
Flexible Querying
via Intuitionistic Fuzzy Sets

Przemysław Grzegorzewski
Systems Research Institute,
Polish Academy of Sciences

Newelska 6, 01-447 Warsaw, Poland
pgrzeg@ibspan.waw.pl

Edyta Mr ówka
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Abstract

The traditional query languages used in
database management systems require pre-
cise and unambiguous queries only. Fuzzy
querying were introduced to relax this rigid-
ity and allow the user for a more natural in-
formation retrieval. In this paper we suggest
how to enrich fuzzy querying by the use of
intuitionistic fuzzy values.
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1 Introduction

The traditional query languages, used in the database
management systems, require a precise and unam-
biguous specification of a query. It seems to be a se-
rious limitation since a typical user often formulates
his requirements in a natural language using imprecise
expressions and vague terms. For this reason several
approaches have been proposed to relax the rigidity
of the conventional queries and make possible to use
queries that allow for a more intelligent and human
consistent information retrieval (see, e.g. [4]).

The FQUERY for Access by Kacprzyk and Zadrożny
[9], [10], [11] is an example of a computer program
that enables to create different kinds of fuzzy queries.
Using such fuzzy queries we deal no longer with bi-
nary outputs – whether a record fulfil given require-
ment or not – but we get an information on the degree
the record complies with the requirement.

However, fuzzy logic sometimes is not sufficient for
modelling statements expressed in natural language.

It may happen that we cannot accept one-to-one cor-
respondence between a fuzzy set representing given
term and its complement, representing negation of
that term. For example, if a fuzzy set is used for mod-
elling a term ”warm” then its logical negation does
not necessarily identifies with its linguistic negation
”cold”. Moreover, sometimes it seems to be more
natural to describe a fuzzy condition not only by its
membership function. It is due to the fact, that in some
situations it is easier to describe our negative feelings
than the positive attitude. Even more, quite often one
can easily specify objects or alternatives he dislikes,
but simultaneously, he cannot specify clearly what he
really wants. For example, it may happen that a per-
son asked about his favorite district in Warsaw cannot
definitely choose whether it is Ochota, Mokotów or
Żoliborz, but he feels sure that he hates Praga.

It seems that querying which enables the user to spec-
ify both membership and nonmembership functions,
such that they not necessarily sum up to 1, would be
more human-consistent and human-friendly. A for-
mal tool for such querying is provided by the theory
of intuitionistic fuzzy sets proposed by Atanassov [1],
[2].

In the present paper we suggest how to extract in-
formation from a conventional crisp database using
queries that utilize not only membership functions but
which admit nonmembership functions as well. This
problem was discussed for the first time by Grze-
gorzewski and Mŕowka [7]. Below we propose an-
other method for computing matching degrees based
on the notion of metric.



2 Basic notions

An intuitionistic fuzzy setA in a universe of discourse
X is given by an ordered triple

A = {〈x,µA(x),νA(x)〉 : x∈ X }, (1)

whereµA,νA : X → [0,1] such that

0≤ µA(x)+νA(x)≤ 1 ∀x∈ X . (2)

For eachx the numbersµA(x) and νA(x) represent
the degree of membership and degree of nonmem-
bership of the elementx ∈ X to A ⊂ X , respec-
tively. It is easily seen that an intuitionistic fuzzy
set{〈x,µA(x),1−µA(x)〉 : x∈ X } is equivalent to the
classical fuzzy set (i.e. each fuzzy set is a particu-
lar case of the intuitionistic fuzzy set). We will de-
note a family of all intuitionistic fuzzy subsets ofX
by IFS(X ).

Let us assume that the universe of discourse is finite,
i.e. X = {x1, . . . ,xn}. In this present paper we apply
distances between intuitionistic fuzzy sets to calculate
matching degrees. Namely, we considerthe normal-
ized Hamming distance

dh(A,C) =
1
n

n

∑
i=1

max{|µA(xi)−µC (xi)| ,

|νA(xi)−νC (xi)|} (3)

andthe normalized Euclidean distance

de(A,C) =

(
1
n

n

∑
i=1

max
{
(µA(xi)−µC (xi))

2 ,

. (νA(xi)−νC (xi))
2
})1/2

. (4)

These two metrics were obtained as based on
the Hausdorff metric generalizations of well-known
Hamming distance and Euclidean distance used in the
classical fuzzy set theory. For more details we refer
the reader to [6]. It is worth noting that using normal-
ized distances between two intuitionistic fuzzy set as
a result we obtain the number from the unit interval
[0,1].

