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Abstract: Krassimir T. Atanassov’s intuitionistic fuzzy sets (IFS), one of the extensions of fuzzy
sets, have shown to be one of the most effective ways to handle ambiguity. John N. Mordeson
and Davender S. Malik developed the idea of a fuzzy finite state machine. Intuitionistic fuzzy
finite state machines were created by Jun as a generalisation of fuzzy finite state machines. In
order to increase the uncertainty and lower the periodic functions in intuitionistic fuzzy finite state
automata, new membership and non-membership functions based on transitions were introduced
in this study. Also, temporal intuitionistic fuzzy automata (TIFA) were defined and used to model
a pattern.
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1 Introduction

Automata theory is the study of abstract computing devices or machines. From the early 1930’s,
computers have been here in this world. Before that a researcher by name A. Turing found an
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abstract machine that had all the capabilities of today’s computers. The evolution of the above
mentioned machine took place. In 1940’s and 1950’s which was christened as finite automata. It
was studied by a number of researchers. This is so called “automata”, was originally proposed on
the model of brain function. But it turned out to be an extremely useful one for a variety of other
purposes [4]. “Finite automata” played a crucial role in the theory of programming languages,
compiler constructions, switching circuit designing, computer controller, neuron net, text editor
and lexical analyzer [1].

Among the various classical changes in science and mathematics in the previous century,
one important change concerns the concepts of uncertainty. Uncertainty is viewed in the modern
world as important to science; it is not just an inescapable scourge but also has significant benefits.
Zadeh in 1965 introduced the concept of fuzzy set (FS) to describe the vagueness mathematically
in its abstract form and tried to solve problems by giving a grade of membership to each member
of a given set [15]. Fuzzy set was defined as a generalization of the characteristic function of a
crisp set.

A fuzzy set A in E, the universe of discourse under discussion is identified by a membership
function µA : E → [0, 1] defined such that for any element x in E, µA(x) is a real number in the
closed interval [0,1] indicating the degree of membership. Since this single number does not tell
us the uncertainty/impreciseness completely, it is further necessary to generalize the membership
function.

In 1983, Krassimir T. Atanassov put forth a generalization fuzzy sets known as intuitionistic
fuzzy sets, [2]. He introduced a new component degree of non-membership in addition to the
degree of membership in fuzzy sets provided that their sum be less than or equal to unity. The
complement of the two degrees to one is regarded as a degree of indeterminacy. An intuitionistic
fuzzy set (IFS) A in E is defined as an object of the form A = {〈x, µA(x), νA(x)〉 | x ∈ E},
where the functions: µA : E → [0, 1] and νA : E → [0, 1] define the degrees of membership and
non-membership of the element x∈E, respectively, and for every x∈E, 0 ≤ µA(x)+νA(x) ≤ 1.

Obviously, each ordinary fuzzy set may be written as {〈x, µA(x), 1− µA(x)〉 | x ∈ E} .
Since the introduction of fuzzy sets as a method for representing uncertainty, this idea has been

applied to a wide range of scientific areas. One such area is the automata theory and the language
theory first introduced by Wee [13]. There is an important reason to study fuzzy automata: several
languages are fuzzy by nature [3]. The basic idea in the formulation of a fuzzy automata is that,
unlike the classical case, the fuzzy automata can switch from state to another to a certain (truth)
degree.

Fuzzy automata are machines accepting fuzzy regular language [6]. This language is a
feature of fuzzy language [5]. A fuzzy language is generated by a fuzzy grammar, the natural
generalization of formal grammar which is introduced to reduce the gap between formal language
and natural language. Fuzzy grammars have been found to be useful in the analysis of X-rays [8].
A fuzzy language L̃, in the set of finite alphabet Σ is a class of string Σ∗ ⊆ Σ along with a grade
of membership in [0, 1]. This single value combines the evidence for x ∈ Σ∗ and the evidence
against x ∈ Σ∗, without indicating how much of each is there. This single number is silent
nothing about its accuracy. To getover this difficulty, it is necessary to generalize the grade of
membership function µL̃ of fuzzy languages.
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The generalization of membership function of fuzzy language [14] has been achieved using
intuitionistic fuzzy sets which leads to further development of intuitionistic fuzzy automata (IFA).
Admissible relation and admissible partition for the Intuitionistic general fuzzy automata (IGFA),
the quotient IGFA and language for an IGFA are discussed in [11].

Many of the signals which are captured from the real world are composed of characteristic
temporal patterns, e.g., the electrocardiogram (ECG) waveform, the accelerations captured at the
hip during the human gait cycle, etc., Time influences a signal in the order of the different events
that compose this signal and in the duration of these events. One of the most advanced work using
fuzzy finite automata for pattern recognition appeared in [12]. It is common for these patterns to
present high variability in their amplitude or duration, and sometimes these patterns are corrupted
by noise. Hence a concept can be developed to recognize these temporal patterns which take
into account the aspects of time to be robust against the signal variablity and noise. For this,
intuitionistic fuzzy automata(IFA) will be applied for pattern recognition. It helps in expressing
the imprecision of our knowledge of a given set by means of describing the set using smooth
boundaries intead of sharp ones. IFA can deal with signals that have variability in amplitude and
duration. It allows the modeling of restrictions over the duration of the states.

