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Abstract

Intuitionistic fuzzy sets in the sense of Atanassov and interval-valued fuzzy sets can
be seen as L-fuzzy sets w.r.t. a special lattice £I. Deschrijver [2] introduced additive
and multiplicative generators on £ based on a special kind of addition introduced in
[3]. Actually, many other additions can be introduced. In this paper we investigate
additive generators on £ as far as possible independently of the addition. For some
special additions we investigate which t-norms can be generated by continuous additive
generators which are a natural extension of an additive generator on the unit interval.
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on L', representable

1 Introduction

Triangular norms on ([0, 1], <) were introduced in [18] and play an important role in fuzzy
set theory (see e.g. [12, 14] for more details). Generators are very useful in the construction
of t-norms: any generator on ([0, 1], <) can be used to generate a t-norm. Generators play
also an important role in the representation of continuous Archimedean t-norms on ([0, 1], <).
Moreover, some properties of t-norms which have a generator can be related to properties of
their generator. See e.g. [9, 13, 14, 15, 16] for more information about generators on the unit
interval.

Interval-valued fuzzy set theory [11, 17] is an extension of fuzzy theory in which to each
element of the universe a closed subinterval of the unit interval is assigned which approximates
the unknown membership degree. Another extension of fuzzy set theory is intuitionistic fuzzy
set theory introduced by Atanassov [1]. In [6] it is shown that intuitionistic fuzzy set theory
is equivalent to interval-valued fuzzy set theory and that both are equivalent to L-fuzzy set
theory in the sense of Goguen [10] w.r.t. a special lattice £. In [2] additive and multiplicative
generators on £ are investigated based on a special kind of addition introduced in [3]. In [§]
another addition was defined. In fact, many more additions can be introduced. Therefore, in
this paper we will investigate additive generators on £ as far as possible independently of
the addition. For some special additions we will investigate which t-norms can be generated
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by continuous additive generators which are a natural extension of an additive generator on
the unit interval.

2 The lattice £!
Definition 2.1 We define £ = (L', <;1), where

LT = {[z1,22] | (z1,72) € [0,1]? and z1 < z2},
[z1,22] <pr [y1,92] <= (z1 <y1 and 22 < yo), for all [x1,z2], [y1,y2] in L.

Similarly as Lemma 2.1 in [6] it can be shown that £! is a complete lattice.
Definition 2.2 [11, 17] An interval-valued fuzzy set on U is a mapping A : U — L'.
Definition 2.3 [1] An intuitionistic fuzzy set on U is a set

A= {(u, pa(u),va(u)) |uve U},

where pa(u) € [0,1] denotes the membership degree and va(u) € [0,1] the non-membership
degree of u in A and where for allu € U, pa(u) +va(u) < 1.

An intuitionistic fuzzy set A on U can be represented by the £/-fuzzy set A given by

AU — LT .
u = [pa(u), 1 —wva(u),

In Figure 1 the set L’ is shown. Note that to each element x = [x1, x2] of L! corresponds
a point (z1,z2) € R2.
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Figure 1: The grey area is L.

In the sequel, if z € L?, then we denote its bounds by z1 and 9, i.e. © = [z1,22]. The
smallest and the largest element of £! are given by 0,1 = [0,0] and 1,1 = [1,1]. We define
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the relation <;1 by z <;1y <= (x1 < y1 and 29 < o), for z,y in L!. We define for
further usage the sets

D ={lzy, 1] [ 21 € [0,1]};
LY = {[z1, 2] | (#1,22) € R? and z1 < 29}
D = {[z1,21] | #1 € R};
Ei = {[x1,z2] | (21, 22) € [0, —1—00[2 and 21 < x9};
Dy = {[z1,21] | x1 € [0, +00[};
LI += {[x1, 2] | (21, 22) € [0, +oo]2 and 1 < xa9};
Deo v = {la1,21] | 21 € [0, +o0]}.

