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1 Introduction

Interval-Valued Intuitionistic Fuzzy Sets (IVIFSs, see [2,4]) were introduced in 1989 as an exten-
sion of the Intuitionistic Fuzzy Sets (IFSs, see [1–3]) and Interval-Valued Fuzzy Sets (see [6]).

In a series of papers in recent years, a lot of new operators were introduced over IVIFSs.
After the preliminary results, presented in Section 2, in Section 3 of the present paper, a new—
shrinking—operator is defined and some of its basic properties are studied. In Section 4, it is
further extended to the (α, β)-shrinking operator.
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2 Preliminary remarks

Let us have a fixed universe E and its subset A. An IVIFS A over E is an object of the form:
A = {〈x,MA(x), NA(x)〉 | x ∈ E}, where MA(x) ⊆ [0, 1] and NA(x) ⊆ [0, 1] are intervals and
for all x ∈ E: supMA(x)+supNA(x) ≤ 1. Obviously, each IFS can be represented as an IVIFS,
as follows,

{〈x, µA(x), νA(x)〉 | x ∈ E} = {〈x, [µA(x), µA(x)], [νA(x), νA(x)]〉 | x ∈ E}.

Also, each IVFS can be represented by an IVIFS as

{〈x,MA(x), NA(x)〉 | x ∈ E} = {〈x,MA(x), [1− supMA(x), 1− inf NA(x)]〉 | x ∈ E}.

IVIFSs have geometrical interpretations similar to, but more complex than these of the IFSs. For
example, the second geometrical interpretation of IFS (see [2]) now has the form from Fig. 1.
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Figure 1. Graphical interpretation of an element of an IVIFS

Other geometrical interpretations of the IVIFSs are shown on Figures 2 and 3.

@@

Q
Q
QQ

l
l
l
l
l
l
ll @
@

@
@

@
@

@
@
@
@

N1

N2

1−M2

M1 M2 1−N2

M1 = infMA(x), M2 = supMA(x)

N1 = inf NA(x), N2 = supNA(x)

Figure 2. Second graphical interpretation
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Figure 3. Third graphical interpretation
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Following [2], we introduce some operations and relations over two IVIFSs A and B:

A ⊂�,inf B iff (∀x ∈ E)(infMA(x) ≤ infMB(x)),

A ⊂�,sup B iff (∀x ∈ E)(supMA(x) ≤ supMB(x)),

A ⊂♦,inf B iff (∀x ∈ E)(inf NA(x) ≥ inf NB(x)),

A ⊂♦,sup B iff (∀x ∈ E)(supNA(x) ≥ supNB(x)),

A ⊂� B iff A ⊂�,inf B & A ⊂�,sup B,

A ⊂♦ B iff A ⊂♦,inf B & A ⊂♦,sup B,

A ⊆ B iff A ⊂� B & B ⊂♦ A,

A = B iff A ⊆ B & B ⊆ A,

¬A = {〈x,NA(x),MA(x)〉 | x ∈ E},

A ∩B = {〈x, [min(infMA(x), infMB(x)),min(supMA(x), supMB(x))],

[max(inf NA(x), inf NB(x)),max(supNA(x), supNB(x))]〉 | x ∈ E},

A ∪B = {〈x, [max(infMA(x), infMB(x)),max(supMA(x) supMB(x))],

[min(inf NA(x), inf NB(x)),min(supNA(x), supNB(x))]〉 | x ∈ E}

A@B =

{〈
x,

[
infMA(x) + infMB(x)

2
,
supMA(x) + supMB(x)

2

]
,[

inf NA(x) + inf NB(x)

2
,
supNA(x) + supNB(x)

2

]〉
| x ∈ E

}
.

Following [2], we mention that the first two (classical) intuitionistic fuzzy modal operators
over the IVIFS A are:

�A = {〈x,MA(x), [inf NA(x), 1− supMA(x)]〉 | x ∈ E},

♦A = {〈x, [infMA(x), 1− supNA(x)], NA(x)〉 | x ∈ E},

and the standard intuitionistic fuzzy topological operators over the IVIFS A are:

C(A) = {〈x, [K ′
inf , K

′
sup], [L

′
inf , L

′
sup]〉 | x ∈ E},

I(A) = {〈x, [K ′′
inf , K

′′
sup], [L

′′
inf , L

′′
sup]〉 | x ∈ E},

where:
K ′

inf = sup
x∈E

infMA(x),

K ′
sup = sup

x∈E
supMA(x),

L′
inf = inf

x∈E
inf NA(x),

L′
sup = inf

x∈E
supNA(x),

K ′′
inf = inf

x∈E
infMA(x),

K ′′
sup = inf

x∈E
supMA(x),
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L′′
inf = sup

x∈E
inf NA(x),

L′′
sup = sup

x∈E
supNA(x),

and the four operators that transform an IVIFS A to an IFS are:

∗1A = {〈x, infMA(x), inf NA(x)〉 | x ∈ E},
∗2A = {〈x, infMA(x), supNA(x)〉 | x ∈ E},
∗3A = {〈x, supMA(x), inf NA(x)〉 | x ∈ E},
∗4A = {〈x, supMA(x), supNA(x)〉 | x ∈ E}.

