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Abstract

In this article we remind parallels for intuitionist,ic fuzzy sets and mass assignment

theory, and propose a non-probabilistic-type entropy measul'e for both of them. The

proposed nteasut'e is a result of a commorl geometric interpretation valid for these

theories, and uses a ratio of distances between considering elements/support pairs

and crisp elernents. It is also shown that the proposed measure can be defined in

terrns of the ratio of cardinalities: of X n Xc and X U X'.

Keywords: intuitionistic fizzv sets, mass assignment theorY, entropY.

Introduction

Flzziness,, a feature of imperfect information, results from the lack of crisp distinction

between the elernents belonging and not belonging to a set (i.e. the boundaries of the set

rrnder consicleration are not sharply defined). A measlrre of. fizziness often trsed and cited

in tlre literature is an entropy first mentioned by Zade,h[26]. The name entropy was chosen

due to arr intrinsic similaritv of eqrrations to the ones in the Shannon entropy (Jaynes

[16]). However, the two functions measrrre fundarnentally different types of uncertainty.

Basically, the Shannon entropy measrlres the average trncertainty in bits associated with

the prediction of otttcomes in a random experiment.

De Luca and Termini [15] introduced sonre requirements which capttre our intuitive

conrprehension of the degree of firzziness. Kaufmann 117] proposed to measure the degree

of. htzztness of any fizzy set A by a rnetric distance between its rnembership function and

the membership firnction (charecteristic function) of its nearest crisp set. Another way

given by Yager 125] was to view the degree of frrzziness in terms of a lack of distinction

between t,he fizzy set and its complement. Indeed, it is the lack of distinction between

sets and their complements that distinguishes fttzzy sets from crisp sets. The less the set

differs from its cornplement, t,he fizzier it is. Kosko [t0] investigated t'he fizzy entropy in

relatiott to a measltre of sttbsethood.



In this paper we propose a rneasure of fitzziness for intuitionistic hruzy sets (Atanassov

[1], [2]) and mass assignment theory (Baldwin [a], [7]), [S]). First, we remind parallels and

a conlmon geometrical representation for both theories (.f. Szmidt and Baldwin [21]).
The geometrical representation makes it possible to discuss the essence of the proposed

rneastlre of entropy and ilhrstrates the first way how to calculate it. It is also shown that

the proposed measllre can be stated as the ratio of the cardinalities: that of X fl X" and

tlrat of X U X', where X' is the complement of X. For the different approaches we refer

the interested reader to Burillo and Bustince [13], Ban ll2l, Cornelis and Kerre [1a].

2 Brief introduction to intuitionistic fuzzy sets

As opposed to a fwzy set in X (Zadeh [26]) , given by

A' :  {< , , ,  t t , t , ( r )  > l r  e X}

"where 
1t,o,(r) € [0, 1] is the membership function of the firuzy set y'.', &r

fivzy set (Atanassov [1], [2]) A is given by

4 :  {  1  n ,  t t ,A( r ) , ro(* )  >  l r  e  X}

A -  {< " ,  1, ,n,@),  1 -  p,a,@) > l r  € X}

For each intuitionistic finzy set in X, we will call

( 1 )

intuitionistic

where: lr,a : X ---+ [0, 1] and un : X ---+ [0, 1] strch that

O<t, ,o(")  + ua(r)<I (3)

a degree of non-membershipand 1r,a (r), ua(r) e [0, 1] denote a degree of membership and

of. r e A, respectively.

Obviorrsly, each fizzy set may be represented by the following intuitionistic fizzy set

(2)

(4)

n n ( * )  - 1 -  p , A ( r ) - r a ( * )

an i,n,tui,ti,on,i,sti,r: .fuzzy i,n,der (or a h,esi,tati,on m,argi,n) of r € A and,
of knowledge of whether r belongs t,o A or not ("f. Atanassov l2l)
0<tra(")<1, for each r  € X.

(5)

it expresses a lack

It is obvious that

3 Brief introduction to mass assignment theory

Tlre theory of mass assignment has been developed by Baldwin [4], l7l, [B] to provide a

formal frarnework for manipulating both probabilistic and firzzY uncertainty.

Afir,zy set can be converted into a mass assignment (Baldwin [3]). This mass assign-

ment represents a family of probability distributions.

