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Abstract: We proposed to give a sense of Hukuhara’s difference in intuitionistic fuzzy theory.
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1 Introduction

The Hukuhara difference is also motivated by the problem of inverting the standard Minkowski
addition and multiplication, the idea of finding some inverse operation is crucial in interval and
fuzzy arithmetic and analysis, with applications to the solution of equations, to the concept of
differentiability, to interval and fuzzy integral and differential equations, etc, but in many appli-
cations it appears to have several limitations.

In [9] Luciano Stefanini propose generalization of difference as inverse operations (in some
sense) to addition and multiplication, he considered the general setting of set-valued arithmetic
and he suggested some generalizations (the classical Hukuhara difference is a special case) for
compact sets, for compact convex sets (in particular compact intervals) and for fuzzy sets with
compact and convex α-cuts (in particular fuzzy numbers).

On the other hand, in intuitionistic Fuzzy theory which introduced by K. Atanassov [1,2], the
problem of inverting the addition and multiplication is always occurs for this reason we intro-
duce the notion of Hukuhara difference in this theory which allows to introduce the concepts of
differentiability.
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The paper is organized as follows. In Section 2 we recall the generalized Hukuhara difference
for compact sets precisely, The case of compact intervals is detailed in this Section . In Section
3 we recall the Hukuhara difference (H-difference) for fuzzy numbers and gives conditions for
its existence. Section 4 presents basic concept of intuitionistic fuzzy sets and intuitionistic fuzzy
number and we extend the results of Hukuhara difference in fuzzy theory to intuitionistic fuzzy
theory. Finally, some concepts develop in Section 5 like continuity and differentiability.

2 General setting

Consider the space X with the induced topology and in particular the space X = Rn n ≥ 1

of real number equipped with standard addition and scalar multiplication operations. Following
Diamond and Kloeden (see [3]), denote by K(X) and KC(X) the spaces of nonempty compact
and compact convex sets of X. Given two subsets A,B ⊆ X and k ∈ R, Minkowski addition
and scalar multiplication are defined by A + B = {a + b|a ∈ A, b ∈ B} and kA = {ka|a ∈ A}
and it is well known that addition is associative and commutative and with neutral element {0}.
If k = −1, scalar multiplication gives the opposite −A = (−1)A = {−a|a ∈ A} but, in general,
A + (−A) 6= {0}, i.e. the opposite of A is not the inverse of A in Minkowski addition (unless
A = {a} is a singleton). Minkowski difference isA−B = A+(−1)B = {a−b|a ∈ A, b ∈ B}.A
first implication of this fact is that, in general, even if it is true that (A+C = B+C)⇐⇒ A = B,
addition/subtraction simplification is not valid, i.e. (A+B)−B 6= A.

To partially overcome this situation, Hukuhara [4] introduced the following H-difference :

A�B = C ⇐⇒ A = B + C (1)

and an important property of � is that A � A = {0} , ∀A ∈ K(X) and (A + B) � B = A,
∀A,B ∈ K(X); H-difference is unique, but a necessary condition for A � B to exist is that A
contains a translate {c}+B of B with c ∈ R. In general, A−B 6= A�B.

From an algebraic point of view, the difference of two sets A and B may be interpreted both
in terms of addition as in (1) or in terms of negative addition, i.e.

A�B = C ⇐⇒ B = A+ (−1)C (2)

where (−1)C is the opposite set of C. Conditions (1)and(2) are compatible to each other and this
suggests a generalization of Hukuhara difference:

Definition 1. Let A,B ∈ K(X); we define the generalized Hukuhara difference of A and B as
the set C ∈ K(X) such that

A�g B = C ⇐⇒


(i) A = B + C

or

(ii) B = A+ (−1)C

Proposition 1. ((Unicity of A�g B)
If C = A�g B exists, it is unique and if also A�B exists then A�g B = A�B.
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2.1 The case of compact intervals in R

For unidimensional compact intervals, the gH-difference always exists. In fact, let A = [a−, a+]

and B = [b−, b+] be two intervals; the gH-difference is

[a−, a+]�g [b−, b+] = [c−, c+] ⇐⇒



(i)

a− = b− + c−

a+ = b+ + c+

or

(ii)

b− = a− − c−

b+ = a+ − c+

so that [a−, a+]�g [b−, b+] = [c−, c+] is always defined by
c− = min{a− − b−, a+ − b+} ,c+ = max{a− − b−, a+ − b+} i.e

[a, b]�g [c, d] = [min{a− c, b− d},max{a− c, b− d}]

Conditions (i) and (ii) are satisfied simultaneously if and only if the two intervals have the
same length and c− = c+.

Also, the result is {0} if and only if a− = b− and a+ = b+.

Remark 1.
[a, b] + [c, d] = [a, b] + [c′, d′]⇒ [c, d] = [c′, d′].

