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1 Introduction

The theory of graph plays a vital role for solving combinatorial problems in different areas such
as operations research, topology, number theory, computer science. Rosenfeld [7] considered
fuzzy relations on fuzzy sets and developed the structure of fuzzy graphs. K.T Atanassov [1]
introduced the concept of intuitionistic fuzzy relations and intuitionistic fuzzy graphs (IFGs). [4]
gives a definition for IFG as a special case of IFGs in [6]. In [5], the operations on IFGs are
defined and some of their properties are analyzed. In 1994 K. T Atanassov [2,3] introduced the
index matrix representation of IFGs. In [1] he also defined cartesian products of two intuitionistic
fuzzy sets (IFSs). In this paper, a revised definition of an IFG is given using IF relations. Further,
operations like addition, vertex wise multiplication, multiplication, structural subtraction on IFGs
using index matrix (IM) are dfined and studied. Almost all the operations result in different
structures.
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2 Preliminaries

Definition 2.1 ([1]). Let a set E be fixed. An Intuitionistic Fuzzy set (IFS) A in E is an object
of the form A = {(z,pa(x),va(z))|x € E}, where the function puy : E — [0,1] and v, :
E — [0, 1] determine the degree of membership and the degree of non-membership of the element
x € E, respectively and for every x € E, 0 < pa(z) +va(zr) < 1.

Definition 2.2. Let X be an universal set and let V be an IFS over X in the form V' = {(v;, u;(v;),
vi(v;))/v; € V}suchthat 0 < p;(v;)+v;(v;) < 1. Six types of Cartesian products (in crisp sense)
of n subsets V1, Vs, -+ [V, of V over X are defined as

v; X1 v; = {{{v;, v
v X v; = {((vi, v5) , i + 5 — pri-pig, vievy) | (v, v5) €V XV},
v; X3 v; = {(

v; X4 05 = {(

v; X505 = {(

v; X605 = { (v, v;), BEEL AN | (0 € V X V]

It must be noted that v; X, v; is an IFS, wheret = 1,2,3,4,5,6.

Definition 2.3. An intuitionistic fuzzy graph (IFG) is of the form G = (V, E)) where
(i) V = {v1,v9,...,0,} such that pi; - V- — [0,1] and v; : V — [0, 1] denote the degrees of
membership and non-membership of the element v; € V respectively and

0 < pi(vi) +vi(vy) <1 (1)

foreveryv, € V,1=1,2,....n
(ii) E CV x Vwhere j1;; : V xV —[0,1] and v;; : V x V — [0, 1] are such that
Wij < i @ iy Vig SV QU )

where i;; and v;; are the membership and non-membership values of the edge (v;, v;) such that
0 <y +vy; <1, 0 € {01, 02,D3,D4, D5, Vs } and @1, Dz, D3,
D4, V5, O are defined as follows:

(@) s @1 py = pa-piys Vi O1Vj = Vi

(0)  pi @2 pj = pi + p1j — pa-py; Vi @25 = 1.1

(¢) i @3 pj = pi-p; Vi O3 Vj = Vi +Vj — V.l 3)
(d) i @4 pr; = min(p, p15); v; @4 v; = max(v;, v))

(€)  pi @5 py = max(p;, p15); Vi @5 vj = min(v;, ;)

(f) i @6 py = B8 vi Qg v = 57

Notations.

1. Hereafter, (u(v;),v(v;)) or simply (u;, ;) denotes the degrees of membership and non-
membership of the vertex v; € V, such that 0 < p; +v; < 1.

2. (v, v;), v(v, v5)) or simply (4,5, v;;) denotes the degrees of membership and non-mem-
bership of the edge (v;,v;) € V' x V such that 0 < p1;; + v;; < 1.
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Note. If y;; = v;; = 0, for some ¢ and j, then there is no edge between v; and v;, and it is
indexed by (0, 1). Otherwise, there exists edge between v; and v;.

