1 - d ) '  

Therefore,  b. c >~ a" d ~> b" d, i.e. c ~> d. Hence,  M P  is valid. 

Definition 8. 

I b + c  a + d  ) 
V ( A ~ B ) =  2 - ( a + d ) ' 2 - ( b + c )  " 

Check for correctness of the definition: 

b + c a + d 2. (a + b + c + d) - (b + c) 2 - (a + d) 2 
-} = ~<1, 

2 - ( a + d )  2 - ( b + c )  (2 - (a + d)) . (2 - (b + c)) 

because 

(2 - Ca + d)).(2 - (b + c ) ) -  2 . (a  + b + c + d) + (b + c) 2 + (a + d) 2 

= 4 -  (a + d).(b + c) + 2.((b + c ) -  (a + d)) 2 >/0. 

Check for correctness of MP: Let g(A) ~> y(A) and let #(A D B) >~ ?(A ~ B), i.e., 

b + c  a + d  
a>~b and /> 

2 - -  (a + d) 2 -  (b + c)" 

Let  us assume that  c < d. Then  

0 ~< (b + c).(2 - (b + c ) ) -  (a + d ) . ( 2 -  (a + d)) 

< (a + d ) . ( 2 -  (b + c)) - (a + d ) ' ( 2 -  (a + d)) = (a + d).((b + c ) -  (a + d)) < 0, 

which is a contradict ion,  i.e. c ~> d. Hence,  M P  is valid. 
It should be noted that  the last five definitions of the operat ion "implicat ion" have the following 

drawbacks:  they are what  is usually called "external" operat ions (unlike conjunction,  negation, etc.) and their 
evaluat ion requires exact compar i son  of real numbers,  i.e. they are not  continuous;  on the other  hand they do 
not  seem to be very functional,  in the sense that  in logical calculations they are very cumbersome (introduce 
a lot of cases). 

Compared  with the s tandard implication (-n A V B) implications 4 and 5 are stronger: if A D B (in the 
sense of Definit ions 4 or 5) is an IFT,  then -7 A V B is also an IFT.  

Really, let #(A D B)/> y(A ~ B) and let us assume that  max(#(B), ?(A)) < min(g(A), ?(B)), i.e. (max-min)-  
variant  of the implication is not  valid. If #(B)~< 7(B), then from Definit ion 4 ~;(A)>t #C A) and 
7(A) ~ max(#(B), ?(A)) < min(#(A), ?(B)) ~ ~(A), which is a contradict ion;  if #(A) ~> ~,(A), then from Defini- 
t ion 4 #(B) />7(B)  and # (B)< .max(g(B) ,7 (A))<min(#(A) ,7 (B) )< .7 (B) ,  which is a contradict ion;  if 
#(B) > 7(B) or # ( A ) <  7(A), then from Definition 4: max(#(B),~/(A))~> #(A), which is a contradict ion.  
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Therefore, the (max-min)-variant of the implication is valid. For the implication from Definition 5 the 
assertion is proved analogically. 

Unfortunately it is the opposite direction that would be useful. 
An open problem is the characterization of all IFTs in the propositional language extended with the 

implications introduced above and possibly a proof of a completeness theorem: If A is an IFT, then it is 
provable from a set of axioms by means of the rule MP. Although such a theorem is very probable, the open 
problem is to find suitable axioms (especially for the implication). The above implications do not have some 
of the expected properties, e.g. a well known axiom for the classical implication A ~ (B = A) is not an IFT, 
while for example A ~ A is an IFT. 

6. Intuitionistic fuzzy predicate logic 

We can extend our consideration to the full language of first-order predicate logic (cf. [5, 10, 11]). Let us 
assume that the language is without functional symbols (for simplicity of presentation), i.e. atomic formulae 
are of the kind P(x, y, . . . ,  z), where P is an n-ary predicate symbol, x, y . . . . .  z are n individual variables. 
Predicate logic formulae are built up from atomic formulae by means of the propositional operations "&',  
" ~  ", " ~ " ,  "--7" and by application of quantifiers, i.e. if A is a formula, x - a variable, then V x A  and 3xA are 
formulae. 