Definition 1 Let A' he a rt,orm,al,i,zed fuzzy set i,n, X - {t} su"ch, th,at
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Figure 1: A common geometrical representation

A' : L, "oltt,(r)
r';3 X

F,( r t )  :1 ,  t t , ( : t : i , )<u, ( r j )  fo ,  i>  j

wh,ere y,(r) i,s th,e m,em,bershi,p function,.
The m,ass assi,gn,m,en,t associ,ated, wi,th, A' is (Bat,dwi'n' [5])

{ " t }  :  1 -  p ( r 2 ) ,  { * r , , . . . , r r } :  p , ( r ; )  -  t r , ( r + t )  f  o ,  i  - 2 , . . . i

w i t h ,  1 r , ( r p ) - g  f o ,  * r # X

Support Pairs (the basic representation of urrcertainty in the language FRIL (Baldwin

at al. [7], [11]) are associated with rrass assignments and represent an interval contain-

ing an unknown probability. Support Pairs are used to charact'erize trncertainty in facts

ancl conclitional probabilities in nrles. A Support Pair (n,,p) comprises a necessary and

possible support and can be interpreted as an interval in which the unknown probability

lies. A voting interpretation is also usefiil (Baldwin and Pilsworth [6]): the lower (neces-

sarv) srrpport ??, represents the proportions of a sample population voting in favour of a

proposition, whereas (1 - p) represents the proportion voting against; (p - n) represents

the proportion abstaining.
For intuitionisttc firuzy sets (cf. Section 2) we have

the proportion of a sample poprrlation voting in favour of a proposition is equal to

1r (nrernhership frrnctiorr),

the proportion votirrg against is equal t,o u (non-membership function),

o zr represents the proportion abstairring.

(6)
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Table 1:

In Table 1 equality of pararneters frorn Baldwin
finzy set (IFS) voting model is presented.

So we can represent a Support Pair (, , p) using
the following way

The rnass assignment strtrcttrre is best trsed
based srrch that the values can be measttred,
approximate or trncertain (Baldwin [9]).

's voting model and from intuitionistic

notation of intuitionistic hrzzy sets in

to represent knowledge that is statistically
even if the measurements themselves are

(r , ,p):  (n, ,  n,+ p -  n,)  :  (1t , ,  1t ,  *  r) (7)

i.e.: a Support Pair in Baldwin's voting model can be expressed by using notation of

intrritionistic fitzzy sets. Brrt it is necessary to stress that it is not just simple equivalence.

In our considerations a simplyfing assumption was done - we put a sign of equalty to prob-

abilities (mass assignrnent theory) and memberships/non-memberships. This assumption

is valid under the condition that each value of membership/non-membership occurs with

tlre same probability for each element ri,. In this paper, for the sake of simplicity we follow

tlris assrrmption. Hovewer, in general, probabilities for intuitionistic hrzzy sets are calcu-

lated as was discussed in (Szrnidt [20], Szmidt and Kacprzyk 1221, Szmidt and Baldwin

[21] )
Let us look at three Support Pairs (7) of special interests (Baldwin and Pilsworth [6])

. (1, 1) which represents total support for the associated statement,

o (0, 0) which represents total srrpport against, and

o (0, 1) which characterizes complete uncertainty in the support.

Of course the above Support Pairs have exactly the same meaning in intuitionistic

fitzzy seL models (rrnder the assumption that we consider probabilities for intu-

itionisti c htzzy memberships/non-memberships as it was explained in (Szmidt [20],
Szmidt and Kacprzyk [22], Szmidt and Baldwin [21]):

o (1, 1) means that 1t, - | and a" : 0, i.e. total support,

. (0, 0) means p, - 0 and a - 0 what involves u: 1, i.e. total support against,

o (0, 1) means 1r, - 0 and zr - 1 i.e.: complete uncertainty in the support.

In other words both Support Pairs and intuitionistic fizzy set, models give the same

intervals containing the probability of the fact being true, and the difference between the

llpper and lower values of intervals is a measrlre of the trncertainty associated with the

fact.