Example 2.1. Let G = (V, E) be an IFG, where V' = {v1, v, v3, vy, 05,06} and E = {ey, e, €3,
ey, €5, €¢, €7}. The edge membership and non-membership values can be determined by using
®17 ®27 @37 ®47 ®57 ®6'

Vi (03,02) el V2 (06,03)

)

v3(0.7,0.1)

(0.1,0.2) ve

€7 €s

€6

0.4.0.3
105.03) va( )

Figure 1: Intuitionistic fuzzy graph G

For example, R.H.S of inequalities (2) are calculated using (3) for the IFG G given in Figure 1.

(@) p1 @1 pe=0.18; v @ ve =0.06
() 1 @2 e =0.72; v @y e = 0.06
() 1 @3pe=0.18; vy @31y =0.44
(d) 1 @ap2=0.3; v1@4v2=03
(e) 1 @s5p2=0.6; 140510 =0.2
(f) 1 @6 po =045 v Qg1p =025

Definition 2.4 ([2]). Let K = {ky, ko, ..., kn} and L = {1y, 15, ..., 1, } be two arbitrary index sets.
The index matrix representation of intuitionistic fuzzy relation (IMIFR) is of the form

L Iy . L,
ky (,un, V11> <,u12, V12> s <,U1m V1n>
(K, L {{pij,vij)}] = ko | (par,v21) (Moo, v22) -+ {fl2n, Von)
km <Nm17 Vm1> <,um27 Vm2> e <,umn7 an>

where forevery 1 <i <m, 1 <j<n;0< p; +v; < L

Definition 2.5. Let G = (V, E) be an IFG . The IMIFG is of the form [V, E C V x V|, where
V ={vy,vq,...v,} and
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Ul U2 ) Un
U1 <,M11, V11> <M12, V12> <,Uln7 V1n>
E = {(uij, vij)} = v2 (t21,v21)  (pho2; Va2) (1120, Van)
Un <,un17 Vn1> <,un27 Vn2> <ﬂnn: Vnn>

where (1,5, v;;) € [0,1] x [0,1] (1 < 4,5 < n), the edge between two vertices v; and v; is
indexed by (p;;, v;;). The values of (j;;,v;;) of an IFG G = (V, E) can be determined by using
one of the Cartesian products X, t = 1,2,3,4,5,6 from Definition 2.2.

3 Operations on IFGs

Consider the two IFGs G = Vi, By, pij, vi;] and Go = [V, Es, 1,4, Vpg|, where V; and V5 are
the vertex sets of GGy and Gy and 5, v;; and 1,4, Vp, are the edge sets of G; and G respectively.

Definition 3.1. The addition of two IFGs G and G, denoted by G = G ® G, is defined by
Gl @ GQ - [‘/1 U ‘/27 ‘/1 U ‘/27 {<MT7 VT>}] 9 [‘/1 U ‘/27 ‘/1 U ‘/27 {<MT$7 V’I‘S>}] y Where

(

<:U’iuyi> ifvre‘/l_‘/Q

, ifv, € Vo — Vi

S S e noh

(max (i, php), min(v;, 1)) if v, € ViNVy

(0, 1) otherwise.
and

({113, i) ifv, =x; € Viand vy =v; € V1 — Vs
orv,=v; € Vi —Voand v, =v; € V)
(Lpqs Vpq) ifv, =v, € Voandvs =v,€ Vo =V

{<:u7"5a Vrs>} =9

(max(pij, fipq), Min(Vij, Vpq))

L (0,1)

orv, =v, € Vo = Viandvs = v, € V3
ifv,=v;,=v, € V1NV,
and vy = v; = v, € V1NV,

otherwise.

Example 3.1. Consider the graphs GG; and G5 as in Figure 2.