Truth values of predicate formulae are obtained, if a domain of interpretation E is fixed, called usually the 
universe of the interpretation. Atomic formulae get their meaning through interpretation functions i which 
assign to each variable x an element i(x) e E. The truth value of a given atomic formula P(x, y, . . . ,  z) under 
the interpretation function i is determined by an evaluation function V which assigns to each n-ary predicate 
symbol P a function V(P) : E" ~ [0, 1] x [0, 1]. The pair (E, V) is called a model. In this situation we have (for 
a given i): V(P(x , y  . . . . .  z)) = V(P)(i(x),i(y), ... ,i(z)). The evaluation V can be extended for arbitrary 
formulae by the inductive clauses for "&' ,  " g  ", " ~ ' ,  "--1" 

The definition for the quantifiers is as follows: 

(VxA) = (rain #(A(i(x) = a), max ?(A(i(x) = a)~, V 
\ ace  acE / 

(3xA) = (max  #(A(i(x) -= a), min 7(A(i(x) = a)~, V 
\ acE a~E / 

which can be denoted simply (where "x ranges over E") as 

V ( V x A ) = < m i n # ( A ) , m a x v ( A ) >  and V ( 3 x A ) = < m a x p ( A ) , m i n v ( A ) > .  

Predicate IFTs can be defined just as their propositional counterparts: these are the formulae which get the 
valuation with # >/~, for every model and interpretation. 

Theorem 8. The logical axioms of  the theory K (see [14]): 
(a) A ~ (B ~ A), 
(b) (A ~ (B ~ C)) ~ ((A ~ B) ~ (A ~ C)), 
(c) (-7 A ~ -7 B) ~ ((7 A ~ B) ~ A) 
(d) VxA(x)  ~ A(t)  for the f ixed variable t, 
(e) V x ( A  ~ B) ~ (A ~ VxB). 

are IFTs .  
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Proof. (e) VCqx(A ~ B) ~ (A ~ gxB)) = V W x ( A  D B)) - ,  V(A ~ VxB) = (rffmxmax~(B),7(A)),maxxnfln(kt(A), 
7(B))) ~ (max(y(A), minx #(B)), min(#(A), maxx y(B))) = (max(y (A), minx p(B), max~ min(/~(A), 7(B))), min(/~(A), 
maxx 7(B), minx max(#(B), 7(A)))) and max(~(A), minx/~(B), maxx min(p(A), 7(B))) >/max(7(A), minx #(B)) 
= min~ max(#(B), y(A)) >~ min(#(A), max~ 7(B), minx max(#(B), 7(A))). [] 

Below we list some assertions, which are theorems of classical first-order logic (see [14]). 

Theorem 9. The following formulae are IFTs:  
(a) (VxA(x )  ~ B) - 3x(A(x)  = B), 
(b) 3xA(x)  = B =- V x ( A ( x )  ~ B), 
(c) B = V x A ( x )  - V x ( B  = A(x)), 
(d) S ~ ~xA(x)  - 3x(B ~ A(x)), 
(e) ( g x A  & 'gxB) - V x ( A  & S), 
(f) (VxA  V VxB)  ~ V x ( A  V B), 
(g) --q V x A  =- qx-q  A, 
(h) -q 3xA - V x - q  A, 
(i) V x V y A  =- V y V x A ,  
(j) 3x~yA =- 3y3xA, 
(k) 3xVyA  ~ Vy~xA,  
(1) V x ( A  = B) = ( g x A  = VxB). 

These results are extensions of the results from Section 2 and in fuzzy set theory. The link between the 
interpretations of quantifiers and the topological operators C (closure) and I (interior) defined over IFS [1] is 
obvious. The question how to relate the above results and the results from [4], where the modal operators 
[] and ~ are interpreted in the terms of IFS, is of some interest and clearly, the basic problem which remains 
unsolved is the characterization of predicate IFTs by means of a calculus. 

A partial solution of the problem of giving a calculus which generates all predicate IFTs is presented in the 
next theorem. 

Theorem 10. A prenex normal form A is an I F T  iff it is a classical predicate tautology and its quantifier free 
matrix is a propositional I F T .  

Here a prenex form means (see [14]) a predicate formula in which all quantifiers are moved to the left. The 
proof is based on the fact that all predicate transformations leading to prenex form in classical logic are valid for 
the IF case also. 

7. Conclusions 

In this part of the series, written in 1990, we included all published and unpublished results in the area of the 
IFPC. IFPC contains some principally new elements compared to the standard fuzzy logics. Its greater 
descriptive power will be demonstrated better, in the subsequent parts of our series because there essentially 
new elements will be introduced for the fuzzy as well as for the standard logics. 
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