3 Querying via IFS

A query may be treated as a set of searching crite-
ria conceived by a user. A typical query expressed in

SQL is written in a following form

SELECT < list of attributes>
FROM < list of tables>
WHERE < condition> .

(5)

Its role is to select records (rows) that satisfy given
condition. Each record from the table either satisfies
or does not satisfy the condition and as a result we
obtain a crisp set of database records that come up to
query. However, as it was mentioned above, a tradi-
tional query syntax requires very rigid formulation of
the constraints, while for a human being a common
language is a natural medium to form and express his
thoughts. Now we will try to construct a query that
enables a direct use of linguistic terms modelled by
intuitionistic fuzzy sets, i.e. a query with a following
syntax:

SELECT < list of attributes>
FROM < list of tables>
WHERE < intuitionistic fuzzy condition> .

(6)

Let us consider a crisp relational database with a set of
attributesA = {A1, . . . ,An} and a set of recordsR =
{r1, . . . , rm}. Let X j denote the universe of discourse
for the attributeA j . Moreover, letZ : R → X 1× . . .×
Xn denote a function that determines a vector of values
of all attributes corresponding to each record, i.e.

Z(r i) = [zi1, . . . ,zin] , (7)

wherezi j is a value of the attributeA j for the record
r i .

To construct an ifs-query, a suitable intuitionistic
fuzzy set must be defined for each attribute used in
WHERE clause. Thus, actually, our ifs-query is an
operatorT which transforms each attributeA j to the
corresponding intuitionistic fuzzy setAT

j

AT
j = {

〈
x,µT

A j
(x) ,νT

A j
(x)

〉
: x∈ X j}, (8)

whereµT
A j

(x) ,νT
A j

(x) : X j → [0,1] are the membership
and nonmembership function of the defined by the in-
tuitionistic fuzzy termT for the attributeA j , respec-
tively.

As soon as we accept vague terms in queries we also
have to modify our meaning ofmatchingbetween the
query and a record of database. It would be unreason-
able to require the answer for a ifs-query to be com-
pletely precise, adhering to the classical yes-no logic.



Now we expect the system to produce a list of records
matching a query to a degree higher than a specified
threshold and to list the records according to the lin-
ear semiordering. However, in our approach utilizing
intuitionistic fuzzy sets we do not have such natural
linear ordering, because we have to look on two func-
tionsµT

A j
andνT

A j
. Therefore, we will construct a de-

sired semiordering using distances mentioned in Sec.
2.

Let us define a functionU : R → IFS(R ) which de-
termines an intuitionistic fuzzy setRi for each record
r i in a following way

Ri = U (r i) = {〈A1,µRi (A1) ,νRi (A1)〉 ,
. . . ,〈An,µRi (An) ,νRi (An)〉} , (9)

whereµRi (A j) = µT
A j

(zi j ) and νRi (A j) = νT
A j

(zi j ). In
other words

Ri =
{〈

A1,µ
T
A1

(zi1) ,νT
A1

(zi1)
〉
,

. . . ,
〈
An,µ

T
An

(zin) ,νT
An

(zin)
〉}

. (10)

It is obvious that an intuitionistic fuzzy setB corre-
sponding to the best record, i.e. the record satisfying
perfectly all requirements of the query, would have a
following form

B = {〈A1,1,0〉 , . . . ,〈An,1,0〉} , (11)

while an intuitionistic fuzzy setW corresponding to
the worst record, i.e. the record that does not satisfy
any requirements of the query, would look like

W = {〈A1,0,1〉 , . . . ,〈An,0,1〉} . (12)

We will apply intuitionistic fuzzy setsB and W in
our method of calculating matching degrees. They
would simply constitute the upper horizon and the
lower horizon, respectively. The idea of calculating
distances with respect to such horizons in the classi-
cal fuzzy set theory is given in [8] and [5].