3 H-Difference of fuzzy numbers

A general fuzzy set over a given set (or space) X of elements (the universe) is usually defined by
its membership function µ : X→ T ⊆ [0, 1] and a fuzzy (sub)set u of X is uniquely characterized
by the pairs (x, µu(x)) for each x ∈ X; the value µu(x) ∈ [0, 1] is the membership grade of x
to the fuzzy set u and µu is the membership function of a fuzzy set u over X (see [11] - [12] for
the origins of Fuzzy Set Theory). The support of u is the (crisp) subset of points of X at which
the membership grade µu(x) is positive: supp(u) = {x|x ∈ X, µu(x) > 0}. For α ∈]0, 1], the
α-level cut of u (or simply the α-cut)is defined by [u]α = {x|x ∈ X, µu(x) ≥ α} and for α = 0

(or α→ 0+) by the closure of the support [u]0 = cl{x|x ∈ X, µu(x) > 0}.
We will consider the case X = Rn with n ≥ 1. A particular class of fuzzy sets u is when the

support is a convex set and the membership function is quasi-concave (i.e µu((1− t)x′ + tx′′) ≥
min{µu(x′), µu(x′′)}) for every x′, x′′ ∈ supp(u)and t ∈ [0, 1]). Equivalently, µu is quasi-
concave if the level sets [u]α are convex sets for all α ∈ [0, 1]. We will also require that the
level-cuts [u]α are closed sets for all α ∈ [0, 1] and that the membership function is normal, i.e.
the core[u]1 = {x|µu(x) = 1} is compact and nonempty.

The following properties characterize the normal, convex and upper semicontinuous fuzzy
sets (in terms of the level-cuts):
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(F1) [u]α ∈ KC(X) for all α ∈ [0, 1];

(F2) [u]α ⊆ [u]β for α ≥ β (i.e. they are nested);

(F3) [u]α =
⋂+∞
k=1[u]αk for all increasing sequences αk ↑ α converging to α

Furthermore, any family{Uα|α ∈ [0, 1]} satisfying conditions (F1)–(F3) represents the level-
cuts of a fuzzy set u having [u]α = Uα.

We will denote by En the set of the fuzzy sets with the properties above (also called fuzzy
numbers). The space E1 of real fuzzy numbers is structured by an addition and a scalar multipli-
cation, defined either by the level sets or, equivalently, by the Zadeh extension principle.

Let u, v ∈ En have membership functions µu, µv and α-cuts [u]α, [v]α, α ∈ [0, 1] , respec-
tively. where [u]α = [uα−, u

α
+] and [v]α = [vα−, v

α
+].

The addition u+ v ∈ En and the scalar multiplication ku ∈ En have level cuts

[u+ v]α = [u]α + [v]α = {x+ y|x ∈ [u]α, y ∈ [v]α},
[ku]α = k[u]α = {kx|x ∈ [u]α}.

In the fuzzy or in the interval arithmetic contexts, equation u = v + ω is not equivalent to
ω = u − v = u + (−1)v or to v = u − ω = u + (−1)ω and this has motivated the introduction
of the following Hukuhara difference [4, 5, 8].

Definition 2. Given u, v ∈ En , the H-difference is defined by

u� v = ω ⇐⇒ u = v + ω

1) if u� v exist, it is unique,

2) u� u = {0},

In the unidimensional case (n = 1), the α-cuts of H-difference are

[u� v]α =
[
uα− − vα−, uα+ − vα+

]
where [u]α = [uα−, u

α
+] and [v]α = [vα−, v

α
+].

The conditions of the definition of u� v = w are

[w]α = [wα−, w
α
+] = [u]α � [v]α

and 
if len([u]α) ≥ len([v]α) for all α ∈ [0, 1]

wα− = uα− − vα−
wα+ = uα+ − vα+

(3)

provided that wα− is nondecreasing with respect to α , wα+ is nonincreasing with respect to α and
w

(1)
− ≤ w

(1)
+ , where len([u]α) = uα+ − uα− is the length α-cuts of the u (similarly len([v]α) for v.
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Proposition 2. Let u, v ∈ E1 , be two fuzzy numbers with α-cuts given by [u]α and [v]α, respec-
tively; the H-difference u� v ∈ E1 exists if and only if the following condition is satisfied

len([u]α) ≥ len([v]α) for all α ∈ [0, 1]

uα− − vα− is increasing with respect to α
uα+ − vα+ is decreasing with respect to α

Proof. See [9].