Note that for any non-empty subset A of L’ it holds that

sup A = [sup{z1 | z1 € [0,1] and (Fz2 € [x1,1])([x1,22] € A)},
sup{zs | z2 € [0,1] and (3z1 € [0, z2])([x1,z2] € A)}].

Definition 2.4 [4] A t-norm on Ll s a commutative, associative, increasing mapping T :
(L1)? — LT which satisfies T (11,x) = x, for allw € LY. A t-conorm on L! is a commutative,
associative, increasing mapping S : (L1)? — L which satisfies S(0p1,7) = x, for all z € L',

In [4, 5, 7] the following classes of t-norms on £! are introduced: let 7" and T" be t-norms
n ([0,1], <), then the mappings 7.7+, 7r, Tr and T given by, for all z,y in L7,

Tro(x,y) = [T(x1,y1), T (x2,y2)], (t-representable t-norms)

Tr(z,y) = [T(z1,y1), max(T(z1,y2), T (z2,91))], (pseudo-t-representable t-norms)
Tri(z,y) = [T(21,y1), max(T (¢, T2, y2)), T (21, y2), T(x2,91))],

T7(z,y) = [min(T(z1,y2), T(z2,y1)), T(w2, y2)],

are t-norms on £!. The corresponding classes of t-conorms are given by, for all =,y in L7,

Ss.s(x,y) = [S(x1,y1), " (x2,y2)], (t-representable t-conorms)

Ss(z,y) = [min(S(z1,y2), S(z2,y1)), S(x2,y2)], (pseudo-t-representable t-conorms)
Ssp(,y) = [min(S(1 =, 5(x1,41)), (21, y2), S(22,91)), (22, y2)];

Ss(x,y) = [S(z1,91), max(S(z1,y2), S(w2,41))]-

If for a mapping f on [0,1] and a mapping F on L! it holds that F(D) C D, and
F(la,a)) = [f(a), f(a)], for all a € L!, then we say that F is a natural extension of f to LI.
E.g. Irr, Ir, I74 and Tqi are all natural extensions of T to L.

3 Additive generators on £/

In order to investigate additive generators on £, a suitable addition on L! is needed. We
assume from now on that @ : (L' U qu +)2 — LT satisfies the following natural properties,

for all a,b in L' U IZCI,O#,

(i) @ is commutative,
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(ii) @ is associative,
(ili) @ is increasing,
(iv) Ogr ®a = a,
Note that from (iii) and (iv) it follows that a & b >pr a, if b >;r 0,1, for all a,b in
Lol ..

Definition 3.1 Let f : L' — I:goHr be a strictly decreasing function. The pseudo-inverse
§(=1) I_Léo7+ — L1 of f is defined by, for all y € Ego’Jr,

sup{z | z € L' and f(x) >pr y}, if y <pr §(0z1);
sup({0,:} Uz |z € LT and (§(z))1 >y

V@) =9 and (f(2)2 = (F(0z0)2})s if y2 > ((0z1))2;
sup({0,:} U{x |z € LT and (§(z))2 > y2

[ and (f(z))r = (F(02r))1}), if yr = (F(Ozr))1.

Definition 3.2 A mapping | : LT — E;H satisfying the following conditions:
(AG.1) § is strictly decreasing;
(AG.2) §(1p1) = 0p1;
(AG.3) f is right-continuous in 0,r;
(AG.4) (x) @ §(y) € R(f), for all x,y in L', where
R(f) = mg(f) U {z | = € L, 4 and [x1, (f(0z1))o]
U{z|zelLl o+ and [(F(0z1))1, 22]
U{z|ze Ll st and x >pr f(0z1)};

€ rng(f) and x2 > (f(0zr))2}
€ mg(f) and x1 > (§f(0zr))1}

(AG.5) {=V(j(zx)) =z, for all z € L;

is called an additive generator on LT.