3 The simplest shrinking operator over interval-valued
intuitionistic fuzzy sets

Let A be an IVIFS. Then we define

S(A) =

{〈
x,

infMA(x) + supMA(x)

2
,
inf NA(x) + supNA(x)

2

〉
|x ∈ E

}

=

{〈
x,

[
infMA(x) + supMA(x)

2
,
infMA(x) + supMA(x)

2

]
,[

inf NA(x) + supNA(x)

2
,
inf NA(x) + supNA(x)

2

]〉
|x ∈ E

}
.

Obviously, for each IFS A:
S(A) = A.

The three geometrical interpretations of the new operator are given on Figures 4–6.
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Figure 4. Operator S(A) on the first graphical interpretation
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Figure 5. Operator S(A) on the second interpretation
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Figure 6.

Theorem 1. For each IVIFS A:

(a) S(S(A)) = S(A),

(b) ¬S(¬A) = S(A).

Proof. Let A be an IVIFS. Then for (a) we obtain

S(S(A)) = S

({〈
x,

[
infMA(x) + supMA(x)

2
,
infMA(x) + supMA(x)

2

]
,

[
inf NA(x) + supNA(x)

2
,
inf NA(x) + supNA(x)

2

]〉
|x ∈ E

})
=

{〈
x,

[
infMA(x) + supMA(x)

2
,
infMA(x) + supMA(x)

2

]
,[

inf NA(x) + supNA(x)

2
,
inf NA(x) + supNA(x)

2

]〉
|x ∈ E

}
= S(A).

For (b) we obtain

¬S(¬A) = ¬S (¬{〈x,NA(x),MA(x)〉 | x ∈ E})

= ¬
{〈

x,
inf NA(x) + supNA(x)

2
,
infMA(x) + supMA(x)

2

〉
|x ∈ E

}
=

{〈
x,

infMA(x) + supMA(x)

2
,
inf NA(x) + supNA(x)

2

〉
|x ∈ E

}
= S(A).

The proof of the next assertions is made in a similar way. �

Theorem 2. For every two IVIFSs A and B:

(a) S(A ∪B) ⊇ S(A) ∪ S(B),

(b) S(A ∩B) ⊆ S(A) ∩ S(B),

(c) S(A@B) = S(A)@S(B).
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Theorem 3. For each IVIFS A:

(a) S(�A) = �S(A),

(b) S(♦A) = ♦S(A).

In [2], operator Dα is defined for each α ∈ [0, 1] by:

Dα(A) = {〈x, [infMA(x), supMA(x) + α.(1− supMA(x)− supNA(x))],

[inf NA(x), supNA(x) + (1− α).(1− supMA(x)− supNA(x))]〉 | x ∈ E}.

We can see that S(Dα(A)) 6= Dα(S(A)). Really,

S(Dα(A)) = S({〈x, [infMA(x), supMA(x) + α.(1− supMA(x)− supNA(x))],

[inf NA(x), supNA(x) + (1− α).(1− supMA(x)− supNA(x))]〉 | x ∈ E})

=

{〈
x,

[
infMA(x) + supMA(x) + α.(1− supMA(x)− supNA(x))

2
,

infMA(x) + supMA(x) + α.(1− supMA(x)− supNA(x))

2

]
,[

inf NA(x) + supNA(x) + (1− α).(1− supMA(x)− supNA(x))

2
,

inf NA(x) + supNA(x) + (1− α).(1− supMA(x)− supNA(x))

2

]〉
| x ∈ E

}
6=

{〈
x,

[
infMA(x) + supMA(x)

2
,
infMA(x) + supMA(x)

2

+α.