4 Extension of Hukuhara difference
in intuitionistic fuzzy set theory

In the first, we recall some resultats and definitions of intuitionistic fuzzy theory. we denote by

IFn = IF(Rn) =
{
〈u, v〉 : Rn → [0, 1]2 , | ∀ x ∈ Rn, 0 ≤ u(x) + v(x) ≤ 1

}
An element 〈u, v〉 of IFn is said an intuitionistic fuzzy number if it satisfies the following condi-
tions

(i) 〈u, v〉 is normal i.e there exists x0, x1 ∈ Rn such that u(x0) = 1 and v(x1) = 1.

(ii) u is fuzzy convex and v is fuzzy concave.

(iii) u is upper semi-continuous and v is lower semi-continuous

(iv) supp 〈u, v〉 = cl{x ∈ Rn : | v(x) < 1} is bounded.

For α ∈ [0, 1] and 〈u, v〉 ∈ IFn, the upper and lower α-cuts of 〈u, v〉 are defined by

[〈u, v〉]α = {x ∈ Rn : v(x) ≤ 1− α}

and

[〈u, v〉]α = {x ∈ Rn : u(x) ≥ α}

Remark 2. If 〈u, v〉 ∈ IFn, so we can see [〈u, v〉]α as [u]α and [〈u, v〉]α as [1− v]α in the fuzzy
case.

Example. A Triangular Intuitionistic Fuzzy Number (TIFN) 〈u, v〉 is an intuitionistic fuzzy set
in R with the following membership function u and non-membership function v :

u(x) =


x− a1

a2 − a1

if a1 ≤ x ≤ a2

a3 − x
a3 − a2

if a2 ≤ x ≤ a3,

0 otherwise
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v(x) =


a2 − x
a2 − a

′
1

if a′
1 ≤ x ≤ a2

x− a2

a
′
3 − a2

if a2 ≤ x ≤ a
′
3,

1 otherwise.

where a′
1 ≤ a1 ≤ a2 ≤ a3 ≤ a

′
3.

This TIFN is denoted by 〈u, v〉 =
〈
a1, a2, a3; a

′
1, a2, a

′
3

〉
.[

〈u, v〉
]
α

=
[
a1 + α(a2 − a1), a3 − α(a3 − a2)

]
[
〈u, v〉

]α
=
[
a′1 + α(a2 − a′1), a′3 − α(a′3 − a2)

]
We define 0〈1,0〉 ∈ IFn as

0〈1,0〉(t) =

〈1, 0〉 t = 0

〈0, 1〉 t 6= 0

Let 〈u, v〉 ,〈u′, v′〉 ∈ IFn and λ ∈ R, we define the following operations by :(
〈u, v〉 ⊕ 〈u′, v′〉

)
(z) =

(
sup
z=x+y

min (u(x), u′(y)) , inf
z=x+y

max (v(x), v′(y))
)

λ 〈u, v〉 =

〈λu, λv〉 if λ 6= 0

0〈1,0〉 if λ = 0

For 〈u, v〉, 〈z, w〉 ∈ IFn and λ ∈ R, the addition and scaler multiplication are defined as
follows [

〈u, v〉 ⊕ 〈z, w〉
]α

=
[
〈u, v〉

]α
+
[
〈z, w〉

]α
,
[
λ 〈z, w〉

]α
= λ

[
〈z, w〉

]α
[
〈u, v〉 ⊕ 〈z, w〉

]
α

=
[
〈u, v〉

]
α

+
[
〈z, w〉

]
α
,
[
λ 〈z, w〉

]
α

= λ
[
〈z, w〉

]
α

Definition 3. Let 〈u, v〉 an element of IFn and α ∈ [0, 1], we define the following sets :[
〈u, v〉

]+

l
(α) = inf{x ∈ Rn | u(x) ≥ α},

[
〈u, v〉

]+

r
(α) = sup{x ∈ Rn | u(x) ≥ α}[

〈u, v〉
]−
l

(α) = inf{x ∈ Rn | v(x) ≤ 1− α},
[
〈u, v〉

]−
r

(α) = sup{x ∈ Rn | v(x) ≤ 1− α}

Remark 3. [
〈u, v〉

]
α

=

[[
〈u, v〉

]+

l
(α),

[
〈u, v〉

]+

r
(α)

]
[
〈u, v〉

]α
=

[[
〈u, v〉

]−
l

(α),
[
〈u, v〉

]−
r

(α)

]
Example. Let 〈u, v〉 = 〈1, 2, 3.5; 0.5, 2, 4〉, 〈u′, v′〉 = 〈2, 3, 4; 1, 3, 4〉 and 〈k, l〉 = 〈u, v〉⊕〈u′, v′〉
Then k(z) = sup

z=x+y
(min(u(x), u′(y))) and l(z) = inf

z=x+y
(max(v(x), v′(y))).