The present study contains four sections. In Section 2, some basic definitions are given which
could be used to develop the concepts. An example of new membership and non-membership
functions is introduced as part of a discussion on general intuitionistic fuzzy automata (GIFA). In
Section 3, the concept of temporal intuitionistic fuzzy automata (TIFA) is introduced and how it
is used to model a pattern. Section 4 conclude the result.

2 Preliminaries

In this section, the basic definitions are given. It also presents the basic concepts of the current
literature of the intuitionistic fuzzy automata.

Definition 2.1 (Automata, [9]). A non-deterministic finite automata is a triple A = (Q,Σ, δ)

where Q is a finite set (the set of states), Σ is an alphabet and δ is a subset of Q× Σ×Q, called
the set of transitions. Two transitions (p, a, q) and (p

′
, a
′
, q
′
) are consecutive if p = q

′
.

Consider a word a0, a1, . . . , an−1 with ai ∈ Σ. A run α in A is a sequence of states

q0
a0→ q1

a1→ q2, . . . , qn−1
an−1→ qn.

Definition 2.2 (Fuzzy finite-state automata, [10]). A fuzzy finite-state automata (FFSA) is a
quintuple M = (Q,Σ, µ, i, f) where:

(i) Q is a set of non-empty, finite states;

(ii) Σ is a finite non-empty set of input symbols;

(iii) the fuzzy subset µ : Q× Σ×Q→ [0, 1] is a function, called the fuzzy transition function;

(iv) i is a fuzzy subset of Q. i.e., i : Q→ [0, 1] called the fuzzy subset of initial states; and

(v) f is a fuzzy subset of Q, i.e., f : Q→ [0, 1] called the fuzzy subset of final states.
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Definition 2.3 (Intuitionistic fuzzy finite automata, [14]). An intuitionistic fuzzy finite automata
(IFFA) is a five-tuple M = (Q,Σ, A,B,C) where:

(i) Q is a set of non-empty, finite states;

(ii) Σ is a finite non-empty set of input symbols;

(iii) A = (µA, νA) is an IFS inQ×Σ×Q. i.e., µ : Q×Σ×Q→ [0, 1] and ν : Q×Σ×Q→ [0, 1];

(iv) B = (µB, νB) is an intuitionistic fuzzy subset of Q, i.e., µB :Q→ [0, 1] and νB :Q→ [0, 1],

is called the initial state of IFFA; and

(v) C = (µC , νC) is an intuitionistic fuzzy subset of Q, i.e., µC :Q→ [0, 1] and νC :Q→ [0, 1],

is called the intuitionistic fuzzy subset of final states.

2.1 General intuitionistic fuzzy automata

In the previous section, problems involving the assigning of 〈mv, nmv〉 to the next state through
transition has been discussed. Now some new concepts are introduced to deal with these problems.
First the concept of membership and nonmembership assignment are elaborated. Then based on
this, a general definition of intuitionistic fuzzy automata is put forth with an example.

2.2 Membership and nonmembership assignment

There is a generally approved approach for assigning 〈mv, nmv〉 to a next state (whether it is
final or not), where the weight of the transition is used and the 〈mv, nmv〉 of the current state is
ignored [4]. Thus the weight of the transition will be considered as the 〈mv, nmv〉 of the next
state. This approach is called transition-based membership and non-membership of intuitionistic
fuzzy automata.

Example 2.1. Let in a particular IFFA the 〈mv, nmv〉 of the state q1 (current state) at time t is
(0.5, 0.1) and the weight of the transition upon input symbol a to the next state q2 is (1.0, 0.0).
The IFFA for this is partially shown in Figure 1.

Using transition-based membership and non-membership and assuming the input symbol
upon time t is a it can be represented as shown below: µA(q1, a, q2) = 1.0 and νA(q1, a, q2) = 0.0

⇒ (µt+1(q2), ν
t+1(q2)) = (1.0, 0.0).

(iii) A = (µA, νA) is an IFS inQ× Σ×Q. i.e.,µ : Q× Σ×Q → [0, 1] and
ν : Q× Σ×Q → [0, 1].

(iv) B = (µB, νB) is an intuitionistic fuzzy subset ofQ, ie,µB : Q → [0, 1] and
νB : Q → [0, 1], is called the initial state of IFFA and

(v) C = (µc, νc) is an intuitionistic fuzzy subset ofQ, ie,µc : Q → [0, 1] and
νc : Q → [0, 1], is called the intuitionistic fuzzy subset of final states.

2.1 General intuitionistic fuzzy automata

In the previous section, problems involving the assigning of 〈mv,nmv〉 to the next state through
transition has been discussed. Now some new concepts are introduced to deal with these prob-
lems. First the concept of membership and nonmembership assignment are elaborated . Then
based on this, a general definition of intuitionistic fuzzy automata is put forth with an example.