Theorem 3.1 Let f be an additive generator on ([0,1],<) and f: LT — Eéo,Jr the mapping
defined by, for all x € L',

f(x) = [f(z2), f(x1)].
Then, for all y € EgH,
V(@) = 17V (o), 0 ()]s (1)

Lemma 3.2 Let§: L' — LL | be a mapping satisfying (AG.1), (AG.2), (AG.3) and (AG.5).
Then, for all z € L' such that x1 > 0, it holds that (f(x))2 < (}(01))2 and (§(z))1 < (§(01))1.

Lemma 3.3 Letf: L' — ng be a mapping satisfying (AG.1), (AG.2), (AG.3) and (AG.5).
Then (§([0,1]))1 = (f(0zr))1 or (§([0,1]))2 = (7(0zr))2-

Corollary 3.4 Let f: L' — I_/&H_ be a mapping satisfying (AG.1), (AG.2), (AG.3), (AG.5)
and f(D) € Doo 1. Then (§([0,1]))2 = (f(0z1))2-
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Theorem 3.5 Let f : L' — EC{O# be a continuous mapping satisfying (AG.1), (AG.2),
(AG.3), (AG.5) and §(D) C Deoo . Then there exists an additive generator f on ([0,1], <)
such that, for all a € Lc{o,—}—?
() = [F7 D (az), f0 (@)
The following theorem can be shown independently of the addition @ used in (AG.4).

Theorem 3.6 A mapping f: L' — I_/&H_ is a continuous additive generator on L such that
f(D) € Doo + if and only if there exists a continuous additive generator f on ([0,1],<) such
that, for all a € L7,

fla) = [f(az2), f(a1)]. (2)

4 Additive generators and t-norms on £/

We will give a sufficient condition for & under which an additive generator associated to &
generates a t-norm. First we give a lemma.

Lemma 4.1 Let f be an additive generator on L' associated to @. If, for all x,y,a in Efr
such that x <;ra andy <;r a ® a,

p2a = (@oy) = (@) ormn(@ey), @ehna))2a) @)
and
nza = (@oy)= (o ,w): or min(@ oy (@0, 2a) @)
then, for all x € L' and y € R(§), we have that f(z) & 1§V (y)) € R(f) and
iY@ @10 @) =10 (1) & v).

Using Lemma 4.1, the following theorem can be shown.

Theorem 4.2 Let § be an additive generator on L! associated to @©. If (3) and (4) hold, for
all z,y,a in L' such that x <;r a and y <;1 a ® a, then the mapping T : (LI)2 — L defined
by, for all z,y in L',

T(z,y) = V(@) @ §(y)),

is a t-norm on LI.

Theorem 4.3 Let f be an additive generator on ([0,1], <). Then the mapping f : L' — Ego’_i_
defined by, for all x € LT,
f(z) = [f(22), f(21)],

is an additive generator on L1 associated to & if and only if, for all x,y in L',

f(a) ®f(y) € (rmg(f) ULf(0), +oa])*.

Theorem 3.6 and Theorem 3.1 show that no matter which operation @ is used in (AG.4),
a continuous additive generator f on £! satisfying f(D) C D + satisfies (2) and its pseudo-
inverse satisfies (1). Therefore it depends on the operation @ which classes of t-norms on £!
can have continuous additive generators that are a natural extension of additive generators
on ([0.1], <).
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4.1 Additive generators based on @ :

Starting from the observation that the Lukasiewicz t-conorm Sy is given by Sy (z,y) =
min(1, z +y), for all z,y in [0,1], and that the pseudo-t-representable t-conorm Sg,, is given
by Ssy (7,y) = [min(1, 21 + Yo, 72 + y1), min(1, 22 + yo)], for all z,y in L, the following
definition of addition on L’ is introduced in such a way that Sg,, (z,y) = inf(1.1,2 © .1 7),
for all z,y in L',

Definition 4.1 [3] We define the addition on L' U Ego7+ by, for all x,y in L' U ECI,O#,
x @pry = [min(z1 + y2, 22 + y1), 22 + Y2,
where, for all x € R, x 4+ 0o = +00 and +00 + 00 = +00.

