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Abstract

Intuitionistic fuzzy sets in the sense of Atanassov and interval-valued fuzzy sets can
be seen as L-fuzzy sets w.r.t. a special lattice LI . Deschrijver [2] introduced additive
and multiplicative generators on LI based on a special kind of addition introduced in
[3]. Actually, many other additions can be introduced. In this paper we investigate
additive generators on LI as far as possible independently of the addition. For some
special additions we investigate which t-norms can be generated by continuous additive
generators which are a natural extension of an additive generator on the unit interval.

Keywords: intuitionistic fuzzy set, interval-valued fuzzy set, additive generator, addition
on LI , representable

1 Introduction

Triangular norms on ([0, 1],≤) were introduced in [18] and play an important role in fuzzy
set theory (see e.g. [12, 14] for more details). Generators are very useful in the construction
of t-norms: any generator on ([0, 1],≤) can be used to generate a t-norm. Generators play
also an important role in the representation of continuous Archimedean t-norms on ([0, 1],≤).
Moreover, some properties of t-norms which have a generator can be related to properties of
their generator. See e.g. [9, 13, 14, 15, 16] for more information about generators on the unit
interval.

Interval-valued fuzzy set theory [11, 17] is an extension of fuzzy theory in which to each
element of the universe a closed subinterval of the unit interval is assigned which approximates
the unknown membership degree. Another extension of fuzzy set theory is intuitionistic fuzzy
set theory introduced by Atanassov [1]. In [6] it is shown that intuitionistic fuzzy set theory
is equivalent to interval-valued fuzzy set theory and that both are equivalent to L-fuzzy set
theory in the sense of Goguen [10] w.r.t. a special lattice LI . In [2] additive and multiplicative
generators on LI are investigated based on a special kind of addition introduced in [3]. In [8]
another addition was defined. In fact, many more additions can be introduced. Therefore, in
this paper we will investigate additive generators on LI as far as possible independently of
the addition. For some special additions we will investigate which t-norms can be generated
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by continuous additive generators which are a natural extension of an additive generator on
the unit interval.

2 The lattice LI

Definition 2.1 We define LI = (LI ,≤LI ), where

LI = {[x1, x2] | (x1, x2) ∈ [0, 1]2 and x1 ≤ x2},

[x1, x2] ≤LI [y1, y2] ⇐⇒ (x1 ≤ y1 and x2 ≤ y2), for all [x1, x2], [y1, y2] in LI .

Similarly as Lemma 2.1 in [6] it can be shown that LI is a complete lattice.

Definition 2.2 [11, 17] An interval-valued fuzzy set on U is a mapping A : U → LI .

Definition 2.3 [1] An intuitionistic fuzzy set on U is a set

A = {(u, µA(u), νA(u)) | u ∈ U},

where µA(u) ∈ [0, 1] denotes the membership degree and νA(u) ∈ [0, 1] the non-membership
degree of u in A and where for all u ∈ U , µA(u) + νA(u) ≤ 1.

An intuitionistic fuzzy set A on U can be represented by the LI -fuzzy set A given by

A : U → LI :

u 7→ [µA(u), 1 − νA(u)],

In Figure 1 the set LI is shown. Note that to each element x = [x1, x2] of LI corresponds
a point (x1, x2) ∈ R

2.
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Figure 1: The grey area is LI .

In the sequel, if x ∈ LI , then we denote its bounds by x1 and x2, i.e. x = [x1, x2]. The
smallest and the largest element of LI are given by 0LI = [0, 0] and 1LI = [1, 1]. We define
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the relation �LI by x �LI y ⇐⇒ (x1 < y1 and x2 < y2), for x, y in LI . We define for
further usage the sets

D = {[x1, x1] | x1 ∈ [0, 1]};

L̄I = {[x1, x2] | (x1, x2) ∈ R
2 and x1 ≤ x2};

D̄ = {[x1, x1] | x1 ∈ R};

L̄I
+ = {[x1, x2] | (x1, x2) ∈ [0, +∞[2 and x1 ≤ x2};

D̄+ = {[x1, x1] | x1 ∈ [0, +∞[};

L̄I
∞,+ = {[x1, x2] | (x1, x2) ∈ [0, +∞]2 and x1 ≤ x2};

D̄∞,+ = {[x1, x1] | x1 ∈ [0, +∞]}.

Note that for any non-empty subset A of LI it holds that

sup A = [sup{x1 | x1 ∈ [0, 1] and (∃x2 ∈ [x1, 1])([x1, x2] ∈ A)},

sup{x2 | x2 ∈ [0, 1] and (∃x1 ∈ [0, x2])([x1, x2] ∈ A)}].

