On Lagrange mean value theorem for functions on Atanassov IF-sets

Beloslav Riečan
Department of Mathematics, Faculty of Natural Sciences, Matej Bel University
Tajovského 40, 97401 Banská Bystrica, Slovakia
Mathematical Institute, Slovak Academy of Sciences
Štefánikova 49, 81473 Bratislava, Slovakia
e-mail: beloslav.riecan@umb.sk

Abstract

On the family of IF sets [1] some elementary functions has been studied in [2, 3] as well as limit and continuity $[4,5]$. In the present article we define derivation and with respect to the notion the Lagrange mean value theorem is formulated and proved.

Keywords: Intuitionistic fuzzy set, Lagrange mean value theorem
AMS Classification: 03E72.

1 IF-sets

IF-sets have been introduced in [1] as a natural generalization of fuzzy sets with remarkable applications. Given a set Ω an IF set is a pair of functions (membership or non-membership resp.)

$$
A=\left(\mu_{A}, \nu_{A}\right)
$$

such that

$$
\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1], \mu_{A}+\nu_{A} \leq 1
$$

Denote by \mathcal{F} the family of all IF-sets. On \mathcal{F} two binary operations \oplus, \odot and one unary operation \neg are defined:

$$
\begin{gathered}
A \oplus B=\left(\min \left(\mu_{A}+\mu_{B}, 1\right), \max \left(\nu_{A}+\nu_{B}-1,0\right)\right), \\
A \odot B=\left(\max \left(\mu_{A}+\mu_{B}-1,0\right), \min \left(\nu_{A}+\nu_{B}, 1\right)\right), \\
\neg A=\left(1-\mu_{A}, 1-\nu_{A}\right) .
\end{gathered}
$$

Further a partial ordering on \mathcal{F} is given by

$$
A \leq B \Longleftrightarrow \mu_{A} \leq \mu_{B}, \nu_{A} \geq \nu_{B}
$$

It is not difficult to construct an additive group $\mathcal{G} \supset \mathcal{F}$ with an ordering such that \mathcal{G} is an lattice ordered group, where

$$
A+B=\left(\mu_{A}+\mu_{B}, \nu_{A}+\nu_{B}-1\right)
$$

with the neutral element $0=\left(0_{\Omega}, 1_{\Omega}\right)$ and

$$
A \leq B \Longleftrightarrow \mu_{A} \leq \mu_{B}, \nu_{A} \geq \nu_{B}
$$

Lattice operations are given by

$$
\begin{aligned}
& A \wedge B=\left(\mu_{A} \wedge \mu_{B}, \nu_{A} \vee \nu_{B}\right), \\
& A \vee B=\left(\mu_{A} \vee \mu_{B}, \nu_{A} \wedge \nu_{B}\right),
\end{aligned}
$$

Evidently

$$
A-B=\left(\mu_{A}-\mu_{B}, \nu_{A}-\nu_{B}+1\right) .
$$

The operations on \mathcal{F} can be derived from operations on \mathcal{G} if we use the unit $u=\left(1_{\Omega}, 0_{\Omega}\right)$:

$$
\begin{gathered}
A \oplus B=(A+B) \wedge u, \\
A \odot B=(A+B-u) \vee 0, \\
\neg A=u-A .
\end{gathered}
$$

On our investigations also the following two operations will be used:

$$
\begin{aligned}
A \cdot B= & \left(\mu_{A} \mu_{B}, 1-\left(1-\nu_{A}\right)\left(1-\nu_{B}\right)\right)= \\
& =\left(\mu_{A} \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \nu_{B}\right)
\end{aligned}
$$

and if $\mu_{B}>0, \nu_{B}<1$, then

$$
\frac{A}{B}=\left(\frac{\mu_{A}}{\mu_{B}}, 1-\frac{1-\nu_{A}}{1-\nu_{B}}\right) .
$$

