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We propose a method for ranking alternatives represented by Atanassov’s intuitionistic
fuzzy sets (A-IFSs) which takes into account not only the amount of information related
to an alternative (expressed by a distance from the ideal positive alternative) but also the
reliability of information (how sure the information is). We stress (like in our previous
papers) that taking into account all three functions (membership, non-membership and
hesitation) in the description of A-IFSs is the necessary condition to obtain results we
intuitively expect.

1 Introduction

Atanassov’s intuitionistic fuzzy sets (cf. Atanassov [1], [2], [3]), are a tool to better
model imperfect information. An important “meta-problem” is how to rank alternatives
(options). A set of alternatives is expressed as that each option fulfills a set of criteria
to some extent µ, and it does not fulfill it to some extent ν. This can be represented
by A-IFSs [cf. Section 2]. The ranking of intuitionistic fuzzy alternatives is non-trivial
because there is no linear order among them as opposed to fuzzy sets (Zadeh [25]). For
some approaches for ranking the intuitionistic fuzzy alternatives, cf. Chen and Tan [4],
Hong and Choi [5], Li et al. [6], [7], and Liu and Wang [8].

Here we propose another method. First, we employ the representation of A-IFSs
taking into account all three functions (the membership, non-membership, and hesitation
margin). Second, we propose a ranking function which depends on two factors: the
amount of information (expressed by the distance from the ideal positive alternative),
and the reliability of information (expressed by the hesitation margin).

2 A Brief Introduction to Intuitionistic Fuzzy Sets

Atanassov’s intuitionistic fuzzy set (Atanassov [1], [3]) A is:

A = {< x, µA(x), νA(x) > |x ∈ X} (1)
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where: µA : X → [0, 1] and νA : X → [0, 1] such that

0<µA(x) + νA(x)<1 (2)

and µA(x), νA(x) ∈ [0, 1] denote the degree of membership and a degree of non-membership
of x ∈ A, respectively, and the hesitation margin of x ∈ A is:

πA(x) = 1− µA(x)− νA(x) (3)

The πA(x) expresses a lack of knowledge of whether x belongs to A or not (Atanassov [3]);
obviously, 0<πA(x)<1, for each x ∈ X; πA(x) is important while considering distances,
entropy, similarity etc. (Szmidt and Kacprzyk [12], [18], [14], [20], [21]) for the A-IFSs.
In this paper πA(x) is indispensable, too — it indicates how reliable (sure) the information
represented by an alternative is.

We use the normalized Euclidean distance between the A-IFSs A,B in X (Szmidt and
Kacprzyk [12], [18], Szmidt and Baldwin [9]):

eIFS(A,B) = (
1

2n

n∑

i=1

(µA(xi)− µB(xi))
2 +

+ (νA(xi)− νB(xi))
2 + (πA(xi)− πB(xi))

2)
1

2 (4)

For (4) we have:

0 <eIFS(A,B) <1 (5)

The application of A-IFSs instead of fuzzy sets means the introduction of another
degree of freedom (non-memberships) into a set description. Such a generalization of fuzzy
sets gives us an additional possibility to represent imperfect knowledge i.e., describing
many real problems in a more adequate way (cf. Szmidt and Kacprzyk [10], [13], [16],
[15], [19], Szmidt and Kukier [23], [24]).

2.1 Geometrical representation

A possible geometrical representations of an A-IFS is as in Fig. 1 (cf. Atanassov [3]).
It is worth noticing that although we use a 2D figure, we still adopt our approach (e.g.,
Szmidt and Kacprzyk [12], [18], [14], [20], [21]) with the membership, non-membership
and hesitation margin. Any element in an A-IFS may be represented inside MNO. Each
point belonging to MNO is described by: (µ, ν, π). Points M and N represent crisp
elements. Point M(1, 0, 0) represents elements fully belonging to an A-IFS as µ = 1, and
may be seen as the ideal positive element. Point N(0, 1, 0) represents elements fully not
belonging to an A-IFS as ν = 1. Point O(0, 0, 1) represents elements unsure as to if they
belong or not to an A-IFS as π = 1. Segment MN , with π = 0, represents elements
belonging to the classic fuzzy sets (µ + ν = 1). For example, point A(0.2, 0.8, 0) (Fig.
1), like any element from segment MN represents an element of a fuzzy set. A line
parallel to MN describes elements with the same hesitation margin. In Fig. 1 we can see
point F (0.5, 0.1, 0.4) representing an element with the hesitation margin equal 0.4, like
B(0.2, 0, 0.8), with the hesitation margin equal 0.8. The closer a parallel line to MN is
to O (Fig. 1), the higher the hesitation margin.
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Figure 1: Geometrical representation