2.2 Membership and nonmembership assignment

There is a generally approved approach for assigning〈mv,nmv〉 to a next state (whether it
is final or not), where the weight of the transition is used andthe 〈mv,nmv〉 of the current state
is ignored [4]. Thus the weight of the transition will be considered as the〈mv,nmv〉 of the next
state. This approach is calledtransition-based membership and non-membershipof intuitionistic
fuzzy automata.

Example 2.1. Let in a particular IFFA the〈mv,nmv〉 of the stateq1 (current state) at timet is
(0.5,0.1) and the weight of the transition upon input symbola to the next stateq2 is (1.0,0.0). The
IFFA for this is partially shown in Figure 1.
Using transition-based membership and non-membership andassuming the input symbol upon
time t is a it can be represented as shown below:

q1 q2

(µt(q1), ν
t(q1)) = (0.5, 0.1) (µt+1(q2), ν

t+1(q2)) = (1.0, 0.0)
a/(1.0, 0.0)

Figure 1: A full activation caused by a weak activation

µA(q1, a, q2) = 1.0 andνA(q1, a, q2) = 0.0⇒ (µt+1(q2), ν
t+1(q2)) = (1.0, 0.0)

This means that a state which is active to an extent of (0.5,0.1) [(µt(q1), ν
t(q1)) = (0.5, 0.1)]

causes its successor to be fully activated[(µt+1(q2), ν
t+1(q2)) = (1.0, 0.0)]. Obviously, such an

extension without considering the level of activation of the predecessor is not always reasonable.
Even, in a specific application, the〈mv,nmv〉 of q2 becomes (1.0,0.0). In such a situation, it should
be assured that〈mv,nmv〉 assignment has been done considering the level of activation of the pre-
decessor (for example the maximum of membership and minimumof the non-membership of the
predecessor〈mv,nmv〉 and the weight of the transition may have been assigned to thesuccessor).
The aim of this simple example, is to show the insufficiency oftransition-based membership and
non-membership as a general membership and non-membershipassignment process.

4

Figure 1. A full activation caused by a weak activation

This means that a state which is active to an extent of (0.5, 0.1), [(µt(q1), ν
t(q1)) = (0.5, 0.1)]

causes its successor to be fully activated [(µt+1(q2), ν
t+1(q2)) = (1.0, 0.0)]. Obviously, such an
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extension without considering the level of activation of the predecessor is not always reasonable.
Even, in a specific application, the 〈mv, nmv〉 of q2 becomes (1.0, 0.0). In such a situation, it
should be assured that 〈mv, nmv〉 assignment has been done considering the level of activation of
the predecessor (for example the maximum of membership and minimum of the non-membership
of the predecessor 〈mv, nmv〉 and the weight of the transition may have been assigned to the
successor). The aim of this simple example, is to show the insufficiency of transition-based
membership and non-membership as a general membership and non-membership assignment
process.

2.2.1 Augmented-transition function
(A general method to assign membership and non-membership values)

To establish a general method to assign mv’s and nmv’s to next states, first the definition of
transition functions in intuitionistic fuzzy finite automata may be generalized (Definition 2.3).
This generalization enables it to incorporate both the level of activation of the current state and
the weight of the transition.

In Definition 2.3, µA and νA were defined as µA : Q × Σ × Q → [0, 1] and νA : Q ×
Σ × Q → [0, 1] and the weight of the transition from qi to qj upon input ak was denoted as
〈µA(qi, ak, qj), νA(qi, ak, qj)〉 .

Now, define new transition functions µ̃A, ν̃A which are called augmented transition functions,
can be represented as:

µ̃A : (Q× [0, 1])× Σ×Q F1(µ,µA)−→ [0, 1]

ν̃A : (Q× [0, 1])× Σ×Q F1(ν,νA)−→ [0, 1]

Here µ̃A, ν̃A show the active state (reached from its predecessor), to the intuitionistic fuzzy
interval [0, 1] via function F1. This function is termed as the membership and non-membership
assignment function.

Definition 2.4. (Membership and non-membership assignment function). In an IFFA, the
membership and non-membership assignment function is a mapping function which is applied via
augmented transition function µ̃A and ν̃A to assign 〈mv, nmv〉 respectively to the active states.
F1 : [0, 1]× [0, 1]→ [0, 1]. This function F1 is guided by two parameters: (µ, ν): the 〈mv, nmv〉
of a predecessor and 〈µA, νA〉: the weight of a transition.

In this new definition, the process that takes place upon the transition from state qi and qj an
input ak is represented as:

µt+1(qj) = µ̃A((qi, µ
t(qi)), ak, qj) = F1(µ

t(qi), µ(qi, ak, qj))

νt+1(qj) = ν̃A((qi, ν
t(qi)), ak, qj) = F1(ν

t(qi), ν(qi, ak, qj))

which actually means that the 〈mv, nmv〉 of the state qj at time t+ 1 is computed by function F1,

using both 〈mv, nmv〉 of qi at time t and the weight of the transition.
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There are various methods to use function F1. The best way, however, depends on the
application available. It can be either Max, Min, Mean or any other applicable mathematical
function which incorporates time into its evaluation. Its exact form depends on the application it
is put into. However it should be with in the following axioms:

Axiom 1. 0 ≤ F1 ≤ 1 where as 0 ≤ µ+ µA ≤ 1 and 0 ≤ ν + νA ≤ 1.