2 Differentiation

First we present a motivation. In [5] a real function f has been considered such that

$$
\left[\mu_{A}, \mu_{B}\right] \cup\left[\nu_{B}, \nu_{A}\right] \subset \operatorname{Domf},
$$

where $A \leq B$. Then the function $\bar{f}:[A, B] \rightarrow R^{2}$ is defined by

$$
\bar{f}(A)=\left(f\left(\mu_{A}\right), 1-f\left(1-\nu_{A}\right)\right) .
$$

Compute

$$
\begin{gathered}
X-X_{0}=\left(\mu_{X}-\mu_{X_{0}}, \nu_{X}-\nu_{X_{0}}+1\right) \\
\bar{f}(X)-\bar{f}\left(X_{0}\right)=\left(f\left(\mu_{X}\right), 1-f\left(1-\nu_{X}\right)\right)-\left(f\left(\mu_{X_{0}}\right), 1-f\left(1-\nu_{X_{0}}\right)\right)= \\
=\left(f\left(\mu_{X}\right)-f\left(\mu_{X_{0}}\right), 1-f\left(1-\nu_{X}\right)-\left(1-f\left(1-\nu_{X_{0}}\right)\right)+1\right)= \\
=\left(f\left(\mu_{X}\right)-f\left(\mu_{X_{0}}\right), f\left(1-\nu_{X_{0}}\right)-f\left(1-\nu_{X}\right)+1\right) .
\end{gathered}
$$

Therefore

$$
\begin{gathered}
\frac{\bar{f}(X)-\bar{f}\left(X_{0}\right)}{X-X_{0}}=\left(\frac{f\left(\mu_{X}\right)-f\left(\mu_{X_{0}}\right)}{\mu_{X}-\mu_{X_{0}}}, 1-\frac{1-\left(f\left(1-\nu_{X_{0}}\right)-f\left(1-\nu_{X}\right)+1\right)}{1-\left(\nu_{X}-\nu_{X_{0}}+1\right)}=\right. \\
\left(\frac{f\left(\mu_{X}\right)-f\left(\mu_{X_{0}}\right)}{\mu_{X}-\mu_{X_{0}}}, 1-\frac{f\left(1-\nu_{X}\right)-f\left(1-\nu_{X_{0}}\right)}{\nu_{X}-\nu_{X_{0}}}\right) .
\end{gathered}
$$

The above computation leads to the following definition.
Definition. Let $f^{\prime}(x)$ exists whenever $x=\mu_{A}(u)$ or $x=1-\nu_{A}(v)$ for some $u, v \in \Omega$. Then we define

$$
\bar{f}^{\prime}(A)=\left(f^{\prime}\left(\mu_{A}\right), 1-f^{\prime}\left(1-\nu_{A}\right)\right) .
$$

Theorem. If \bar{f} is differentiable in $X_{0} \in \mathcal{G}$, then \bar{f} is continuous in X_{0}.
Proof. By Theorem 1 of [5] \bar{f} is continuous on [A,B] if and only if f is continuous on $\left[\mu_{A}, \mu_{B}\right]$ and $\left[\nu_{B}, \nu_{A}\right]$. Hence if \bar{f} is differentiable, then f is differentiable. Therefore f is continuous, and \bar{f} is continuous by [5].

3 Lagrange mean value theorem

Theorem. Let \bar{f} be continuous on $[A, B]$, differentiable on (A, B). Then there exists $C \in(A, B)$ such that

$$
\bar{f}(B)-\bar{f}(A)=\bar{f}^{\prime}(C)(B-A) .
$$

Proof. By the definition

$$
\begin{gathered}
\bar{f}(B)-\bar{f}(A)=\left(f\left(\mu_{B}\right), 1-f\left(1-\nu_{B}\right)\right)-\left(f\left(\mu_{A}\right), 1-f\left(1-\nu_{A}\right)\right)= \\
=\left(f\left(\mu_{B}\right)-f\left(\mu_{A}\right), f\left(1-\nu_{A}\right)-f\left(1-\nu_{B}\right)+1\right) .
\end{gathered}
$$

Fix $\omega \in \Omega$ and take $b \in \mu_{B}(\omega), a \in \mu_{A}(\omega)$. Then there exists $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a) .
$$