3 A New Method for the Ranking of Intuitionistic

Fuzzy Alternatives

Let an x belonging to an A-IFS characterized via (µ, ν, π) expresses a voting situation: µ
is the proportion (from [0, 1]) of voters who vote for x, ν the proportion of those who vote
against, and π of those who abstain. The simplest ranking of the alternatives may be to
use a distance measure from the ideal voting situation (ideal positive alternative M). Let
A = (x, 0.2, 0.8, 0) — 20% vote for, 80% against, and 0% abstain, B = (x, 0.2, 0, 0.8) —
20% vote for, 0% vote against and 80% abstain, The normalized Euclidean distance (4)
gives:

eIFS(M,A) = (0.5((1− 0.2)2 + (0− 0.8)2 + (0− 0)2))0.5 = 0.8 (6)

eIFS(M,B) = (0.5((1− 0.2)2 + (0− 0)2 + (0− 0.8)2))0.5 = 0.8 (7)

The results seems to be counterintuitive as (4) suggests [cf. (6)—(7)] that the alterna-
tives (represented by) A,B seem to be “the same”. A general explanation of the above
counterintuitive result follows from Fig. 2 as the results of (4) are not univocally given
for a given membership value µ; for clarity, the distances (4) for any x from M (Fig. 2a)
are presented for µ and ν for [0, 1] instead of for µ + ν<1 only. For the same reason (to
better see the effect), in Fig. 2b the contour plot of the distances (4) is given only for
the range of µ and ν for which µ + ν<1). It is obvious that the results of (4) are not
univocally given for a given membership value µ. So, the distances (cf. also Szmidt and
Kacprzyk [22]) from the ideal positive alternative alone do not make it possible to rank
the alternatives in the intended way.

Now, let us analyze the essense of a voting alternative (an intuitionistic fuzzy element)
using the operators of (cf. Atanassov [3]): necessity ( ), possibility (♦), Dα, and Fα,β
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Figure 2: a) Distances (4) of any IFS element from ideal alternative M ; b) contour plot
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Figure 3: Ranking alternatives Yi

(where α, β ∈ [0, 1]; α+ β<1) given as:

A = {〈x, µA(x), 1− µA(x)〉|x ∈ X} (8)

♦A = {〈x, 1− νA(x), νA(x)〉|x ∈ X} (9)

Dα(A) = {〈x, µA(x) + απA(x), νA(x) + (1− α)πA(x)〉 |x ∈ X} (10)

Fα,β(A) = {〈x, µA(x) + απA(x), νA(x) + βπA(x)〉 |x ∈ X} (11)

For example, for alternative Y1 we obtain Y1 = Y1,min, and ♦Y1 = Y1,max (cf. Fig. 3).
Operator Fα,β makes it possible for alternative Y1 to become any alternative within the
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Figure 4: a) RE(Y
∗

i ) as a function of a distance Y ∗i from M and a hesitation margin; b)
contour plot

triangle Y1Y1,maxY1,min. By a similar reasoning, alternative O(0, 0, 1) (because π = 1) may
become any alternative (i.e. from within the whole area of MNO).

Therefore, we could say that the smaller the area of the triangle YiYi,minYi,max (Fig. 3),
the better the alternative Yi from Y . Alternatives on MN are the best in the sense that:
1) π = 0 here which means that the alternatives are fully reliable in the sense of the
information represented, and 2) the alternatives are ordered — the closer an alternative
to the ideal positive alternative M(1, 0, 0), the better it is. This suggests that for the
ranking of any intuitionistic fuzzy alternative Yi, for a fixed πi, we may convert them
into fuzzy alternatives (naturally ordered) but still preserve knowledge of how sure this
information is. For a fixed and specified πi, each YiYi,minYi,max is univocally given by:
Y ∗i = 0.5(Yi,min + Yi,max) (Fig. 3). These Y ∗i ’s are the orthogonal projections of Yi on
MN . (cf. Szmidt and Kacprzyk [11]). These orthogonal projections may be obtained
via Dα (10) with α equal 0.5. In this context the most natural way of ranking the
alternatives seems to be making use of Y ∗i ’s and their distances from the ideal alternative
M , preserving also the information about the hesitation margin πYi , i.e.:

RE(Y
∗

i ) = 0.5(1 + πYi)eIFS(M,Y
∗

i ) (12)

Unfortunately, the results of (12) do not meet our expectations in the sense of their
connections with the areas of the triangles YiYi,minYi,max. Let us consider the alternatives
Yi, i = 1, . . . , 4. — Fig. 4. We might expect that the alternatives are ordered by (12)
from Y1 to Y4 as just such an order renders the areas of the respective triangles. But the
results from (12) for the different alternatives seem to be ”the same”. For example, for
Y1=(0, 0.8, 0.2), RE(Y

∗

1
)=0.54, for Y2=(0, 0.6, 0.4), RE(Y

∗

2
)=0.56, for Y3=(0, 0.3, 0.7),

RE(Y
∗

3
)=0.55, for Y4=(0, 0, 1), RE(Y

∗

4
)=0.5.

This phenomenon is presented in general in Fig. 5 — for the alternatives for which the
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Figure 5: a) RE(Y
∗

i ) as a function of a distance Y ∗i from M and a hesitation margin; b)
contour plot
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Figure 6: a) RE(Yi) as a function of a distance (4) from M and a hesitation margin; b)
contour plot

membership values are equal to zero, ranking (12) gives ”the same” result (white area in
Figure 5 b). It is the reason that instead of (12) we use the following measure RE for
ranking the alternatives Yi

RE(Yi) = 0.5(1 + πYi)eIFS(M,Yi) (13)

where eIFS(M,Yi) is the distance (4) from the ideal positive alternative M(1, 0, 0). The
constant 0.5 was introduced in (13) to ensure that 0 < RE(Yi)<1. The values of RE for
any intuitionistic fuzzy element are as in Fig. 6a, and the counterpart contour plot — in
Fig. 6b.

Equation (13) reflects the “quality” of an alternative — the lower RE(Yi), (13), the
better the alternative in the sense of the amount and reliability of information.

Let us rank at the beginning the same alternatives using (13) as we did for (12),
i.e. Y1=(0, 0.8, 0.2), Y2=(0, 0.6, 0.4), Y3=(0, 0.3, 0.7), and Y4=(0, 0, 1). We obtain
RE(Y1)=0.55, RE(Y2)=0.61, RE(Y3)=0.85, RE(Y4)=1. The results seem to render our
intuition now.
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The best one is alternative M(1, 0, 0) (RE(M) = 0). For alternative N(0, 1, 0) we
obtain RE(N) = 0.5 (N is fully reliable as the hesitation margin is equal 0 but the
distance eIFS(M,N) = 1). In general, on MN , the values of RE decrease from 0.5 (for
alternative N) to 0 (for the best alternative M). The maximal value of RE, i.e. 1, is
for O(0, 0, 1) for which eIFS(M,O), πO = 1 (alternative O “indicates” the whole triangle
MNO). All other alternatives Yi “indicate” smaller triangles YiYi,minYi,max (Fig. 3), so
that their RE’s are smaller (better as to the amount of the reliable information).

It is worth noticing that the results obtained via (13) which render our expectations
for ranking the alternatives are obtained using all three functions describing intuitionistic
fuzzy alternatives, i.e., membership function, non-membership function, and the hesi-
tation margin. Also the distances in (13) are calculated taking into account all three
functions. In other words, we use 3D representation of A-IFSs.

4 Conclusions

We discussed a method of ranking intuitionistic fuzzy alternatives. The method takes
into account the amount and reliability of information connected with an alternative.
We discussed two possibilities of the measure — first we tried to simplify the problem by
boiling down the intuitionistic fuzzy alternatives into fuzzy alternatives, and take into
account how reliable the alternative is (which was expressed via hesitation margins).
Unfortunately, the method turned out not enough.

Only the full representation of an alternative (via membership, non-membership, and
hesitation margin), and calculating its distance from an ideal alternative, whereas addi-
tionally the information about the reliability is taken into account, guarantee intuitively
acceptable results.
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