Axiom 2. F1(0, 0) = 0 and F1(1, 1) = 1.

Axiom 2 guarantees the boundary conditions.

2.3 Multi-membership and non-membership resolution

Definition 2.5. (Multi-membership and non-membership resolution function). In an IFFA,
the multi-membership and non membership resolution function, is something that specifies the
strategy, and resolves the multi-membership and non-membership active state by assigning a
single 〈mv, nmv〉 to them. It can be represented asF2 : ([0, 1])∗ → ([0, 1]). Then, the combination
of the operation of functions F1 and F2 on a multi-membership and non-membership state qm will
result in the multi-membership and non-membership resolution algorithm.

Algorithm (Multi-membership and non-membership).
If there are several parallel transitions to the active state qm at time t+ 1, the following algorithm
will assign a unified mv and nmv to that:

(1) Each transition weight 〈µA(qi, ak, qm), νA(qi, ak, qm)〉 , together with the 〈mv, nmv〉 of the
corresponding predecessor qi, will be processed by the membership and non-membership
assignment function F1 (via augmented transition function µ̃A,ν̃A), and will produce a
〈mv, nmv〉. Denote these values by ui and vi:

ui = µ̃A((qi, µ
t(qi)), ak, qm) = F1(µ

t(qi), µA(qi, ak, qm))

vi = ν̃A((qi, ν
t(qi)), ak, qm) = F1(ν

t(qi), νA(qi, ak, qm))

(2) These mv’s and nmv’s (u′is and v′is) are not always equal. Hence, they will be processed by
another function F2, called the multi-membership and non-membership resolution function.

(3) The result produced by F2 will be assigned as the instantaneous 〈mv, nmv〉 of the active
state qm.

[µt+1(qm), νt+1(qm)] = F2
n
i=1[ui, vi]

= F2
n
i=1[F1{(µt(qi), νt(qi)), (µA(qi, ak, qm), νA(qi, ak, qm)}]

where:
∗ n is the number of simultaneous transitions from states q′is to state qm prior to time
t+ 1 and qi ∈ Qpred(qm, ak), i.e., n is the cardinality of the set (µt+1

qm , νt+1
qm ).

∗ 〈µA(qi, ak, qm), νA(qi, ak, qm)〉 is the weight of the transition from qi to qm upon input
ak.
∗ 〈µt(qi), νt(qi)〉 is the membership and non-membership value of qi at time t (possibly

resolved, i.e., unified).
∗ 〈µt+1(qm), µt+1(qm)〉 is the final 〈mv, nmv〉 of qm at time t+ 1.
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Similar to F1, there are many options that could be applicable to F2. The best option should
be selected on the basis of application in hand. However, the following axioms are the minimum
requirements to be satisfied by F2:

Axiom 3. 0 ≤ F2
n
i=1(ui, vi) ≤ 1. Also 0 ≤ ui + vi ≤ 1.

Axiom 4. F2(∅,∅) = 0.
This axiom, essentially, allows the way for the ε-transition to be incorporated into the operation

of intuitionistic fuzzy automata.

Axiom 5. F2
n
i=1(ui, vi) = (a, b) if ∀i(ui = a, vi = b).

Whenever all predecessors of a multi-membership and non-membership state produce the
same 〈mv, nmv〉, it is probable that the active state assumes this 〈mv, nmv〉. An immediate
outcome of this axiom is:

F2
n
i=1(ui, vi) = (0, 0) if ∀i(ui = 0, vi = 0);

F2
n
i=1(ui, vi) = (0, 1) if ∀i(ui = 0, vi = 1); and

F2
n
i=1(ui, vi) = (1, 0) if ∀i(ui = 1, vi = 0).

Another corollary of this axiom is F2
n
i=1(ui, vi) = (ui, vi). It enables F2 to be seen as a general

process on all active states, even if there are multi-membership and non-membership.
There are many possibleties that could be used for the function F2. But, the best strategy for

any application should be selected based on the requirements of that application.

∗ Maximum multi-membership and minimum multi-nonmembership resolution

(µt+1(qm),νt+1(qm))

=
{

max
i=1 to n

[
µ̃A((qi, µ

t(qi)), ak, qm)
]
, min
i=1 to n

[
ν̃A((qi, µ

t(qi)), ak, qm)
]}

=
{

max
i=1 to n

[
F1(µ

t(qi), µA(qi)), ak, qm)
]
, min
i=1 to n

[
F1(ν

t(qi), νA(qi)), ak, qm)
]}
,

if

0 < max
i=1 to n

[
F1(µ

t(qi), µA(qi)), ak, qm)
]

+ max
i=1 to n

[
F1(ν

t(qi), νA(qi)), ak, qm)
]
≤ 1,

otherwise

(µt+1(qm), νt+1(qm))

=
{

1− max
i=1 to n

[
F1(µ

t(qi), µA(qi)), ak, qm)
]
, 1− min

i=1 to n

[
F1(ν

t(qi), νA(qi)), ak, qm)
]}
.