1B

Baldwin's voting model IFS voting model
voting in favorr n, lr
voting against 7 - p U

abstaining p - n , 7r



4 Common geometrical interpretation

Having in mind that the parameters characteristic for irrtrritionistic ftzzy sets add up to
one, i .e.

t t , - r u i n  -  t  ( S )

and the same for their counterparts for mass assignment theory (see (7) and Table 1), i.e.

n + ( L - p ) + ( p - n , ) - 1

and each of the parameters is from interval [0, 1], we can imagine a unit cube (Figure

1) irrside which there is ABD triangle where the above eqlrations are firlfilled. In other

words, AB D triangle represents a surface where coordinates of any element belonging to

an irrtuitionistic firzzy set or representing any Support Pair can be represented. Each point

belonging to ABD triangle is described via three coordiuates: (lr,,r,n) : (n,,,L - p,p - n')
- respectively for intuitionisti c firzzy set theory and mass assignment theory. Points A

and B represent crisp elements. Point A(I,0,0) - represents elements fully belonging to

an intrritionistic firuzy set as 1t, - I, or equivalently, I00yo population voting for (as n - 1

) Point B(0,1,0) represents elements fully not belonging to an intuitionistic htzzy set

as u - 1 or equivalerrtly, 100% population voting against (as I - yt - 1). Point D(0,0, 1)

represents elements aborrt which we are not able to say if they belong or not belong to an

irrtrritionistic fivzy set (intrritiorristtc fuzzy irrdex 7r - 1) or equivalently, the proportion

abstaining p - n, :1. Segment AB (where n' - 0) represents elements belonging to
c l a s s i c a l f i : z z y s e t s ( 1 r , * u - 1 ) , o r t h e s i t u a t i o n w h e n p - n , - 0 w h a t m e a n s i n t e r m s o f
mass assignments that there is not rrn"certainty in the voting model.

The geometrical representation made it possible to introduce proper formulas for calcu-
lating distances between intuitionistic hrzzy sets, and between support pairs. We remind

here only the formulas needed in out further considerations. For more details we refer

readers to (Sznridt and Baldwin l2ll, Szmidt and Kacprzyk [23]).

o the normalized Hamming distance between any two intuitionistrc frtzzy sets A and

B containing k elements

1 k
l ,rps(A, B) - * I l t ,o(ro) - pB(r)l + lro(r) - us(rr)l + lno(rn) - ""@frID)

L t  t '  i ._1

and its corrnterpart, i.e.

the norrnalized Harnming distance for two sets of facts A and B reprezented via

srrpport pairs

t , n rass (A ,B )  -  : i  ( 1 , , o ( ro )  - � r lB ( r ; ) l  +  l ( I - � po ( " , ) )  -  ( 1  -?B ( " , ) ) l +
2n,  a ' '

? : l

+ l (po("6)  -  n ,4( " , ) )  -  (pu( rn)  -  n 'B@t) ) l )  (11)

For (10) and (11)., there holds, respectively: 01l,1ps(A, B)<1 and 0/.-l,ye,ss(A, B)<1.

(e)

19



In orrr further considerations on entropy, besides the distances, the concept of car-

dirrality will be also useful. In (Szmidt [20], Szmidt and Kacprzyk [24)) a definition of

cardinalities for intrritionisti c hvzy sets is given. Having in mind that definition and

the above considerations concerning parallels of intuitionistic hruzy set theory and mass

assignment theory, we give one definition expressed in terms of both theories.

Deftnition 2 Let A be an, i,rt,tui,ti,on,i,sti,c fu,zzy set wi,th, k el,em,en,ts (i,ntui,ti,on,i,sti,c fuzzy
set th,eory) or equ,i,ual,en,tl,y, a m,ass assi,gn,m,en,t wi,th, k suport pai,rs. Fi,rst, we defin,e th,e

fol,l,owi,n,q two r:ardi,n,al,i,ti,es :

o th,e l,east (" su"re" ) cardi,n,a,t,'i,ty of A i,s equal, to th,e so-ca,l,l,ed si,gm,a-coun,t (cf . Zadeh' [26J),
an,d i,s cal,l,ed h,ere th,e mrrrD C oun,t:

min Ca,rd"(A) - rninf Coun,t(A) - t pA(ri) - I n,(rr) (12)
i ' : I  i : I

o th,e bi,ggest car-di,n,al,i,ty of A, wh,i,ch, i,s possi,bl,e d,ue to r4, i,s cal,l,edth,e maxlCoun,t,
an,d i,s eqrtal, to

max Cord(A) : *u"lCoun,t(A) -

D,(po(",)  + raQ:))  - tpa(r)  (13)
i , : l  i : I

an,d, cl,earl,y, for A' (uh,ere A' i,s a com,pl,em,en,t. of A) we h,aue

k k

min Card,(A") - rninf Coun,t(A') : Lro(*) - Itt - pe@o)) (14)
i  --1 i :7

max Card(A") : maxfCour,t(A") -

= I Qn(*,) * na("u)) - t(1 - n,a(r)) (15)
i : l  i : l

Th,en, th,e cardi,n,al,i,ty of an, i,n,tui,ti,on,i,sti,c fuzzy set or a resptecti,ue m,ass assi,gn,m.en,t i,s

defi,ned &s a n,urn,ber from tlt,e i,n,terual,:

C a,rdA € frnin I C oun,t(A), max I C oun,t(A)) (  16)

5 Entropy

Entropy we exarnine here is a non-protlabilistic-type entropy measlrre. It is entropy in

the sense of De Lrrca ancl Ternrini [15] axioms which are intuitive and have been widely

enrployed in the huzy literature.
De Lrrca and Terrnini (1972) first axiomatized non-probabilistic entropy. The axioms

were formulated irr the following way. Let E be a set-to-point mapping E : F(2) - [0, 1].
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I-t1[t, g "1 1

.di l .  f l  . i t l  { i

Figrrre 2: The triangle ABD (cf. Fig. 1) explaining a

#ttl" l.r.1r

ratio-based measlrre of fuzziness

Hence E ts a fizzy set defined on firzzy sets. E is an entropy measure if it satisfies the

foru De Luca and Terrnini axioms:

E(A) -  E(A' ) (20)

Sirrce the De Luca and Termini axioms (17) (20) were formulated for fizzy sets (given

only by their membership functions, and describing the situation depicted by the segment

AB tnFigure 2), they were reformulated for the intuitionistic fitzzy sets as follows (Szmidt

[20], Szmidt and Kacprzyk l2afi:

i .e . ,  i f

and

i .e . ,  i f

or

E ( A ) - 0  i f f  A e 2 *  ( A n o n - f i n z y )

E(A) -  |  i f f  pA(r i ) :  0.5 for al l  i

E(A)<E(B) if A is less fizzy than B

y A(r)  < t t  n(r)  when 9,6 (r)  <0.5

pA(r)  > p,B(r)  when t te(r)  > 0.5

E ( A ) - 0  i f f  A e 2 "  ( A n o n - f i r u z y )

E(A) - 1 iff tt,A@i) - uA(ri) for all i

E(A)<E(B) if A is less fi izzy than B

1r,1Q)<pn(r)  and ro(r)  > un(r)  for U,B(r)<uB(r)

tr ,q(r)  > y n(r)  and ua(r)<uu(r)  for p,n(r)  > uB(r)

(r7)

(  18)

( 1e)

(21)

(22)

(23)

2 I

a
Rectangle



E(A) -  E(A')

theory axioms (21) and (24) are identical, the
as follows:

(24)

counterparts ofFor mass
axioms (22)

assignment
and (23) are

E(A) - I iff n,a(r6) - 1 - pa(r) for all i (25)

(26)E(A)<E(B) if A is less hrzzy than B

i .e . ,  i f

or

,  o(r)<n 6(r)  and I  -  r ,o(r)  )  I  -  pB(r)  foru u(*)<I  -  pB(r)

n , t @ ) > n , B @ )  a n d  I - p e ( " ) < 1  - p n ( r )  f o r  n , u ( r )  > 1 - p n ( " )

Differences between (1S)-(19), and both (22)-(23) and (25)-(26) occur as we demand

that the counterparts of the axioms (18) (19) for fizzy sets are fulfilled (for intrritionistic

firzzy sets and mass assignmerrts) not only for point G (Figure 2), but for the whole

segment DG.
The firzziness of a fizzy set,, or its entropy, answers the qtrestion: how fizzy is a

fizzy set,. The same qrrestion may be posed in a case of an intuitionistic flzzy set or

an mass assignrnent. We will discuss the term firzziness having in mind our geometric

interpretation of intuitionistic firuzy sets and mass assignments (Figure 1), concentrating

rnainly on the triangle AB D - Figure 2.
As was discussed earlier, non-fuzzy set, (a crisp set) corresponds to the point ,4 [point

A represents the elements fully belonging to a set as (p,a,uA,no) : (1,0,0) or (r,a,I -

?e,?,q,-, i  - (1,0,0)] and the poirrt B [point B represents the elements which fully does

r ro t  be long to  a  set  as  (p ,6 ,uB,nu)  :  (0 ,  1 ,0)  or  ( r r ,o , ,1-  po,PA -  r ,o )  :  (0 ,  1 ,0) ] .  Po in ts