Let us exhibit the computational procedure involve in above equation for membership func-
tion, first pick a value for z, then evaluate min(u(x), u′(y)) for x and y which add up to z = 5.
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We have done this for certain values of x and y as shown in Table 1. It appear that the max occurs
for x = 2 and y = 3, therefore k(5) = 1. Now do this for other values of z. Similarly for non-
membership function, evaluate max(v(x), v′(y)) for x and y which add up to z = 5. We have
done this for certain values of x and y as shown in Table 2. The min occurs for x = 2 and y = 3

so that l(5) = 0 Now do this for other values of z. Finally, we get 〈k, l〉 = 〈3, 5, 7.5; 1.5, 5, 8〉 a
TIFN.

x u(x) y u′(y) min(u(x), u′(y))

1 0 4 0 0
2 1 3 1 1

2.5 0.666 2.5 0.5 0.5
4.5 0 0.5 0 0

Table 1: Finding membership function of sum of two TIFN

x v(x) y v′(y) max(col2, col4)

3 0.5 2 0.5 0.5
2.5 0.25 2.5 0.25 0.25
2 0 3 0 0

1.5 0.333 3.5 0.5 0.5

Table 2: Finding non-membership function of sum of two TIFN

Proposition 3. For all α, β ∈ [0, 1] and 〈u, v〉 ∈ IFn

(i)
[
〈u, v〉

]
α
⊂
[
〈u, v〉

]α
(ii)

[
〈u, v〉

]
α

and
[
〈u, v〉

]α
are nonempty compact convex sets in Rn

(iii) if α ≤ β then
[
〈u, v〉

]
β
⊂
[
〈u, v〉

]
α

and
[
〈u, v〉

]β
⊂
[
〈u, v〉

]α
(iv) If αn ↗ α then

[
〈u, v〉

]
α

=
⋂
n

[
〈u, v〉

]
αn

and
[
〈u, v〉

]α
=
⋂
n

[
〈u, v〉

]αn

Let M any set and α ∈ [0, 1] we denote by

Mα = {x ∈ Rn : u(x) ≥ α} and Mα = {x ∈ Rn : v(x) ≤ 1− α}

Lemma 1. [8] Let
{
Mα, α ∈ [0, 1]

}
and

{
Mα, α ∈ [0, 1]

}
two families of subsets of Rn

satisfies (i)–(iv) in proposition 3, if u and v define by

u(x) =

0 if x /∈M0

sup {α ∈ [0, 1] : x ∈Mα} if x ∈M0

v(x) =

1 if x /∈M0

1− sup {α ∈ [0, 1] : x ∈Mα} if x ∈M0

Then 〈u, v〉 ∈ IFn
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4.1 Hukuhara difference of intuitionistic fuzzy numbers

Definition 4. Let 〈u, v〉, 〈u′, v′〉 ∈ IFn the H-difference is the IFN 〈z, w〉 ∈ IFn, if it exists, such
that

〈u, v〉� 〈u′, v′〉 = 〈z, w〉 ⇐⇒ 〈u, v〉 = 〈u′, v′〉 ⊕ 〈z, w〉

4.1.1 Support function and intuitionistic fuzzy H-difference

Let A 6= ∅ is compact of Rn and Sn−1 = {p | p ∈ Rn, ‖p‖ = 1} is the unit sphere, the support
function associated to A is SA : Sn−1 → R defined by SA(p) = sup{〈p, a〉|a ∈ A}, p ∈ Sn−1,
where 〈p, a〉 denotes the usual scalar product of a and p. The following properties are well
known see [3] or [5] : Any function s : Sn−1 → R which is continuous (or, more generally,
upper semicontinuous), positively homogeneous s(tp) = ts(p), ∀p ∈ Sn−1 and subadditive
s(p1 + p2) ≤ s(p1) + s(p2) ∀p1, p2 ∈ Sn−1 is a support function of a compact convex set.

• If A ∈ KC(Rn) is a compact convex set, then it is characterized by its support function and

A = {x ∈ Rn | 〈p, x〉 ≤ sA(p), ∀p ∈ Sn−1}

• For A,B ∈ KC(Rn) and ∀ ∈ Sn−1 we have A ⊆ B ⇒ sA(p) ≤ sB(p);
A = B ⇐⇒ sA = sB

• skA+hB(p) = ksA(p) + hsB(p), ∀ h, k ≥ 0 and in particular sA+B(p) = sA(p) + sB(p).