∗ Arithmetic mean multi-membership and multi-nonmembership resolution
(µt+1(qm), νt+1(qm))

=

{
1
n

n∑
i=1

µ̃A((qi, µ
t(qi)), ak, qm), 1

n

n∑
i=1

ν̃A((qi, ν
t(qi)), ak, qm)

}
=

{
1
n

n∑
i=1

F1(µ
t(qi, µA(qi, ak, qm)), 1

n

n∑
i=1

F1(ν
t(qi, νA(qi, ak, qm)),

}
where n is the number of simultaneous transitions from q′is to qm at time t + 1, and
qi ∈ Qpred(qm, ak).
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2.4 Computational generality of intuitionistic fuzzy automata

In order to make Computational generality of intuitionistic fuzzy automata and its generalization
capability more systematic and application-friendly, a more general definition is needed. In the
sequel, by bringing in F1 and F2, a new definition for IFFA is given that is much more general
compared to the current ones.

Definition 2.6. (General intuitionistic fuzzy automaton). A General Intuitionistic Fuzzy Auto-
maton (GIFA) M̃ is a 7-tuple denoted as

M̃ = (Q,Σ, Ã, B, C, F1, F2),

where:

• Q is a finite non-empty set of states;

• Σ is a finite non-empty set of input symbols;

• Ã = (µ̃A, ν̃A) is the augmented transition function where:

µ̃A : (Q× [0, 1])× Σ×Q F1(µ,µA)→ [0, 1]

ν̃A : (Q× [0, 1])× Σ×Q F1(ν,νA)→ [0, 1]

• B = (µB, νB) is an intuitionistic fuzzy subset of Q, i.e., µB :Q→ [0, 1] and νB :Q→ [0, 1],

called the intuitionistic initial fuzzy state;

• C = (µC , νC) is an intuitionistic fuzzy subset of Q, i.e., µC :Q→ [0, 1] and νC :Q→ [0, 1],

called the intuitionistic initial fuzzy subset of final states;

• F1 : [0, 1] × [0, 1] → [0, 1] is a mapping function, which is applied via Ã to assign mv’s
and nmv’s to the active states, thus called membership and non-membership assignment
function.

• F2 : ([0, 1])∗ → [0, 1] is a multi-membership and non-membership resolution strategy that
resolves the multi-membership and non-membership active states and thereafter assigns a
single 〈mv, nmv〉 to them, it can thus be called multi-membership and non-membership
resolution function.

Example 2.2. The example aims to show various implications of acceptance and the capabilities
achieveable by the augmented transition function Ã (applied through function F1).
A General Intuitionistic Fuzzy Automaton (GIFA) M̃ is defined as M̃ = (Q,Σ, Ã, B, C, F1, F2),

where:

• Q = {q1, q2, q3, q4, q5} is a set of states;

• Σ = {0, 1} ∪ ∈ is a set of input symbols;

• Ã = (µ̃A, ν̃A) is the augmented transition function where

µ̃A : (Q× [0, 1])× Σ×Q F1(µ,µA)→ [0, 1]

ν̃A : (Q× [0, 1])× Σ×Q F1(ν,νA)→ [0, 1];

• B = {(q1, (µt0(q1), νt0(q1)))} = {q1, (1, 0)} : start intuitionistic fuzzy set;
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• C = {accept} : set of final labels;

• F1 is defined in different ways as will be seen;

• F2 is not applicable. There is no multi-membership.

F2 : ([0, 1])∗ → [0, 1] is a multi-membership and non-membership resolution strategy that re-
solves the multi-membership and non-membership active states and thereafter assigns a single
〈mv,nmv〉 to them, it can thus be called multi-membership and non-membership resolution func-
tion.

Example 2.2.An example to show various implications of acceptance and the capabilities achie-
veable by the augmented transition functionÃ (applied through functionF1).
A General Intuitionistic Fuzzy Automaton (GIFA)̃M is defined as̃M = (Q,Σ, Ã, B, C, F1, F2),

where
Q = {q1, q2, q3, q4, q5}-set of states
Σ = {0, 1}∪ ∈-set of input symbols
Ã = (µ̃A, ν̃A) is the augmented transition function where

µ̃A : (Q× [0, 1])× Σ×Q
F1(µ,µA)
→ [0, 1]

ν̃A : (Q× [0, 1])× Σ×Q
F1(ν,νA)
→ [0, 1]

B = {(q1, (µ
t0(q1), ν

t0(q1)))} = {q1, (1, 0)} : start intuitionistic fuzzy set
C = {accept} : set of final labels
F1 : defined in different ways as will be seen
F2 not applicable. There is no multi-membership.