A arrd B representing a crisp set have the degree of fitzziness equal to 0.
A hrzzy set corresponds to the segment AB. When we move from point A towards

point B (along the segment AB, we go through points for which the membership function

(or equivalerrtly - population voting for) decreases (from 1 at point' A to 0 at point B),

the non-mernbership function (or equivalenty - poprrlation voting against) increases (from

0 at point A t,o 1 at point B). For the midpoint G (Figure 2) the values of both the

membership and non-membership functions are equal 0.5. So, the midpoint G has the

degree of fizzness equal 100% (we do not know if the elements represented by point G

belong or if they clo not belong to orrr set). On the segment AG t,he degree of fuzziness

grows (from 0% at A t,o 100% at G). The same sitrration occrlrs on the segment BG. The

degree of. firzziness is equal 0oA at, B, grows towards G (here it is equal to 100%).

An intrritionisti c huzy set or a mass assignment is represented by the triangle AB D

and its interior. A11 points which are above the segment, AB represent elements with a

hesition margin margin (or equivalently - the proportion abstaining) greater than 0. The

most undefirrded is point l). As the hesitation margin for D is equal 1, we can not tell if

the elerrrents represented by this point belong or do not belong to the set. The distance

from D t,o A (full belonging) ir equal to the distance to B (full non-belonging). So, the

degree of htzzirtess for ,D is equal I00%. But the same situation occtrrs for all elements

1rl2 represented lry the segment DG. For DG we have p,nc(u) : I/DG(*6), rnc(rt) > 0
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(eqrrality only for point G), and certainly p,nc("1) + unc(rt) I rnc(*n) - 1. In terms of

the srrpport pairs for DG we have r,nc(*o) - I-poc(*u), Pnc(ro)-n,nc(*r) > 0 (equali ty

only for point G). For every rt, e DG we have: di,stan,ce(A,*o)-di,st,an,ce(8,11).

This geometric representation motivates a ratio-based measure of fuzziness (a similar

approach was proposed in (Kosko [19]) to calculate the entropy of fizzy sets).

A ratio-based measlrre of hrzztness i.e., entropy of an intrritionistic htzzy element or a

srrpport pair represented by point X (belonging to triangle ABD) is given in the following

way:

Definition 3
E ( x )  - - ; ]

where a, i,s a distance(X,,Xr,"or) from X to th,e n,earer poi'n,t Xn.o,

i,s th,e distance(X,X.s,,,) from X to th,e farer poi,n,t Xyn,, am,on,q A

The geometric interpretation confirrns that (27) sat,isfies axioms (21)-(24) and (25)-
( 2 6 ) .

An interpretation of entropy (27) can be as follow. This entropy meastrres the whole

rnissing information which may be necessary to have no doubts when classifying the point

X (representing an element from an intuitionistic htzzy set or a support pair) to the area

of consideration,, i.e. to say say that an element/support pair represented by X fully
belongs (point A) or fully does not belong (poirft' B) to otrr set.

Formula (27) describes the degree of fuzziness for a single element belonging to an
intrritionistic fizzy set or for a single support pair. For k elements/support pairs we have

(27)

am,on4 A an,d B, an,d b

an,d B.

Fortrmately enough, while applyirrg the Hamming distances in (27), the entropy of

intrritionistic firzzy sets is the ratio of the biggest cardinalities (max D, C ounf s) involving

only X and X'. The following theorern was proven (Szmidt [20], Szmidt and Kacprzyk

l24l).

Theorem 1 A generalized entropy measrlre of an intrritionsttc fizzy set of k elements is

E -!-n*'.';

'o 
U Xf - ( t t tu* (t , ,ro, l t ,xi) ,

1, i.e. (29) is valicl for an

(28)

(2s)t r -

where (Atarrassov [1], [2]),

xi.| x:

The sarne Theorem
where

i i t maxCou,nt(Xt n Xf),
r  t  t r n \ , /k k\ ^""Co"rrt,(XnU Xf)

X

- (min( lr ,x;,  l t ,xi) ,

( rn in (n .y  , ,  n  x ; ) ,

23

nrax( ux,, ux))

m in (  ux , ,ux i ) )

mass assignment with k support

xr , )x f  : max(7 -pxo , I _ � r ; ; | >

pairs



Xt U Xf  :  (max("  xn,n,x ; ) ,  min( I  -  px, ,  1  -  n" i ) )

wlrere a complernent Xf rcpresents a support pair (1 - h,n,t), i.". the coordinates of Xf

are the following:
X f : ( 1  - ? t , T l , i , l 2 - n t )