An equivalent definition of 〈z, w〉 = 〈u, v〉 � 〈u′, v′〉 for multidimensional intuitionistic fuzzy
numbers can be obtained in terms of support functions S〈z,w〉(p, α) =

(
Sz(p, α), S1−w(p, α)

)
,

α ∈ [0, 1] with

Sz(p, α) = Su(p, α)− Su′(p, α)S1−w(p, α) = S1−v(p, α)− S1−v′(p, α),

where for an intuitionistic fuzzy numbers, the support functions are considered for each α-cut and
defined to characterize the (compact) α-cut [〈u, v〉]α and [〈u, v〉]α :

S〈u,v〉 : Sn−1 × [0, 1] → R2

(p, α) 7→
(
Su(p, α), S1−v(p, α)

)
defined by

Su(p, α) = sup{〈p, x〉|x ∈ [〈u, v〉]α for each p ∈ Sn−1, α ∈ [0, 1]}

S1−v(p, α) = sup{〈p, x〉|x ∈ [〈u, v〉]α for each p ∈ Sn−1, α ∈ [0, 1]}

As the functions of α, Su(p, .) and S1−v(p, .) are the support functions of two fuzzy number
u and 1 − v respectively and are non-increasing for all p ∈ Sn−1, due to the nesting property of
the α-cuts.

Now, S〈z,w〉 is a correct support function if Sz and S1−w are continuous (upper semi-continuous),
positively homogeneous and sub-additive.

Consider S1 = Su − Su′ ,S2 = S1−v − S1−v′ . Continuity and positive homogeneity of S1

and S2 are obvious. But S1 and/or S2 may fail to be sub-additive and the following Proposition,
related to the definition of H-difference, is possible.
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Proposition 4. Let S〈u,v〉 and S〈u′,v′〉 be the support functions of two intuitionistic fuzzy numbers
〈u, v〉 , 〈u′, v′〉 ∈ IFn. Consider S1 = Su(p, .)− Su′(p, .) and S2 = S1−v(p, .)− S1−v′(p, .). If S1

and S2 are both subadditive in p for all α ∈ [0, 1] and are nonincreasing for all p, and S1 ≤ S2

for all α ∈ [0, 1], then 〈u, v〉� 〈u′, v′〉 exists.

Proof. For α ∈]0, 1] consider the sets

Mα = {x ∈ Rn | 〈p, x〉 ≤ S1(p, α) for all p ∈ Rnwith ‖ p ‖= α}
Mα = {x ∈ Rn|〈p, x〉 ≤ S2(p, α) for all p ∈ Rnwith ‖ p ‖= α}

and M0 = cl(∪α∈]0,1]M
α). Since S1 and S2 are subadditive for all α ∈]0, 1] then the sets Mα

and Mα are compact convex sets in Rn. The monotonicity condition ∀p ensures that the property
(ii) of Proposition 3 holds. Moreover, S1 ≤ S2 then we have Mα ⊂ Mα. It remains to show
property (iv) of Proposition 3 i.e Mα =

⋂
k≥1

Mαk
and Mα =

⋂
k≥1

Mαk for all increasing sequences

αk ↑ α converging to α ∈]0, 1]. As Mα ⊆ Mαk
we have Mα ⊆

⋂
k≥1

Mαk
, let now x ∈

⋂
k≥1

Mαk

for all p having ‖ p ‖= α and all k = 1, 2, . . . we have 〈(αk

α
)p, x〉 ≤ S1((αk

α
)p, α) as S1 is

continuous (upper semi-continuous ) 〈p, x〉 = lim〈(αk

α
)p, x〉 ≤ lim supS1

(
(αk

α
)p, α

)
= S1(p, α)

as k → ∞ and x ∈ Mα, the same idea to prove Mα =
⋂
k≥1

Mαk . Finally By Lemma 1 the proof

is complete.

It immediately follows a necessary and sufficient condition for 〈u, v〉� 〈u′, v′〉 to exist :

Proposition 5. Let 〈u, v〉 , 〈u′, v′〉 ∈ IFn be given with support functions S〈u,v〉 and S〈u′,v′〉, then
〈u, v〉 � 〈u′, v′〉 exists if and only if the two functions S1 = Su(p, α) − Su′(p, α) and S2 =

S1−v(p, α) − S1−v′(p, α) are the support functions and are non-increasing with α for all p and
S1 ≤ S2 for all α ∈ [0, 1].

In the unidimensional case, the conditions of the definition of 〈u, v〉� 〈z, w〉 = 〈k, l〉 are

1.
[
〈k, l〉

]
α

=
[
〈u, v〉

]
α
�
[
〈z, w〉

]
α

and
if len

([
〈u, v〉

]
α

)
≥ len

([
〈z, w〉

]
α

)
for all α ∈ [0, 1][

〈k, l〉
]+

l
(α) =

[
〈u, v〉

]+

l
(α)−

[
〈z, w〉

]+

l
(α)[

〈k, l〉
]+

r
(α) =

[
〈u, v〉

]+

r
(α)−

[
〈z, w〉

]+

r
(α)

(4)

provided that
[
〈k, l〉

]+

l
(α) is non-decreasing with respect to α,

[
〈k, l〉

]+

r
(α) is non-increa-

sing with respect to α and
[
〈k, l〉

]+

l
(1) ≤

[
〈k, l〉

]+

r
(1)