The index matrix of Gy is G1 = [V, Vi, {(1ij, vij })], where Vi = {vy, v2, v3,v4, 05} and

w | (0.1 (01,05  (0,1)  (0,1) (0.1,0.3)

| 0,1 (0,1 (04,05  (0,1)  (0.1,0.5)
Wy} =00 0y 0 0.1 06.03)  (0.1)
v | (01,03 (0,10 (0,1 (0,1)  (0,1)

v | (0,1) (0,1 (0.1,0.3) (0.1,0.3)  (0,1)



Figure 2: (G; and G4

The index matrix of Gy is Go = [Va, Va, {{lipg, Vpg) }]» Where Vo = {vy1, va, v3, vy, U5, v6, U7 }
and

{btpgs Vpg) } =

v | (0,1) (0,1) (0,1)  (0.2,0.3)  (0,1) (0,1) (0,1)
v | (04,03 (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
vs | (0,1)  (0.7,0.1)  (0,1) (0,1) (0,1) (0,1) (0,1)
v | (0,1) (0,1  (0.2,0.1)  (0,1)  (0.2,0.1)  (0,1) (0,1)
vs | (0,1 (0,1) (0,1 (0,1)  (0,1) (05,01  (0,1)
ve | (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)  (0.4,0.2)
v 0,1 (0,1)  (0,1)  (02,01) (0,1)  (0,1)  (0,1)

The index matrix of G; ® Go is [Vi U Vo, Vi U Vo, {{irs, Vrs) }, where Vi U Vo = {vy, vg,
v3, Vg, Us, Vg, U7 } and
s, Vrs) } =
0 V2 U3 Vg Us Vg U7
VU1 (0,1) (0.1,0.5) (0,1) (0.2,0.3) (0.1,0.3) (
v [ (0.4,03)  (0,1)  (0.4,05)  (0,1)  (0.1,0.5) {
v | (0,1)  (0.7,0.1)  (0,1)  (0.6,0.3)  (0,1) (
(0

Y

Y

o O O
—_

\/\/\/\/

Y

ve | (0.1,03)  (0,1)  (0.2,01)  (0,1)  (0.2,0.1) , ,

vs | (0,1) (0,1)  (0.1,0.3) (0.1,0.3)  (0,1) (0.5, o.1> 0,1
ve | (0,1) (0,1) (0,1) (0,1) (0,1) 0,1)  (0.4,0.2)
v 0,1 (0,1)  (0,1)  (02,01) (0,1)  (0,1)  (0,1)

The graph of G} & G5 is shown in Figure 3.
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(0.1,0.3) v5(0.8,0.1)

0.5,0.1)

® v5(0.7,0.1)

(04,02

_ @v7(0.4,0.2)

v4(0.7,0.1) (0.2,0.1)

Figure 3: G; & Go

3.1 Vertexwise multiplication

The vertexwise multiplication of two IFDGs G| and G5, denoted by G; ® G, is defined by

Gl ® G2 = <[‘/1 N ‘/27 ‘/1 N VY27 {</~Lr7 VT>}] ) [‘/1 N ‘/27 ‘/1 N ‘/27 {<MT87 V?‘S>}]>7
where
{4} = (min(ys, ), max (v, 1) i v, € Vi 1 Vi

{brs, ves) b = (min( iz, ppg), max(vij, vpq))

ifo,=v,=vpeVinlVyandv, =v; =v, € Vi NVs.
Example 3.2. The index matrix of G; ® Gy is [Vi N Vo, Vi N Vi, {{itrs, Vrs) }], where Vi NV =
{’U17U2,’03, U4,U5} and

v | (0,1) (0,1) (0,1) (0,1) (0,1)

_ U2 <07 1> <07 1> <07 1> <07 1> <07 1>

Wi esl b= 00y 0.1) (0.1) (0,1) (0.1)
v | 01) (0,1 (0.1) (0,1) (0,1)

Us <0> 1> <07 1> <07 1> <07 1> <07 1>

The graph of G; ® G5, a null IFG, is displayed in Figure 4.
Example 3.3. Consider the two IFGs (G; and G, as shown in Figure 5.
Figure 6 depicts G; ® G5, which is not a null IFG.