Definition 2.4 [4] A t-norm on LI is a commutative, associative, increasing mapping T :
(LI)2 → LI which satisfies T (1LI , x) = x, for all x ∈ LI . A t-conorm on LI is a commutative,
associative, increasing mapping S : (LI)2 → LI which satisfies S(0LI , x) = x, for all x ∈ LI .

In [4, 5, 7] the following classes of t-norms on LI are introduced: let T and T ′ be t-norms
on ([0, 1],≤), then the mappings TT,T ′ , TT , TT,t and T ′

T given by, for all x, y in LI ,

TT,T ′(x, y) = [T (x1, y1), T ′(x2, y2)], (t-representable t-norms)

TT (x, y) = [T (x1, y1), max(T (x1, y2), T (x2, y1))], (pseudo-t-representable t-norms)

TT,t(x, y) = [T (x1, y1), max(T (t, T (x2, y2)), T (x1, y2), T (x2, y1))],

T ′
T (x, y) = [min(T (x1, y2), T (x2, y1)), T (x2, y2)],

are t-norms on LI . The corresponding classes of t-conorms are given by, for all x, y in LI ,

SS,S′(x, y) = [S(x1, y1), S′(x2, y2)], (t-representable t-conorms)

SS(x, y) = [min(S(x1, y2), S(x2, y1)), S(x2, y2)], (pseudo-t-representable t-conorms)

SS,t(x, y) = [min(S(1 − t, S(x1, y1)), S(x1, y2), S(x2, y1)), S(x2, y2)],

S ′
S(x, y) = [S(x1, y1), max(S(x1, y2), S(x2, y1))].

If for a mapping f on [0, 1] and a mapping F on LI it holds that F (D) ⊆ D̄, and
F ([a, a]) = [f(a), f(a)], for all a ∈ LI , then we say that F is a natural extension of f to LI .
E.g. TT,T , TT , TT,t and T ′

T are all natural extensions of T to LI .

3 Additive generators on LI

In order to investigate additive generators on LI , a suitable addition on L̄I is needed. We
assume from now on that ⊕ : (L̄I ∪ L̄I

∞,+)2 → L̄I satisfies the following natural properties,

for all a, b in L̄I ∪ L̄I
∞,+,

(i) ⊕ is commutative,
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(ii) ⊕ is associative,

(iii) ⊕ is increasing,

(iv) 0LI ⊕ a = a,

Note that from (iii) and (iv) it follows that a ⊕ b ≥LI a, if b ≥LI 0LI , for all a, b in
L̄I ∪ L̄I

∞,+.

Definition 3.1 Let f : LI → L̄I
∞,+ be a strictly decreasing function. The pseudo-inverse

f(−1) : L̄I
∞,+ → LI of f is defined by, for all y ∈ L̄I

∞,+,

f(−1)(y) =































sup{x | x ∈ LI and f(x) �LI y}, if y �LI f(0LI );

sup({0LI} ∪ {x | x ∈ LI and (f(x))1 > y1

and (f(x))2 ≥ (f(0LI ))2}), if y2 ≥ (f(0LI ))2;

sup({0LI} ∪ {x | x ∈ LI and (f(x))2 > y2

and (f(x))1 ≥ (f(0LI ))1}), if y1 ≥ (f(0LI ))1.

Definition 3.2 A mapping f : LI → L̄I
∞,+ satisfying the following conditions:

(AG.1) f is strictly decreasing;

(AG.2) f(1LI ) = 0LI ;

(AG.3) f is right-continuous in 0LI ;

(AG.4) f(x) ⊕ f(y) ∈ R(f), for all x, y in LI , where

R(f) = rng(f) ∪ {x | x ∈ L̄I
∞,+ and [x1, (f(0LI ))2] ∈ rng(f) and x2 ≥ (f(0LI ))2}

∪ {x | x ∈ L̄I
∞,+ and [(f(0LI ))1, x2] ∈ rng(f) and x1 ≥ (f(0LI ))1}

∪ {x | x ∈ L̄I
∞,+ and x ≥LI f(0LI )};

(AG.5) f(−1)(f(x)) = x, for all x ∈ LI ;

is called an additive generator on LI .

Theorem 3.1 Let f be an additive generator on ([0, 1],≤) and f : LI → L̄I
∞,+ the mapping

defined by, for all x ∈ LI ,
f(x) = [f(x2), f(x1)].

Then, for all y ∈ L̄I
∞,+,

f(−1)(y) = [f (−1)(y2), f (−1)(y1)]. (1)

Lemma 3.2 Let f : LI → L̄I
∞,+ be a mapping satisfying (AG.1), (AG.2), (AG.3) and (AG.5).