Henced(Ri ,B) andd(Ri ,W) denote the Hamming or
Euclidean distance (3) of the intuitionistic fuzzy setRi

from the upper and lower horizon, respectively. These
two numbers show how close is the recordr i to the
best and to the worst possible record, respectively. Of
course, while querying database we are looking for
records with possibly lowd(·,B) and possibly high
d(·,W). Therefore, let us define

Si = 1−d(Ri ,B) , (13)

Si = d(Ri ,W) . (14)

It is clear that a desired record should have both values
Si andSi as high as possible. An easy computation
shows that for the Hamming distance we obtain:

Si = 1−dh(Ri ,B) =
1
n

n

∑
k=1

µRi (Ak) , (15)

Si = dh(Ri ,W) = 1− 1
n

n

∑
k=1

νRi (Ak) . (16)

Similarly, we can consider the Euclidean distances
e(Ri ,B) ande(Ri ,W) and corresponding values

Si = 1−de(Ri ,B)

= 1−
√

1
n

n

∑
k=1

(1−µRi (Ak))
2, (17)

Si = de(Ri ,W) =

√
1
n

n

∑
k=1

(1−νRi (Ak))2. (18)

Now the question is how to apply (15), (16), (17) and
(18) in matching degrees computation. We suggest
here three basic methods for determining matching
degrees. Namely, we can calculate the matching de-
gree for thei-th record either as an average ofSi and
Si , i.e.

SAV
i =

Si +Si

2
, (19)

or as a maximum of these two values

SMAX
i = max

(
Si ,Si

)
, (20)

or as the minimum

SMIN
i = min

(
Si ,Si

)
. (21)

It is easily seen thatSi ≤ Si . Thus we getSMAX
i = Si

andSMIN
i = Si . Hence usingSMIN

i we restrict our con-
sideration to the distance from the record which fits
best, while usingSMAX

i we consider the distance from
the worst possibility only. ThusSMIN

i gives us an op-
timistic matching degree,SMAX

i a pessimistic one and
SAV

i is a balanced one. We can also consider a natural
family of operators for matching degree computation.
Supposeq∈ [0,1] is a constant that characterizes the
subjective weight attributed to the distance from the
upper and the lower horizon. Then, for givenq, let
us define the matching degree for the recordi-th as
follows

Sq
i = qSi +(1−q)Si . (22)



One can see easily that this operators discussed above
are particular members of the family{Sq

i : q∈ [0,1]}.
Namely,SAV

i = S0.5
i , SMIN

i = S1
i andSMAX

i = S0
i .

Whatever method for calculating matching degrees
(note it briefly asSi) we choose, this method induces
a semiordering on a set of records. Hence we may
say that a recordr i precedes recordr j (or is – in some
sense – better) if and only if the matching degreeSi is
not smaller thanSj , i.e.

r i Â r j ⇔ Si ≥ Sj . (23)

Of course, this semiordering strongly depends on the
method used for calculating matching degree.

We expect the system to reject the records with match-
ing degree lower than a specified threshold. Therefore
we reject thei-th record ifSi ≤ ξ, whereξ is a fixed
number from the interval[0,1]. Hence we obtain a fol-
lowing algorithm of querying via intuitionistic fuzzy
values:

1. Take the record from the database.

2. CalculateSi .

3. Accept the record ifSi ≥ ξ (whereξ∈ [0,1]), oth-
erwise reject.

4. If there are more records go to Step 1, otherwise
go to Step 5.

5. List all accepted records from the ’best’ to the
’worst’ according to (23).

4 Conclusions

In the present paper we have shown how to enrich
fuzzy querying by the use of intuitionistic fuzzy val-
ues. Since a condition in the clause WHERE may in-
volve not only imprecise values but also such linguis-
tic terms as fuzzy relations, and linguistic quantifiers,
some other generalizations seem natural. In further
work we would try to apply intuitionistic fuzzy sets
for modelling relations and in defining quantifiers too.
However, we believe that even limited, our method en-
ables the user to construct queries in a more flexible
way.
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[10] Kacprzyk J., Zadrȯzny S. (1997), Flexible
querying using fuzzy logic: an implementation
for Microsoft Access, In: Andreasen T., Chris-
tiansen H., Larsen H.L. (Eds.): Flexible Query
Answering Systems, Kluwer, Boston, pp. 247–
275.
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