(
1− infMA(x) + supMA(x)

2
− inf NA(x) + supNA(x)

2

)]
,[

inf NA(x) + supNA(x)

2
,
inf NA(x) + supNA(x)

2

+(1− α).
(
1− infMA(x) + supMA(x)

2
− inf NA(x) + supNA(x)

2

)]〉
| x ∈ E

}
= Dα

({〈
x,

[
infMA(x) + supMA(x)

2
,
infMA(x) + supMA(x)

2

]
,[

inf NA(x) + supNA(x)

2
,
inf NA(x) + supNA(x)

2

]〉
|x ∈ E

})
= Dα(S(A)).

On the other hand, for operator Gα,β , defined (see, [2]) for every α, β ∈ [0, 1] by:

Gα,β(A) = {〈x, [α. infMA(x), α. supMA(x)], [β. inf NA(x), β. supNA(x)]〉 | x ∈ E},

is valid the equality
S(Gα.β(A)) = Gα.β(S(A)).

Theorem 4. For each IVIFS A:

(a) S(C(A)) ⊆ C(S(A)),

(b) S(I(A)) ⊇ I(S(A)).

25



Theorem 5. For each IVIFS A:

(a) ∗1A ⊂�,inf S(A) ⊂♦,inf ∗1A,

(b) ∗1A ⊂�,sup S(A) ⊂♦,sup ∗1A,

(c) ∗1A ⊂� S(A) ⊂♦ ∗1A,

(d) ∗2A ⊂�,inf S(A),

(e) ∗2A ⊂�,sup S(A),

(f) ∗2A ⊂� S(A),

(g) ∗2A ⊂♦,inf S(A),

(h) ∗2A ⊂♦,sup S(A),

(i) ∗2A ⊂♦ S(A),

(j) S(A) ⊂�,inf ∗4A ⊂♦,inf S(A),

(k) S(A) ⊂�,sup ∗4A ⊂♦,sup S(A),

(l) S(A) ⊂� ∗4A ⊂♦ S(A),

(m) S(A) ⊂�,inf ∗3A,

(n) S(A) ⊂�,sup ∗3A,

(o) S(A) ⊂� ∗3A,

(p) S(A) ⊂♦,inf ∗3A,

(q) S(A) ⊂♦,sup ∗3A,

(r) S(A) ⊂♦ ∗3A.

4 (α, β)-Shrinking operator over interval-valued
intuitionistic fuzzy sets

Let A be an IVIFS and α, β ∈ [0, 0.5]. Then we define

Sα,β(A) = {〈x, α(infMA(x) + supMA(x)), β(inf NA(x) + supNA(x))〉|x ∈ E}
= {〈x, [α(infMA(x) + supMA(x)), α(infMA(x) + supMA(x))],

[β(inf NA(x) + supNA(x)), β(inf NA(x) + supNA(x))]〉|x ∈ E}.

Obviously,
S(A) = S0.5,0.5(A).
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First, we must check that the definition is correct. Really,

α(infMA(x) + supMA(x)) + β(inf NA(x) + supNA(x))

≤ 2α supMA(x) + 2β supNA(x) ≤ supMA(x) + supNA(x) ≤ 1.

Theorem 6. For each IVIFS A and for every α, β ∈ [0, 0.5]:

(a) Sα,β(Sα,β(A)) = S2α2,2β2(A),

(b) ¬Sα,β(¬A) = Sβ,α(A).

Theorem 7. For every two IVIFSs A and B, and for every α, β ∈ [0, 0.5]:

(a) Sα,β(A ∪B) ⊇ Sα,β(A) ∪ Sα,β(B),

(b) Sα,β(A ∩B) ⊆ Sα,β(A) ∩ Sα,β(B),

(c) Sα,β(A@B) = Sα,β(A)@Sα,β(B).

Theorem 8. For each IVIFS A and for every two real numbers α, β ∈ [0, 1]:

(a) if α ≤ β, then Sα,β(�A) = �Sα,β(A),

(b) if α ≥ β, then Sα,β(♦A) = ♦Sα,β(A).

Theorem 9. For each IVIFS A and for every α, β ∈ [0, 0.5]:

(a) Sα,β(C(A)) ⊆ C(Sα,β(A)),

(b) Sα,β(I(A)) ⊇ I(Sα,β(A)).

Theorem 10. For each IVIFS A, for every α, β ∈ [0, 0.5], and for every γ, δ ∈ [0, 1] :

Sα,β(Gγ,δ(A)) = Sαγ,βδ(A) = Gγ,δ(Sα,β(A)).

Similar equality is not valid for the other modal types of operators.

5 Conclusion

In a next research, other properties of the two new operators will be studied. Consequent ex-
tension of operator Sα,β will be introduced and its properties will be studied, too. Each of these
operators will be redefined for interval-valued intuitionistic fuzzy pairs (see [5]).
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