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1 Introduction

The temporal logic is one of the basic areas of mathematical logic developing through last

century. The ¯rst intuitionistic fuzzy interpretations of the temporal logic were discussed

in [1], where the temporal logic operators \always" A and \once" O are studied.

The two other temporal operators \sometimes" S and \at the currently" C are de¯ned
in [4].

Here we shall introduce some new operators are will discuss their intuitionistic fuzzy

interpretations.

2 Basic concepts

Let T be a ¯xed set of real numbers which we shall call \time-scale" and it is strictly oriented

by the relation \<".

Let p be a proposition and V be a truth-value function, which maps the ordered pair:

V (p; t) = h¹(p; t); º(p; t)i

to the proposition p and to the time-moment t 2 T .
Following, e.g., [5], we note that proposition p with intuitionistic fuzzy values ha; bi is

called an \Intuitionistic Fuzzy Tautology" (IFT), if and only if a ¸ b.
The basic results in the intuitionistic fuzzy set theory are collected in [7].
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3 Main results

Let x 2 E be a ¯xed proposition and A ½ E, where here and below E is a set of propositions.
Firstly, we shall introduce one new (for the IFS theory) operator as follows:

¿(A(T ); x) = ft j ¹A(x; t) > ºA(x; t) & t 2 Tg:

Obviously, for all x 2 E:
; ½ ¿(A(T ); x) ½ T:

For x we can assert that it is \intuitionistic fuzzy valid" (IFV) in time-moment t, if and

only if

¹A(x; t) ¸ ºA(x; t): (¤)

Numbers ¹A(x; t) and ºA(x; t) can be respectively interpreted as a \degree of validity" and

a \degree of non-validity".

Let us assume that in E for each element x there exists an element :x and let for it be
valid:

¿(A(T );:x) = ftjºA(x; t) > ¹A(x; t) & t 2 Tg:

Therefore, the predicate

'(x) = \x has always been true"

will be IFV, if (*) holds for all t 2 T .
By similarity, we can de¯ne the following predicates, too:

Ã(x) = \x has sometime been true, but not always";

Â(x) = \once x was true";

!(x) = \x has never been true":

It can be easily seen that

'(x) = 1; if and only if ¿(A(T ); x) = T;

Ã(x) = 1; if and only if ; 6= ¿(A(T ); x)6= T;

and (9t1; t2 2 ¿(A(T ); x))(9t3 2 T ¡ ¿(A(T ); x))(t1 < t3 < t2);

Â(x) = 1; if and only if ; 6= ¿(A(T ); x)6= T;

and (8t1; t2 2 ¿(A(T ); x))(:9t3 2 T ¡ ¿(A(T ); x))(t1 < t3 < t2);

!(x) = 1; if and only if ¿(A(T ); x) = ;:

All the above predicates ';Ã; Â; ! have values in set f0; 1g. Now, we can construct their
IFVs.
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Let below card(X) be the cardinality of set X. Therefore, for the ¯xed elements x we

can de¯ne the couple

½(x) = hcard(¿(A(X); x)
card(T )

;
card(¿(A(X);:x)

card(T )
i:

It is an intuitionistic fuzzy couple, because

0 · card(¿(A(X); x)

card(T )
+
card(¿(A(X);:x)

card(T )
· 1:

The second inequality will become an equality, if there was no time moment when for x :

¹A(x; t) = ºA(x; t): The set of all time-moments for which the later equality is not valid (let

us note it by ¢x) determines the \degree of uncertainty" for x, and of course,

card(¿(A(X); x)

card(T )
+
card(¿(A(X);:x)

card(T )
+

¢x
card(T )

= 1:

Now, we can de¯ne the following two new predicates

»(x) = 1; if and only if ½(x) is an IFT,

¾(x) = 1; if and only if ½(:x) is an IFT.
These predicates can be interpreted as follows:

»(x) = \x is often true";

¾(x) = \x is rarely true":

These two predicates can be generalized. For example, we can use the two real numbers

®; ¯ 2 [0; 1] and we can de¯ne that ha; bi is (®; ¯)-IFT if and only if a ¸ ® and b · ¯. Then
»¤(x) = \x is (®; ¯)-often true";

¾(x) = \x is (®; ¯)-rarely true":

Now, for them there will hold

»¤(x) is (®; ¯)-often if and only if ¹(½(x)) ¸ ® & º(½(x)) · ¯;
¾¤(x) is (®; ¯)-rarely if and only if ¹(½(:x)) ¸ ® & º(½(:x)) · ¯:

4 Conclusion

We shall discuss some applications of the concepts above described. In the recent ten years

the IFSs have been applied in di®erent areas: intuitionistic fuzzy Prolog [6] intuitionistic

fuzzy expert systems [3, 5, 4] intuitionistic fuzzy tools for decision making [5], and others.

In [4] it was shown that the functioning and the results of the work of each expert system

from a production type can be described by a Generalized Net (GN; see [2, 8]). On the

basis of the GNs possibilities as tools for modelling, the concept of an expert system was

extended not only in sense of [4]. One of the directions to extend expert systems was related

to providing it with the possibility to work with predicates '; Ã; Â; !. Now we can enlarge

the list of these predicates adding the later two. On the other hand, the above constructions

show one of the possible interpretations of these temporal predicates.
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