An embedding IF-sets to MV-algebras

Petra Mazureková
Faculty of Natural Sciences
Matej Bel University
Tajovského 40
SK-974 01 Banská Bystrica
korcova@fpv.umb.sk

Abstract

MV-algebras and IF-sets were studying in the past. On MV-algebras there is built a good theory of probability. It will be good make use this theory of probability in connection with IF-set. Therefore I essayed about embedding IF-set to MV-algebra. Then we can use known knowledges from MV-algebras. In my contribution I define fundamental notions, like MV-algebra, tribe and IF-set. There I declare and prove, that any IF-set can be embedded to an MV-algebra. This result generalized the previous result of [3], where it was proved only for tribes of all measurable functions.

1 Introduction

In the paper [3] the family $\mathcal{F}=\left\{(f, g) ; f, g \in \mathcal{T}_{0}, f+g \leq 1\right\}$ was considered where \mathcal{T}_{0} is the set of all functions $f: \Omega \longrightarrow\langle 0,1\rangle$ measurable with respect to a σ-algebra of subsets of Ω. It was proved that there exists an MV-algebra \mathcal{M} such that \mathcal{F} can be embedded to \mathcal{M}. In the paper we show that instead of \mathcal{T}_{0} an arbitrary tribe \mathcal{T} can be considered.

Let us considered a non-empty set Ω and let \mathcal{S} be a σ-algebra of subset of Ω.

Definition 1.1 Tribe \mathcal{T} is set of functions $f: \Omega \longrightarrow<0,1>$ measurable with respect to \mathcal{S} and we assume that \mathcal{T} satisfies the following conditions:
(1) $0_{\Omega} \in \mathcal{T}, 1_{\Omega} \in \mathcal{T}$;
(2) $f, g \in \mathcal{T} \Longrightarrow f \oplus g=(f+g) \wedge 1 \in \mathcal{T}, f \odot g=(f+g-1) \vee 0 \in \mathcal{T}$;
(3) $f_{n} \in \mathcal{T}, f_{n} \nearrow f \Longrightarrow f \in \mathcal{T}$;
(4) $f \in \tau \Longrightarrow \neg f=1-f \in \mathcal{T}$
where $\wedge=$ min and $\vee=$ max.

Definition 1.2 An IF-set is a couple (f,g) of mappings $f, g: \Omega \longrightarrow\langle 0,1\rangle$ such that $f+g \leq 1$.

Definition 1.3 An MV-algebra is a system $(M, \oplus, \odot, \neg, 0,1)$, where
\oplus and \odot are binary operations and \neg is unary a operation.
\oplus is commutative and associative operation,
$a \oplus 0=a$,
$a \oplus 1=1$,
$\neg(\neg a)=a$,
$\neg 0=1$,
$a \oplus(\neg a)=1$,
$\neg(\neg a \oplus b) \oplus b=\neg(a \oplus \neg b) \oplus a$,
$a \odot b=\neg(\neg a \oplus \neg b)$.
Every $M V$-algebra is distributive lattice, where $a \vee b=a \oplus(\neg(a \oplus b))$, 0 is the least element, and 1 is the greatest element of M.

2 Embedding

Theorem: Let \mathcal{T} be any tribe, $\mathcal{M}=\{(f, g) ; f, g \in \mathcal{T}\}$ where for $(\mathrm{f}, \mathrm{g}),(\mathrm{h}, \mathrm{k}) \in \mathcal{M}$ $(f, g) \oplus(h, k)=(f \oplus h, g \odot k)$,
$(f, g) \odot(h, k)=(f \odot h, g \oplus k)$,
$\neg(f, g)=(1-f, 1-g)$
Then $(\mathcal{M}, \oplus, \odot, \neg,(0,1),(1,0))$ is an MV-algebra.

At first we proved that
$\neg(f \wedge 1, g \vee 0)=(\neg f \vee 0, \neg g \wedge 1)$
Indeed
$\neg(f \wedge 1, g \vee 0)=\neg(f, g)=(1-f, 1-g)=((1-f) \vee 0,(1-g) \wedge 1)=(\neg f \vee 0, \neg g \wedge 1)$

We shall show that this system $\mathcal{M}=\{(f, g) ; f, g \in \mathcal{T}\}$ satisfies all properties of MValgebra.