Note. From Example 3.2. and 3.3., it is noteworthy that if there is no common edge between (G4
and G, then G; ® (G5 is a null IFG.
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12(0.4,0.5)
[ ]
*5(0.6,0.1)

0.1,0.3
vi(0.1,0.3) ¢ 14(0.2,0.3)

®y5(0.1,0.3)

Figure 4: G1 & GQ

v1(0.4,0.3) v2(0.3,0.5) v1(0.6,0.3) v2(0.3,0.5)
245
; Q
(0}105) (0.5’05)
v3(0.7,0.1) v3(0.8,0.1)

Figure 5: G; ® Go

3.2 Multiplication

The multiplication of two IFDGs (G and G5, denoted by G; ©® Ga, is defined by Gy ©® Gs
=[Viu(Va—=V1),VaU (Vi = Vo), {(tr, ) } s { {ftrs, Vrs) }] Where

<,U/i7 Vi) ifUT - ‘/1
{<:ura Vr)} = <,up7 Vp> ifv, € V3
(min(p;, pp), max (v, vp))  ifv, € ViNVy

In addition, the membership and non-membership values of the loops (v,, v,.) in the resultant
graph (if formed) satisfy the following conditions: p, < p; or p, < p, and v, > p; or v, > i, .
Also,

;

(pij, vij) ifv,=v;,e Viandv, =v; € V; — V4
(Hpgs Vpq) ifv, =v, € Vo —Viand v, = v, € V5
[t )} = < max((min(ag 1))
min(max(v;;, Vpg))) ifv, =v, e ViNnlyand v, =v, € V1N V3
\ (0,1) otherwise.

Example 3.4. Consider the IFDGs given in Figure 2.
The index matrix of Gy ® Gy is [Vi U (Vo — Vi), Vo U (Vi — Vi), {{prs, Vrs)}], Where
‘/1 U (‘/2 - ‘/1) - {Uh U2, U3, V4, Vs, Vg, U?}’ ‘/2 ) (‘/1 — ‘/2) - {Ula V2, U3, V4, Vs, Vs, U7} and
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Figure 6: G; ® Go

{<Nr87 Vr8>} =

v | (0.1,05)  (0,1) (0,1) (0,1) (0,1) (0,1) (0,1)
v | (0,1)  (0.4,05)  (0,1) (0,1) (0,1) (0,1) (0,1)
vs | (0,1) (0,1) (02,03  (0,1)  (0.2,0.3)  (0,1) (0,1)
v | {0,1) (0,1) (0,1  (0.1,0.3)  (0,1) (0,1) (0,1)
vs | (0,1)  (0.1,0.3) (0.1,0.3)  (0,1)  (0.1,0.3) (0.5,0.1)  (0,1)
ve | (0,1) (0,1) (0,1) (0,1) (0,1) 0,1)  (0.4,0.2)
v | (0,1) (0,1) (0,1) (02,01  (0,1) (0,1) (0,1)

Figure 7 displays the graph of G; ® G,.

(0.1,0.5)
v1(0.1,0.3)

(0.1,0.3)

O (0.2£0.1)

v4(0.2,0.3)

*1,(0.4,0.2)

Figure 7: G; © Gy

3.3 Structural subtraction

The structural subtraction of two IFDGs Gy and G5, denoted by G © G, is defined as G1 © Gy =
(Vi — Vo, {{per, )} {{ptrs, Vrs) }| Where’—’ is the set theoretic difference operation and
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(i, vi)  ifv, eV
{prsv) } = (tp, vp) i v, € V3
(0,1) otherwise.

{(Mr57Vrs>} - {<,U/ij;7/ij>}7f0rvr =0; € ‘/1 - ‘/2 and Vs = Uy S ‘/1 - ‘/2 If‘/l - ‘/2 = (b’

then graph of G; & G is also empty.

4

17(0.4,0.2)® 04 5.2) ®16(0.7,0.1)

Figure 8: G} © Go

Conclusion

In this paper, a new version of IFG definition is given and operations like addition, vertexwise

multiplication, multiplication, structural subtraction on index matrix representation of intuition-

istic fuzzy graphs are introduced.
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