The other arithmetic operations introduced in [3] allow to write also some other important
operations on £, such as the Lukasiewicz t-norm, the product t-norm on £ and their residual
implications, using a similar algebraic formula as their counterparts on ([0, 1], <).

Theorem 4.4 [2] Let f be any generator on L1 associated to @,r. Then the mapping T :
(L2 — L' defined by, for all x,y in L',

T(x7y) = f(_l) (f(.%') Dr f(y»a
is a t-norm on L.

Theorem 4.5 [2] Let § be a continuous additive generator on L1 associated to @ 1 for which
§f(D) C Do 4. Then there exists a t-norm T on ([0,1], <) such that, for all z,y in LT,

P (i) @1 1(y)) = Tr(z, y).

Thus, using @1, only pseudo-t-representable t-norms on £/ can have continuous additive
generators f for which f(D) C Dy 4. Other natural extensions of t-norms on ([0, 1], <) which
have a continuous generator f cannot have a continuous additive generator on £! that is a
natural extension of f.

4.2 Additive generators based on @',

Now we discuss a second type of addition on L! which was introduced in [8]. Similarly as for
@1, we have that Sy, +(x,y) = inf(1.r,2 @, y), for all ,y in L.

Definition 4.2 [8] Let t € [0,1]. Then we define the t-addition on L' ULL, | by, for all z,y
in LT UL,

@y = [min(l — ¢t + 21 + y1, 21 + Y2, T2 + Y1), T2 + Yol

Theorem 4.6 Let t € [0,1] and | be any generator on L' associated to @21. Then the
mapping T : (L1)? — L' defined by, for all z,y in L',

T(z,y) =V (f(z) &L §(y)),

is a t-norm on LI.
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Theorem 4.7 Lett € [0,1] and § be a continuous additive generator on L' associated to 692,
for which §(D) C Do +. Then there exists a t-norm T on ([0, 1], <) such that, for all z,y in
L,

PV (5(2) % 1) = Tr g1 (@, y)-

Similarly as for @1, from Theorem 4.7 it follows that a t-norm 7 on £ which is a natural
extension of a t-norm on ([0, 1], <) generated by a continuous additive generator f can only
have a continuous additive generator associated to EBtE ; which is a natural extension of f, if
T belongs to the class of t-norms 77.

4.3 Additive generators based on @',

Finally, we introduce the following addition on L’.
Definition 4.3 We define the addition on L' U I_/£O7+ by, for all x,y in L' U Ego’+,
x @&y = [x1 4y, max(z1 + y2, T2 + y1)]-

This addition is closely related to the t-conorm S’SW: for all =,y in L', Sgw (x,y) =
inf(1pr, 2 @ y).

Theorem 4.8 Let | be any generator on L associated to 69’0 such that §(01) € Deo 4. Then
the mapping T : (L')? — L' defined by, for all z,y in L',

T(x,y) =V (f(x) & 1)),
is a t-norm on L.

Theorem 4.9 Let f be a continuous additive generator on L' associated to EB’U for which
§f(D) C Do 4. Then there exists a t-norm T on ([0,1], <) such that, for all z,y in LT,

D (5(x) @1 1)) = Tz, y).

Similarly as for the two other additions, only t-norms on £ belonging to the class of
t-norms 77, can have continuous additive generators f associated to @2 ; which are a natural
extension of a continuous additive generator on (|0, 1], <).

5 Conclusion

In [3, 8] two kinds of arithmetic operations on £ are introduced. In [2] one of these kinds
of operations is used to construct additive generators on £!. Since these are not the only
possible ways to define addition, substraction, multiplication and division on £, we developed
a new theory of additive generators on £! as much as possible independently of the addition
needed. We found a sufficient condition for @ such that additive generators associated to
@ generate t-norms on £!. We showed that continuous additive generators on £! which are
a natural extension to £! of a generator on ([0,1],<) can be represented in a unique way
by the generator on ([0,1],<). As a consequence, the choice of the operation @ determines
which classes of t-norms on £/ can have continuous additive generators which form a natural
extension of a generator on the unit interval.
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