0/
(0.
4,
0.3

)
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)

1/
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, 0
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)

1/(0.5, 0.2)
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(0
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, 0
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)
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0/
(0
.4
, 0
.3
)

1/(0.1, 0.6)

0/(0.3, 0.4)

q2

q4

q3
q1

〈
µt0(q0), ν

t0(q0
〉
= (1, 0)

intialstate

q5
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Consider the transition based membership and non-membership, useÃ newly introduced
function:
µt+1(qj) = µ̃A ((qi, µ

t(qi)), ak, qj) = F1(µ
t(qi), µA(qi, ak, qj)) = µt(qi) + µA(qi, ak, qj)

νt+1(qj) = ν̃A ((qi, ν
t(qi)), ak, qj) = F1(ν

t(qi), νA(qi, ak, qj)) = νt(qi) + νA(qi, ak, qj)

µt+1 =

{
µt + µA if 0 < µt + µA ≤ 1− C

(µt + µA)− (1− C) if µt + µA > 1− C

νt+1 =

{
νt + νA if 0 < νt + νA ≤ 1− C

(1− C)− νt if νt + νA > 1− C

where C be the uncertainity.
That is to say the functionF1 calculate the sum of the〈mv,nmv〉 of the predecessor and the weight
of the transition and bounds it in the interval[0, 1]. These values are assigned to the successor.

8

Figure 2. The IFFA of Example 2.2

Consider the transition based membership and non-membership, use Ã newly introduced
function:

µt+1(qj) = µ̃A
(
(qi, µ

t(qi)), ak, qj
)

= F1

(
µt(qi), µA(qi, ak, qj)

)
= µt(qi) + µA(qi, ak, qj)

νt+1(qj) = ν̃A
(
(qi, ν

t(qi)), ak, qj
)

= F1

(
νt(qi), νA(qi, ak, qj)

)
= νt(qi) + νA(qi, ak, qj)

µt+1 =

{
µt + µA, if 0 < µt + µA ≤ 1− C

(µt + µA)− (1− C), if µt + µA > 1− C

νt+1 =

{
νt + νA, if 0 < νt + νA ≤ 1− C

(1− C)− νt, if νt + νA > 1− C

where C be the uncertainity.
That is to say the function F1 calculate the sum of the 〈mv, nmv〉 of the predecessor and

the weight of the transition and bounds it in the interval [0, 1]. These values are assigned to the
successor.

F1 makes M̃ a periodic intuitionistic fuzzy automaton. Upon periodic input strings, the
successor will be repeated with periods that are the same as the length of the string period. This
period is called state period (Tq) is shown in Table 1. But, the 〈mv, nmv〉 affiliated with each
state, will vary from period to period. The 〈mv, nmv〉 will be periodically denoted as Tµ and Tν
respectively. The detailed operation of the automation upon input (01)m(m ≥ 1) is also shown in
Table 2.
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Table 1. The state period of different strings

Input string State period Tq

(01)s q2q4 . . . 2

(0212)s q2q3q4q5 . . . 4

(120)s q2q4q5 . . . 3

(021)s q4q2q3 . . . 3

(10301204)s q2q4q5 . . . 3

Table 2. The 〈mv, nmv〉 of the string (01)m(m ≥ 1). Choose C = 0.3, Tq = 2, 〈Tµ, Tν〉 = 14

Input 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

State q2 q4 q2 q4 q2 q4 q2 q4 q2 q4 q2 q4 q2 q4 q2 q4

mv 0.4 0.2 0.6 0.4 0.1 0.6 0.3 0.1 0.5 0.3 0.7 0.5 0.2 0.7 0.4 0.2

nmv 0.3 0.5 0.1 0.3 0.6 0.1 0.4 0.6 0.2 0.4 0.7 0.2 0.5 0.7 0.3 0.5

In an IFS, uncertainty (ΠA) is one of its part, i.e., ΠA(x) = 1− µA(x)− νA(x).

Let ΠA(x) = C. In the above example, the string (01)m, (m ≥ 1) will have different periodic
〈mv, nmv〉 depending upon the value of C between 0 and 1. If C = 0.1, the string have high
period. That is, the string have different 〈mv, nmv〉 up to the 18-th cycle, after that the same set
of 〈mv, nmv〉 is repeated. The 〈mv, nmv〉 of a string (01)m for different values of C are listed
below:
C = 0.1, the 〈mv, nmv〉 periodic may be 18.
C = 0.2, the 〈mv, nmv〉 periodic may be 16.
C = 0.3, the 〈mv, nmv〉 periodic may be 14. (as shown in Table 2 )
C = 0.4, the 〈mv, nmv〉 periodic may be 12.
C = 0.5, the 〈mv, nmv〉 periodic may be 10.
C = 0.6, the 〈mv, nmv〉 periodic may be 08.
C = 0.7, the 〈mv, nmv〉 periodic may be 06.
C = 0.8, the 〈mv, nmv〉 periodic may be 04.
The increase of uncertainty gives less membership and non-membership periodic.