Define $\mu_{C}: \Omega \rightarrow R$ by the equality

$$
\mu_{C}(\omega)=c,
$$

hence we obtain $\mu_{A} \leq \mu_{C} \leq \mu_{B}$, and

$$
f\left(\mu_{B}\right)-f\left(\mu_{A}\right)=f^{\prime}\left(\mu_{C}\right)\left(\mu_{B}-\mu_{A}\right) .
$$

Similarly $\nu_{C}: \Omega \rightarrow R$ can be defined such that $1-\nu_{B} \leq 1-\nu_{C} \leq 1-\nu_{A}$, and

$$
\begin{gathered}
f\left(1-\nu_{A}\right)-f\left(1-\nu_{B}\right)=f^{\prime}\left(1-\nu_{C}\right)\left(1-\nu_{A}-\left(1-\nu_{B}\right)\right)= \\
=f^{\prime}\left(1-\nu_{C}\right)\left(\nu_{B}-\nu_{A}\right) .
\end{gathered}
$$

Define $C=\left(\mu_{C}, \nu_{C}\right)$. Then $\mu_{A} \leq \mu_{C} \leq \mu_{B}, \nu_{A} \geq \nu_{C} \geq \nu_{B}$, hence $A \leq C \leq B$. Moreover

$$
\bar{f}^{\prime}(C)=\left(f^{\prime}\left(\mu_{C}, 1-f^{\prime}\left(1-\nu_{C}\right)\right) .\right.
$$

Therefore

$$
\begin{aligned}
\bar{f}(B)- & \bar{f}(A)=\left(f\left(\mu_{B}\right)-f\left(\mu_{A}\right), f\left(1-\nu_{A}\right)-f\left(1-\nu_{B}\right)+1\right)= \\
& =\left(f^{\prime}\left(\mu_{C}\right)\left(\mu_{B}-\mu_{A}\right), f^{\prime}\left(1-\nu_{C}\right)\left(\nu_{B}-\nu_{A}\right)+1\right) .
\end{aligned}
$$

On the other hand

$$
\begin{gathered}
\bar{f}^{\prime}(C)(B-A)=\left(f^{\prime}\left(\mu_{C}\right), 1-f^{\prime}\left(1-\nu_{C}\right)\right)\left(\mu_{B}-\mu_{A}, \nu_{B}-\nu_{A}+1\right)= \\
=\left(f^{\prime}\left(\mu_{C}\right)\left(\mu_{B}-\mu_{A}\right), 1-\left(1-\left(1-f^{\prime}\left(1-\nu_{C}\right)\right)\right)\left(1-\left(\nu_{B}-\nu_{A}+1\right)\right)\right)= \\
=\left(f^{\prime}\left(\mu_{C}\right)\left(\mu_{B}-\mu_{A}\right), 1-f^{\prime}\left(1-\nu_{C}\right)\left(\nu_{A}-\nu_{B}\right)\right)= \\
=\left(f^{\prime}\left(\mu_{C}\right)\left(\mu_{B}-\mu_{A}\right), f^{\prime}\left(1-\nu_{C}\right)\left(\nu_{B}-\nu_{A}\right)+1\right)=\bar{f}(B)-\bar{f}(A) .
\end{gathered}
$$

Ackowledgement

This paper was supported by Grant VEGA 1/0621/11.

References

[1] Atanassov, K., Intuitionistic Fuzzy Sets: Theory and Applications, Springer, Heidelberg, 1999.
[2] Bartková, R., Cyclometric functions on IFS (manuscript).
[3] Hollá, I., On exponential and logarithmic functions on IF sets. Notes on Intuitionistic Fuzzy Sets, Vol. 13, 2007, No. 2, 39-41.
[4] Michalíková, A., Absolute value and limit of the function defined on IF sets, Notes on Intuitionistic Fuzzy Sets, Vol. 18, 2012, No. 3, 8-15.
[5] Michalíková, A., Some notes about boundaries on IF sets (manuscript).
[6] Riečan, B., Probability theory and random variables on IF-events. In: Algebraic and Proof theoretic Aspects of Non-classical Logic (S. Aguzzoli et al. eds.). Papers in honour of Daniele Mundici's 60th birthday. Lecture Notes in Computer Science, Springer, Berlin, 2007, 290-308.