Let $(f, g),(h, k),(i, j) \in \mathcal{M}$

1) commutativity

$$
(f, g) \oplus(h, k)=(f \oplus h, g \odot k)=(h \oplus f, k \odot g)=(h, k) \oplus(f, g)
$$

2) associativity

$$
[(f, g) \oplus(h, k)] \oplus(i, j)=[f \oplus h, g \odot k)] \oplus(i, j)=(f \oplus h \oplus i, g \oplus k \oplus j)=
$$

$$
=(f, g) \oplus(h \oplus i, k \oplus j)=(f, g) \oplus[(h, k) \oplus(i, j)]
$$

3) $(f, g) \oplus(0,1)=(f, g)$

$$
\begin{gathered}
(f, g) \oplus(0,1)=(f \oplus 0, g \odot 1)= \\
=((f+0) \wedge 1,(g+1-1) \vee 0)=(f \wedge 1, g \vee 0)=(f, g)
\end{gathered}
$$

4) $(f, g) \oplus(1,0)=(1,0)$

$$
(f, g) \oplus(1,0)=(f \oplus 1, g \odot 0)=((f+1) \wedge 1,(g+0-1) \vee 0=(1,0)
$$

5) $\neg(\neg(f, g))=(f, g)$

$$
\neg(\neg(f, g))=\neg(1-f, 1-g)=(1-1+f, 1-1+g)=(f, g)
$$

6) $\neg(0,1)=(1,0)$

$$
\neg(0,1)=(1-0,1-1)=(1,0)
$$

7) $(f, g) \oplus \neg(f, g)=(1,0)$

$$
\begin{array}{r}
(f, g) \oplus \neg(f, g)=(f, g) \oplus(1-f, 1-g)=(f \oplus(1-f), g \odot(1-g))= \\
((f+1-f) \wedge 1,(g+1-g) \vee 0)=(1 \wedge 1,1 \vee 0)=(1,0) \\
8) \neg(\neg(f, g) \oplus(h, k)) \oplus(h, k)=\neg((f, g) \oplus \neg(h, k)) \oplus(f, g)
\end{array}
$$

Left side:

$$
\begin{gathered}
\neg(\neg(f, g) \oplus(h, k)) \oplus(h, k)=\neg((1-f, 1-g) \oplus(h, k)) \oplus(h, k)= \\
=\neg((1-f) \oplus h,(1-g) \odot k) \oplus(h, k)=\neg((1-f+h) \wedge 1,(1-g+k-1) \vee 0) \oplus(h, k)=
\end{gathered}
$$

$$
\begin{aligned}
& =\neg((1-f+h) \wedge 1,(k-g) \vee 0) \oplus(h, k)=((1-1+f-h) \vee 0,(1-k+g) \wedge 1) \oplus(h, k)= \\
& =((f-h) \vee 0,(1+g-k) \wedge 1) \oplus(h, k)=(((f-h) \vee 0) \oplus h,((1+g-k) \wedge 1) \odot k)= \\
& =(((f-h) \vee 0+h) \wedge 1,((1+g-k) \wedge 1+(k-1)) \vee 0)=((f \vee h) \wedge 1,(g \wedge k) \vee 0)=((f \vee h),(g \wedge k))
\end{aligned}
$$

Right side:

$$
\begin{gathered}
\neg((f, g) \oplus \neg(h, k)) \oplus(f, g)=\neg((f, g) \oplus(1-h, 1-k)) \oplus(f, g)= \\
=\neg((f+1-h) \wedge 1,(g+1-k-1) \vee 0) \oplus(f, g)=((1-f-1+h) \vee 0,(1-g+k) \wedge 1) \oplus(f, g)= \\
=((h-f) \vee 0,(1-g+k) \wedge 1) \oplus(f, g)=(((h-f) \vee 0+f) \wedge 1,((1-g+k) \wedge 1+(g-1)) \vee 0)= \\
=((h \vee f) \wedge 1,(k \wedge g) \vee 0)=((f \vee h),(g \wedge k))
\end{gathered}
$$

Left side $=$ Right side
9) $(f, g) \odot(h, k)=\neg(\neg(f, g) \oplus \neg(h, k))$

$$
\begin{aligned}
& \neg(\neg(f, g) \oplus \neg(h, k))=\neg((1-f, 1-g) \oplus(1-h, 1-k))=\neg((2-f-h) \wedge 1,(1-g-k) \vee 0)= \\
& =((1-2+f+h) \vee 0,(1-1+g+k) \wedge 1)=((f+h-1) \vee 0,(g+k) \wedge 1)=(f \odot h, g \oplus k)=(f, g) \odot(h, k)
\end{aligned}
$$

Such that $(\mathcal{M}, \oplus, \odot, \neg,(0,1),(1,0))$ is an MV-algebra.

Acknowledgements: This paper was supported by Grant VEGA 1/2002/05.

References

[1] Atanasov,K.: Inntuitionistic Fuzzy Sets:Theory and Applications. Physica Verlang, New York 1999.
[2] Cignoli R., D'Ottaviano I.M.L., Mundici D.: Foundations of Many - Valued Reasoning. Kluwer, Dordrecht 2000
[3] Riečan, B.: On IF-sets and MV-algebras,Proc. IPMU'2006 (accepted)