2.
[
〈k, l〉

]α
=
[
〈u, v〉

]α
�
[
〈z, w〉

]α
and

if len
([
〈u, v〉

]α)
≥ len

([
〈z, w〉

]α)
for all α ∈ [0, 1][

〈k, l〉
]−
l

(α) =
[
〈u, v〉

]−
l

(α)−
[
〈z, w〉

]−
l

(α)[
〈k, l〉

]−
r

(α) =
[
〈u, v〉

]−
r

(α)−
[
〈z, w〉

]−
r

(α)

(5)
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provided that
[
〈k, l〉

]−
l

(α) is non-decreasing with respect to α,
[
〈k, l〉

]−
r

(α) is nonin-

creasing with respect to α and
[
〈k, l〉

]−
l

(1) ≤
[
〈k, l〉

]−
r

(1)

Example 1. Let 〈u, v〉 = 〈3, 5, 7.5; 1.5, 5, 8〉, 〈u′, v′〉 = 〈2, 3, 4; 1, 3, 4〉 be two TIFNs their level
cuts are [

〈u, v〉
]
α

=
[
3 + 2α; 7.5− 2.5α

]
,
[
〈u′, v′〉

]
α

=
[
2 + α; 4− α

]
[
〈u, v〉

]α
=
[
1.5 + 3.5α; 8− 3α

]
,
[
〈u′, v′〉

]α
=
[
1 + 2α; 4− α

]
since

len
([
〈u, v〉

]
α

)
= 4.5(1− α) ≥ len

([
〈u′, v′〉

]
α

)
= 2(1− α)

len
([
〈u, v〉

]α
) = 6.5(1− α) ≥ len

([
〈u′, v′〉

]α)
= 3(1− α)

then, we get the level cuts of (z, w) as follows :[
〈z, w〉

]
α

=
[
1 + α; 3.5− 1.5α

]
[
〈z, w〉

]α
=
[
0.5 + 1.5α; 4− 2α

]
with

[
〈z, w〉

]−
l

(1) ≤
[
〈z, w〉

]−
r

(1) and
[
〈z, w〉

]+

l
(1) ≤

[
〈z, w〉

]+

r
(1).

The conditions (4) and (5) are satisfied, then 〈u, v〉� 〈u′, v′〉 = 〈z, w〉 exists.

Example 2. The monotonicity of
[
〈z, w〉

]−
l

(α),
[
〈z, w〉

]−
r

(α) ,
[
〈z, w〉

]+

l
(α) and

[
〈z, w〉

]+

r
(α)

is an important condition for the existence of 〈u, v〉 � 〈u′, v′〉 = 〈z, w〉 and is to be verified ex-
plicitly as in fact it may not be satisfied.

Consider 〈u, v〉 = 〈5, 9, 11; 4, 9, 13〉, 〈u′, v′〉 = 〈12, 15, 19; 8, 15, 20〉.
We have [

〈u, v〉
]
α

=
[
5 + 4α; 11− 2α

]
,
[
〈u′, v′〉

]
α

=
[
11 + 3α; 19− 4α

]
then

[
〈z, w〉

]
α

=
[
− 7 + α;−8 + 2α

]
and

[
〈z, w〉

]+

l
(1) ≤

[
〈z, w〉

]+

r
(1) but

[
〈z, w〉

]+

r
(α)

not decreasing as required by (4) .
Furthermore,[

〈u, v〉
]α

=
[
4 + 5α; 13− 4α

]
,
[
〈u′, v′〉

]α
=
[
8 + 7α; 20− 5α

]
then

[
〈z, w〉

]α
=
[
− 4− 2α;−7 + α

]
and

[
〈z, w〉

]−
l

(1) ≤
[
〈z, w〉

]−
r

(1) but
[
〈z, w〉

]−
l

(α)

not increasing and
[
〈z, w〉

]−
r

(α) not decreasing as required by (5).

Theorem 1. Let 〈u, v〉 ,〈z, w〉 ∈ IF1 be two IFNs with α-cuts given by
[
〈u, v〉

]
α
,
[
〈u, v〉

]α
and[

〈z, w〉
]
α
,
[
〈z, w〉

]α
respectively; the H-difference 〈u, v〉 � 〈z, w〉 ∈ IF1 exists if and only if

the conditions are satisfied :
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(a)


len
([
〈u, v〉

]
α

)
≥ len

([
〈z, w〉

]
α

)
for all α ∈ [0, 1][

〈u, v〉
]+

l
(α)−

[
〈z, w〉

]+

l
(α) is increasing with respect to α[

〈u, v〉
]+

r
(α)−

[
〈z, w〉

]+

r
(α) is decreasing with respect to α

and

(b)