Then, for all x ∈ LI such that x1 > 0, it holds that (f(x))2 < (f(0LI ))2 and (f(x))1 < (f(0LI ))1.

Lemma 3.3 Let f : LI → L̄I
∞,+ be a mapping satisfying (AG.1), (AG.2), (AG.3) and (AG.5).

Then (f([0, 1]))1 = (f(0LI ))1 or (f([0, 1]))2 = (f(0LI ))2.

Corollary 3.4 Let f : LI → L̄I
∞,+ be a mapping satisfying (AG.1), (AG.2), (AG.3), (AG.5)

and f(D) ⊆ D̄∞,+. Then (f([0, 1]))2 = (f(0LI ))2.

4
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Theorem 3.5 Let f : LI → L̄I
∞,+ be a continuous mapping satisfying (AG.1), (AG.2),

(AG.3), (AG.5) and f(D) ⊆ D̄∞,+. Then there exists an additive generator f on ([0, 1],≤)
such that, for all a ∈ L̄I

∞,+,

f(−1)(a) = [f (−1)(a2), f (−1)(a1)].

The following theorem can be shown independently of the addition ⊕ used in (AG.4).

Theorem 3.6 A mapping f : LI → L̄I
∞,+ is a continuous additive generator on LI such that

f(D) ⊆ D̄∞,+ if and only if there exists a continuous additive generator f on ([0, 1],≤) such
that, for all a ∈ LI ,

f(a) = [f(a2), f(a1)]. (2)

4 Additive generators and t-norms on LI

We will give a sufficient condition for ⊕ under which an additive generator associated to ⊕
generates a t-norm. First we give a lemma.

Lemma 4.1 Let f be an additive generator on LI associated to ⊕. If, for all x, y, a in L̄I
+

such that x ≤LI a and y ≤LI a ⊕ a,

y2 ≥ a2 =⇒
(

(x ⊕ y)1 = (x ⊕ [y1, a2])1 or min((x ⊕ y)1, (x ⊕ [y1, a2])1) ≥ a1

)

(3)

and

y1 ≥ a1 =⇒
(

(x ⊕ y)2 = (x ⊕ [a1, y2])2 or min((x ⊕ y)2, (x ⊕ [a1, y2])2) ≥ a2

)

(4)

then, for all x ∈ LI and y ∈ R(f), we have that f(x) ⊕ f(f(−1)(y)) ∈ R(f) and

f(−1)(f(x) ⊕ f(f(−1)(y))) = f(−1)(f(x) ⊕ y).

Using Lemma 4.1, the following theorem can be shown.

Theorem 4.2 Let f be an additive generator on LI associated to ⊕. If (3) and (4) hold, for
all x, y, a in LI such that x ≤LI a and y ≤LI a⊕ a, then the mapping T : (LI)2 → LI defined
by, for all x, y in LI ,

T (x, y) = f(−1)(f(x) ⊕ f(y)),

is a t-norm on LI .

Theorem 4.3 Let f be an additive generator on ([0, 1],≤). Then the mapping f : LI → L̄I
∞,+

defined by, for all x ∈ LI ,
f(x) = [f(x2), f(x1)],

is an additive generator on LI associated to ⊕ if and only if, for all x, y in LI ,

f(x) ⊕ f(y) ∈ (rng(f) ∪ [f(0), +∞])2.

Theorem 3.6 and Theorem 3.1 show that no matter which operation ⊕ is used in (AG.4),
a continuous additive generator f on LI satisfying f(D) ⊆ D̄∞,+ satisfies (2) and its pseudo-
inverse satisfies (1). Therefore it depends on the operation ⊕ which classes of t-norms on LI

can have continuous additive generators that are a natural extension of additive generators
on ([0, 1],≤).

5
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4.1 Additive generators based on ⊕LI

Starting from the observation that the  Lukasiewicz t-conorm SW is given by SW (x, y) =
min(1, x + y), for all x, y in [0, 1], and that the pseudo-t-representable t-conorm SSW

is given
by SSW

(x, y) = [min(1, x1 + y2, x2 + y1), min(1, x2 + y2)], for all x, y in LI , the following
definition of addition on L̄I is introduced in such a way that SSW

(x, y) = inf(1LI , x ⊕LI y),
for all x, y in LI .

Definition 4.1 [3] We define the addition on L̄I ∪ L̄I
∞,+ by, for all x, y in L̄I ∪ L̄I

∞,+,

x ⊕LI y = [min(x1 + y2, x2 + y1), x2 + y2],

where, for all x ∈ R, x + ∞ = +∞ and +∞ + ∞ = +∞.