3 Temporal intuitionistic fuzzy automaton

Based on the definition of general intuitionistic fuzzy automaton, a Temporal Intuitionistic Fuzzy
Automaton (TIFA) as an eight-tuple can be defined as M1 = {Q,Σ, D,A,B,C, F1, F2}, where:

• Q is a finite non-empty set of states;

• Σ is a finite non-empty set of input symbols;

• D is a finite non-empty set of the duration of the states;
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• A = (µA, νA) : Q×D × Σ×Q→ [0, 1] is the state transition function;

• B = (µB, νB) is an intuitionistic fuzzy subset of Q, i.e., µB :Q→ [0, 1] and νB :Q→ [0, 1],
called the initial state of TIFA;

• C = (µC , νC) is an intuitionistic fuzzy subset of Q, i.e., µC :Q→ [0, 1] and νC :Q→ [0, 1],
called the initial state of TIFA;

• F1 : [0, 1]× [0, 1] −→ [0, 1] is the augmented transition function;

• F2 : ([0, 1])∗ → [0, 1] is the multi-membership and nonmembership resolution.

In the following, the above notation are explained in detail. Some related conventions and
definitions are also given.

State Q : This set is comprised of several states of the TIFA. But, IFFA can only be in one state
at every instant, whereas TIFA can be in several states with different degrees.

Input set Σ : This set which is usually composed of several input streams xj contains the samples
of the signal that the TIFA has to recognize.

Convention 1 : The value of all the input at time t is expressed as xt and particularly at time t and
xj can be expressed as xtj , where t is a natural number that indicates each sample of the input.

Definition 3.1. Consider a state qi which is active at time t when µtqi > θ and νtqi < θ where θ is
a constant defined by an expert depending on the application.

Duration of states D : This set gives information about the duration of the different states and it
is used for providing time restriction in the TIFA.

Definition 3.2. Each element of the set D represents the time in which the state qi has been
continuously active. The duration of the state qi at time t can be found using the following
formula:

dti =

{
0, µtqi < θ and νtqi ≥ θ

d
(t−1)
i , µtqi ≥ θ and νtqi < θ

The state transition function Ã : This function gives the possible transitions of the TIFA.

Definition 3.3. A transition Ti,j from the state qi to the state qj is possible if there exist x, d such
that µ̃A(qi, x, d, qj) > 0 and ν̃A(qi, x, d, qj) < 1.

The TIFA follows a transition Ti,j at time t. If this transition is possible and the state qi belongs
to the set of initial states B then:

µ̃A(qi, x
t, dt, qj) > 0 ∧ (µtqi ≥ θ ∧ νtqi < θ ∨ qi ∈ B),

ν̃A(qi, x
t, dt, qj) < 1 ∧ (µtqi ≥ θ ∧ νtqi < θ ∨ qi ∈ B).

This µ̃A and ν̃A can be interpreted like the weight of the transition. These conditions are
specific for each transition and they are functional of the inputs and the duration of the origin
state. Section 3.1 deals with conditions for each transition using linguistic labels.
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The state membership and nonmembership assignment function F1 : This function can be used
to update the 〈mv, nmv〉 of the next successor when the TIFA follows a transition Ti,j . To obtain
〈mv, nmv〉 of the state qj after a transition from the state qi the following equation is used:

µtqj = F1(µ
t
qi
, µ̃A(qi, x

t, dt, qj)) and νtqj = F1(ν
t
qi
, ν̃A(qi, x

t, dt, qj)).

The multi-membership and nonmembership resolution function F2 : Sometimes several transitions
end in same state and then several mv’s and nmv’s will correspond with the same state. By using
the function F2 called multi-membership and non-membership resolution to provide only one
〈mv, nmv〉 to summarize all the mv’s and nmv’s of those transitions that end in the same state.
The following equations can be used to calculate the 〈mv, nmv〉 of a state:

µt+1
qj

= F2(u1, u2, . . . , un) and νt+1
qj

= F2(v1, v2, . . . , vn),

where n is the total number of transitions that end in the state qj, and each ui and vi are the
〈mv, nmv〉 provided by each transition respectively.

F2(∅,∅) = 0,

F2(u1, u2, . . . , un) = a if ∀i(ui = a),

F2(v1, v2, . . . , vn) = b if ∀i(vi = b).

Initial statesB and final stateC: The setsB andC are the nonempty sets of initial states and final
states respectively of the TIFA. The process of TIFA begins from its initial states, after which it
moves between different states according to its state transition function Ã until it reaches a final
state when the pattern can be recognized.

3.1 Modeling a pattern using TIFA

This section deals with the pattern in which an expert can model TIFA following a simple
methodology.

3.1.1 Defining the states

To model a pattern it is important to decide what inputs Σ are going to be used to describe it.
Every state qi represents a time during which the inputs satisfy some conditions. Although not
necessary, the conditions are defined using the idea linguistic interval [7]. When modelling more
complex patterns, the linguistic intervals make it possible to use different levels of granularity by
combining continuous membership and nonmembership functions to obtain wider membership
and nonmemberships. A linguistic interval X [a,b]

j is defined over the domain of the input xj using
a set of intuitionistic fuzzy linguistic labels Xk

j . The two limits a and b indicate the membership
and nonmembership functions where the interval begins and ends respectively. The degree of
membership and nonmembership functions for each value in the interval is found by using the
following equations:

µ
X

[a,b]
j

(xj) =
b∑

K=a

µXk
j
(xj) and ν

X
[a,b]
j

(xj) =
b∑

K=a

νXk
j
(xj).
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To define the linguistic labels. There are several membership and nonmembership functions
that compose a strong intuitionistic fuzzy partition of the input defined in because this restriction
guarantees a membership degree of one and nonmembership degree of zero, except for in the
boundaries where membership degree decreases and nonmembership degree increases.