len
([
〈u, v〉

]α)
≥ len

([
〈z, w〉

]α)
for all α ∈ [0, 1][

〈u, v〉
]−
l

(α)−
[
〈z, w〉

]−
l

(α) is increasing with respect to α[
〈u, v〉

]−
r

(α)−
[
〈z, w〉

]−
r

(α) is decreasing with respect to α

Proof. We assume that (a) and (b) are satisfied then, we have

(a)


len
([
〈u, v〉

]
α

)
≥ len

([
〈z, w〉

]
α

)
for all α ∈ [0, 1][

〈u, v〉
]+

l
(α)−

[
〈z, w〉

]+

l
(α) is increasing with respect to α[

〈u, v〉
]+

r
(α)−

[
〈z, w〉

]+

r
(α) is decreasing with respect to α

with[
〈u, v〉

]
α

=

[[
〈u, v〉

]+

l
(α),

[
〈u, v〉

]+

r
(α)

]
,
[
〈z, w〉

]
α

=

[[
〈z, w〉

]+

l
(α),

[
〈z, w〉

]+

r
(α)

]
from Proposition 2, we deduce that

[
〈u, v〉

]
α
�
[
〈z, w〉

]
α

exists in E1. Furthermore, we have

(b)


len
([
〈u, v〉

]α)
≥ len

([
〈z, w〉

]α)
for all α ∈ [0, 1][

〈u, v〉
]−
l

(α)−
[
〈z, w〉

]−
l

(α) is increasing with respect to α[
〈u, v〉

]−
r

(α)−
[
〈z, w〉

]−
r

(α) is decreasing with respect to α

with[
〈u, v〉

]α
=

[[
〈u, v〉

]−
l

(α),
[
〈u, v〉

]−
r

(α)

]
,
[
〈z, w〉

]α
=

[[
〈z, w〉

]−
l

(α),
[
〈z, w〉

]−
r

(α)

]
from Proposition 2, we deduce that

[
〈z, w〉

]α
�
[
〈u, v〉

]α
exists in E1

In addition, the conditions (4) and (5) are satisfied then 〈u, v〉� 〈z, w〉 ∈ IF1 exists.

Proposition 6.
(

Unicity of 〈u, v〉� 〈u′, v′〉
)

If 〈z, w〉 = 〈u, v〉� 〈u′, v′〉 exists, it is unique.

Proof. We have 〈u, v〉 = 〈u′, v′〉 ⊕ 〈z, w〉, if there exists 〈z′, w′〉 ∈ IF1 such that

〈u, v〉 = 〈u′, v′〉 ⊕ 〈z′, w′〉
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then [
〈u′, v′〉 ⊕ 〈z, w〉

]
α

=
[
〈u, v〉

]
α
,
[
〈u′, v′〉 ⊕ 〈z, w〉

]α
=
[
〈u, v〉

]α
[
〈u′, v′〉 ⊕ 〈z′, w′〉

]
α

=
[
〈u, v〉

]
α
,
[
〈u′, v′〉 ⊕ 〈z′, w′〉

]α
=
[
〈u, v〉

]α
with the remark 1 obtining [

〈z, w〉
]α

=
[
〈z′, w′〉

]α
[
〈z, w〉

]
α

=
[
〈z′, w′〉

]
α

This proves the uniqueness.

Proposition 7. Given 〈u, v〉, 〈u′, v′〉 ∈ IF1 , the H-difference � has the following properties:

1. 〈u, v〉� 〈u, v〉 = 0〈1,0〉;

2.
(
〈u, v〉 ⊕ 〈u′, v′〉

)
� 〈u′, v′〉 = 〈u, v〉.

5 Continuity-differentiability
in the intuitionistic fuzzy metric space

In this section we introduce the notions of continuity and differentiability in the Intuitionistic
fuzzy metric space

(
IF1, dp

)
5.1 Intuitionistic fuzzy metric space

(
IF1, dp

)
On the space IF1 we will consider the following Lp-metric,

dp

(
〈u, v〉 , 〈z, w〉

)
=

1

4

(∫ 1

0

∣∣∣[ 〈u, v〉 ]+

r
(α)−

[
〈z, w〉

]+

r
(α)
∣∣∣pdα

+

∫ 1

0

∣∣∣[ 〈u, v〉 ]+

l
(α)−

[
〈z, w〉

]+

l
(α)
∣∣∣pdα +

∫ 1

0

∣∣∣[ 〈u, v〉 ]−
r

(α)−
[
〈z, w〉

]−
r

(α)
∣∣∣pdα

+

∫ 1

0

∣∣∣[ 〈u, v〉 ]−
l

(α)−
[
〈z, w〉

]−
l

(α)
∣∣∣pdα) 1

p

and

d∞

(
〈u, v〉 , 〈z, w〉

)
=

1

4

(
sup

0<α≤1

∣∣∣[ 〈u, v〉 ]+

r
(α)−

[
〈z, w〉

]+

r
(α)
∣∣∣

+ sup
0<α≤1

∣∣∣[ 〈u, v〉 ]+

l
(α)−

[
〈z, w〉

]+

l
(α)
∣∣∣+ sup

0<α≤1

∣∣∣[ 〈u, v〉 ]−
r

(α)−
[
〈z, w〉

]−
r

(α)
∣∣∣

+ sup
0<α≤1

∣∣∣[ 〈u, v〉 ]−
l

(α)−
[
〈z, w〉

]−
l

(α)
∣∣∣)

Proposition 8. [8]
(

IF1, dp

)
is a metric space.