The other arithmetic operations introduced in [3] allow to write also some other important
operations on LI , such as the  Lukasiewicz t-norm, the product t-norm on LI and their residual
implications, using a similar algebraic formula as their counterparts on ([0, 1],≤).

Theorem 4.4 [2] Let f be any generator on LI associated to ⊕LI . Then the mapping T :
(LI)2 → LI defined by, for all x, y in LI ,

T (x, y) = f(−1)(f(x) ⊕LI f(y)),

is a t-norm on LI .

Theorem 4.5 [2] Let f be a continuous additive generator on LI associated to ⊕LI for which
f(D) ⊆ D̄∞,+. Then there exists a t-norm T on ([0, 1],≤) such that, for all x, y in LI ,

f(−1)(f(x) ⊕LI f(y)) = TT (x, y).

Thus, using ⊕LI , only pseudo-t-representable t-norms on LI can have continuous additive
generators f for which f(D) ⊆ D̄∞,+. Other natural extensions of t-norms on ([0, 1],≤) which
have a continuous generator f cannot have a continuous additive generator on LI that is a
natural extension of f .

4.2 Additive generators based on ⊕t
LI

Now we discuss a second type of addition on L̄I which was introduced in [8]. Similarly as for
⊕LI , we have that SSW ,t(x, y) = inf(1LI , x ⊕t

LI y), for all x, y in LI .

Definition 4.2 [8] Let t ∈ [0, 1]. Then we define the t-addition on L̄I ∪ L̄I
∞,+ by, for all x, y

in L̄I ∪ L̄I
∞,+,

x ⊕t
LI y = [min(1 − t + x1 + y1, x1 + y2, x2 + y1), x2 + y2].

Theorem 4.6 Let t ∈ [0, 1] and f be any generator on LI associated to ⊕t
LI . Then the

mapping T : (LI)2 → LI defined by, for all x, y in LI ,

T (x, y) = f(−1)(f(x) ⊕t
LI f(y)),

is a t-norm on LI .

6
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Theorem 4.7 Let t ∈ [0, 1] and f be a continuous additive generator on LI associated to ⊕t
LI

for which f(D) ⊆ D̄∞,+. Then there exists a t-norm T on ([0, 1],≤) such that, for all x, y in
LI ,

f(−1)(f(x) ⊕t
LI f(y)) = TT,f−1(1−t)(x, y).

Similarly as for ⊕LI , from Theorem 4.7 it follows that a t-norm T on LI which is a natural
extension of a t-norm on ([0, 1],≤) generated by a continuous additive generator f can only
have a continuous additive generator associated to ⊕t

LI which is a natural extension of f , if
T belongs to the class of t-norms TT,t.

4.3 Additive generators based on ⊕′

LI

Finally, we introduce the following addition on L̄I .

Definition 4.3 We define the addition on L̄I ∪ L̄I
∞,+ by, for all x, y in L̄I ∪ L̄I

∞,+,

x ⊕′

LI y = [x1 + y1, max(x1 + y2, x2 + y1)].

This addition is closely related to the t-conorm S ′
SW

: for all x, y in LI , S ′
SW

(x, y) =
inf(1LI , x ⊕′

LI y).

Theorem 4.8 Let f be any generator on LI associated to ⊕′

LI such that f(0LI ) ∈ D̄∞,+. Then
the mapping T : (LI)2 → LI defined by, for all x, y in LI ,

T (x, y) = f(−1)(f(x) ⊕′

LI f(y)),

is a t-norm on LI .

Theorem 4.9 Let f be a continuous additive generator on LI associated to ⊕′

LI for which
f(D) ⊆ D̄∞,+. Then there exists a t-norm T on ([0, 1],≤) such that, for all x, y in LI ,

f(−1)(f(x) ⊕′

LI f(y)) = T ′
T (x, y).

Similarly as for the two other additions, only t-norms on LI belonging to the class of
t-norms T ′

T can have continuous additive generators f associated to ⊕′

LI which are a natural
extension of a continuous additive generator on ([0, 1],≤).

5 Conclusion

In [3, 8] two kinds of arithmetic operations on LI are introduced. In [2] one of these kinds
of operations is used to construct additive generators on LI . Since these are not the only
possible ways to define addition, substraction, multiplication and division on LI , we developed
a new theory of additive generators on LI as much as possible independently of the addition
needed. We found a sufficient condition for ⊕ such that additive generators associated to
⊕ generate t-norms on LI . We showed that continuous additive generators on LI which are
a natural extension to LI of a generator on ([0, 1],≤) can be represented in a unique way
by the generator on ([0, 1],≤). As a consequence, the choice of the operation ⊕ determines
which classes of t-norms on LI can have continuous additive generators which form a natural
extension of a generator on the unit interval.
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