In particular, the triangular functions are used, not only because of their simplicity, but also
because, under some hypothetical conditions, they can build intuitionistic fuzzy partitions whose
membership and nonmembership functions are uniformly activated.

In an ordinary instance, the rules of a state (rulqi) can affect several input streams. For
example, in the following all the input streams are combined by using conjunction and disjunction:

rulqj(x1, . . . , xr) = {(µ
X

[ai1,b
i
1]

1

(x1) ∧ · · · ∧ µ
X

[air,b
i
r ]

r

(xr)), (ν
X

[ai1,b
i
1]

1

(x1) ∨ · · · ∨ ν
X

[air,b
i
r ]

r

(xr))}.

But the definition of TIFA does not deal with the structure, model nor its pattern of using
left-right structure because the resulting TIFA is much more understandable. A pattern is described
with several states and a last state, which autually detect the end of the pattern. During the
execution of a pattern the TIFA will move from the first state to the final state, and as a result the
set B contains only the first state and C contains only the final state.

3.1.2 Defining the transitions

The evolution of the TIFA is based only on the state transition function Ã. Therefore, the above
said conditions are to be included in the different transitions of the TIFA. Using a left-right
structure, the TIFA can move from the state qi (feedback transition Ti,i) to the next state qi+1

(changing transition Ti,i+1.) All the transitions are defined by two rules: one is defined upon the
inputs and the other upon the duration of the predecessor which makes it possible to include some
time restrictions. For any transition Ti,j , the rule over the inputs is the rule for being one among
the successors (rulqi). But the time rule differs depending on whether it is a feedback transition
or a changing transition.

q1 q2 q3 q4 q5

T1,1 T4,4T3,3T2,2

T1,2 T2,3
T3,4 T4,5

Figure 3. Structure of a pattern using TFA

In a feedback transition Ti,i

rulTi,i(x, di) = {rulqi(x) ∧ (µT imeToStayi,i(di), νT imeToStayi,i(di))}

The time rule is expressed with the linguistic label TimetoStayi,i; it restricts the maximum time
that the TIFA can stay in the State qi. The membership and non-membership functions associated
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with TimeToStayi,i are defined over the domain of the duration of the state (qi). These functions
start with the maximum membership value 1 and minimum non-membership value 0, and they
decrease and increase respectively when the maximum duration is reached. The goal of this rule
is to reject those signals which cause the TIFA to remain in a state for more time span than
expected. The TIFA stays in the same state until the rules over the inputs are false or the duration
of the state is longer than the time defined by the membership and non-membership functions of
TimeToStayi,i.

In a changing transition Ti,i+1

rulTi,i+1
(x, di) = {rulqi+1

(x) ∧ (µT imeToMovei,i+1
(di), νT imeToMovei,i+1

(di))}

The time rule is TimeToMovei,i+1 which represents the minimum time that the TIFA has to be in
a state qi before moving to a state qi+1. Therefore, the membership and non-membership functions
associated with the linguistic label TimeToMovei,i+1 starts with the lowest membership value
zero and highest non-membership value one and they increase and decrease respectively when
the expected minimum duration is reached. This restriction allows the TIFA to move from one
state to another when the rules over the inputs for being in the state qi+1 is true and the TIFA has
sufficient time in the successor (origin state) qi.

But the last state is a special case because its goal is only to detect the end of the pattern. This
last state has no feedback transition because the TIFA is not supposed to stay in this state. The
transitions that end in this state have rules over time only to confirm that the previous state was
active for a while:

rulTN−1,N
(x, dN−1) =

{
µT imeToMoveN−1,N

(dN−1), νT imeToMoveN−1,N
(dN−1)

}
.

By using the above said model TIFA can deal with signals that have variability in amplitude
and duration. It allows the modelling to be more robust against the variability in the state
durations.

4 Conclusion

The most general formulation of intuitionistic fuzzy automata introduced here is atleast in the
realm of discrete spaces. It degenerates other types of automata under various restrictions. Also,
GIFA encompasses not only other types of automata, but also other computational paradigms.
The generality of GIFA is so motivating and challenging that it has enough for further research.

By using the definition of GIFA, a definition of temporal intuitionistic fuzzy automata is
introduced. To use this as a tool of the pattern recognition field. The new method uses intuitionistic
fuzzy sets for defining the conditions imposed on the inputs. The result is an imprecise but robust
model of the temporal pattern of the signal. The main contribution of this model is its capacity to
include intuitionistic fuzzy conditions not only in the signal amplitude but also in the description
of the signal temporal dimensions. The obtained models are easily understandable and therefore
can be checked easily by an expert. Use of this model in detecting a pattern in signal will be done
and the same will be reported in future work.
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