Theorem 2. [8]
(

IF1, dp

)
is a complete space, for p ∈ [0,+∞].
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5.2 Continuity

Definition 5. Let F : IF1 → IF1 be an intuitionistic fuzzy valued mapping and 〈u, v〉 ∈ IF1. Then
F is called intuitionistic fuzzy continuous in 〈u, v〉 if and only if :

(∀ε > 0)(∃δ > 0)(∀ 〈z, w〉 ∈ IF1)(dp

(
〈u, v〉 , 〈z, w〉

)
< δ)⇒ dp

(
F (〈u, v〉), F (〈z, w〉)

)
< ε.

Definition 6. Let F : [a, b]→ IF1 be an intuitionistic fuzzy valued mapping and t0 ∈ [a, b]. Then
F is called intuitionistic fuzzy continuous in t0 if and only if :

(∀ε > 0)(∃δ > 0)(∀t ∈ [a, b]such as | t− t0 |< δ)⇒ dp

(
F (t), F (t0)

)
< ε.

Definition 7. F is called intuitionistic fuzzy continuous if and only if is intuitionistic fuzzy con-
tinuous in every point of [a, b].

5.3 Differentiability

Definition 8. A mapping F : (a, b) → IF1 is said to be Hukuhara derivable at t0 if there exist
F ′(t0) ∈ IF1 such that both limits:

lim
∆t→0+

F (t0 + ∆t)� F (t0)

∆t
and lim

∆t→0+

F (t0)� F (t0 −∆t)

∆t
(6)

exist and they are equal to F ′(t0) = 〈u′(t0), v′(t0)〉, which is called the Hukuhara derivative of F
at t0. At the end points of [a, b] we consider only the one-sided derivatives.

Definition 9. Let F : [a, b]→ IF1 be an intuitionistic fuzzy valued mapping. Let P : [a, b]→ IF1

be a Hukuhara derivative mapping at every t ∈ (a, b). P is said to be a primitive of F if the
Hukuhara derivative of P equals F for every t ∈ (a, b), that is, P ′(t) = F (t).

Theorem 3. Let F : [a, b] → IF1 be differentiable. Denote Fα(t) = [F (t)]α = [λα(t), λα(t)],

Fα(t) = [F (t)]α = [µα(t), µα(t)]. Then λα(t), λα(t), µα(t) and µα(t) are differentiable

[F (t)′]α = [λ′α(t), λα′(t)], [F (t)′]α = [µ′α(t), µα′(t)] (7)

Proof. We prove that for Fα, and its similarly for Fα. Now[
F (t+ h)� F (t)

]α
=
[
λα(t+ h)− λα(t), λα(t+ h)− λα(t)

]
[
F (t)� F (t− h)

]α
=
[
λα(t)− λα(t− h), λα(t)− λα(t− h)

]
divided by h, the result is obtained by passage to the limit (h −→ 0).

Proposition 9. Let F : [a, b]→ IF1 and G : [a, b]→ IF1 be two Hukuhara derivable mappings. If
F andG are both primitives of the same mapping and there exists F (t)�G(t) for every t ∈ (a; b),
then F (t) = G(t)⊕ C, being C ∈ IF1.

Proof. Let F (t) = G(t) ⊕ C(t), By taking the Hukuhara derivative at both sides, we have that
F ′(t) = G′(t) ⊕ C ′(t), and hence C ′(t) = 0〈1,0〉 for every t ∈ (a, b) which implies that C is
constant.
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Theorem 4. If F : [a, b] → IF1 is differentiable then it is continuous with respect to the metric
d∞.

Proof. Let t, t+ h ∈ [a, b] with h > 0.

d∞

(
F (t+ h), F (t)

)
= d∞

(
F (t+ h)� F (t), 0〈1,0〉

)
≤ hd∞

(F (t+ h)� F (t)

h
, F ′(t)

)
+ hd∞(F ′(t), 0〈1,0〉),

where h is so small that the H-difference F (t+ h)� F (t) exists.
When h→ 0 the right-hand side goes to 0 and hence F is right continuous. The left continuity

is similarly proven.
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