Exarnple 1 Let us calculate the entropy for an element/suport pair represented by point

Xr. The coordinates of Xlexpressed in terms of intuit ionist icftzzy sets are Xr: (1t, ,u,r),

and in terms of mass assignment are equal to (n, I - Ir,p - n,). Let the coordinates are

the following

x t : (1 .1 .1 t  (30 )' 4 '  6 '  1 2 '

Thus from (10), (11)

d,,rs(A,xr) :  ct^t,+ss(A, xr, l t  
-  

; l  .  l t  
-  

* l  .  lo 
- 

hl: ;

dr ,s(B,xr ) :  dnooss(n,x , )  l0  -  + l *  l t  -  1 l+  l0  - : l  : :
|  + t  r  6 l  

'  
l "  r 2 l  3

As r lTps(A,Xt) :  d*ass(A,Xt) ,  we wi l l  denote the both distances as d(A,,X).
From (27)

11, ,, , d,(A, Xt) 1 3 3t r (X , ) : f f i - ;  i : ,  ( 31 )

We can obtain the sarne result using forrnula (29) and having in mind that

- Y t : ( 1 . q .  t )
I  \ 6 ' 4 ' T 2 ' �

and

xrn x i : (* ,X, f i1 _xi

maxCoun t (X 'nx f )  - f  *  h : *

Xtu Xi : , ; , *  , f i t  -  x1

max Counl(X, u Xf) :1+ + - *' /  4  1 2  1 2

so that
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8 , , . ,  
m a x C " * r f ( X t n X i l  _  3(xr) -  -  

m G2)

i .e. the same valtre as (31).
Let rrs consicler another elernent represented l-ry X2 with the coordinates

x z :  f ) , 0 , ) l  ( 3 3 )

Frotn (10), (11) ,  (27) we have

o , l ! , ! = , ) . -  l r - i l + l o - o l  + l o - * l  - r  ( 3 4 )
M , X r )  

-  -  
t

or having in mind that X3 : (0, +, *), *" obtain

x z o  x 3 :  ( 0 , ;  , | )  -  , ;

X z u  x i :  ( * , 0 ,  * )  -  , ,"2 '�Z'

and

E(xr ) :  : t i :+  (sb)

i .e. the same vahre as (34).
For another element representect by X3 with the coordinates Xs: (t,i, 1), *" obtain

drre to (27)

d ( A . x s )  _ l t  - ; l *  l o -  + l +  l o -  i l  r  _ 2E(xs )  - f f i :  : g : j  ( 36 )

or, taking irrto accotrnt that X5 : ( i ,+, i) ,

Xso Xi :  en, ; , ! ;  -  , ;

X s u  x i :  ( 1 , 1 , 1 )  -  t\ t l  4 ,  4 )  
-  / r 3

we obtain from (29)

E(x,) : -- 
+:? (37)

i. e. the same vahre as ( 36 ) .
It is worth noticing that despite of the fact that the lack of knowledge concerning X2,

i.e. trxz : pxz - Tt,Xz - 0.5 is greater than that for X3 (t.e., ny, : PXz - Tt'Xz - 0.25) ,
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the entropy of X2 rs less than the entropy of Xs. It can be explained simply via axiom

(23). This case is also a good ilhrstration of the rrature of entropy. For point X2, in the

best case which can be achieved is a crisp point, i.e.

( t , , " r * T t x z , u p z ) :  ( P x r ,  1 -  P x r )  -  ( 1 , 0 )  ( 3 8 )

while for X3, tlte best what can be attained is

( 1 , , * r * T t x z , u X e ) : ( P * r ,  1 -  P x r ) : f X , j ,  ( 3 9 )

Formula (38) rneans that in the best case X2 can attain a crisp point A (Figure 2),
wlrereas X3 (39) will never do this. So, a (degree of,) fiwziness is bigger for X3 than for

Xz.
Frorn (28) we can calcrrlate entropy of an intuitionistic fiwzy set Z g X : {Xt, X2,Xr}

Taking into account (31), (35), and (36) *" have

t r(n :  + {E(x,)  + n6,) + E(x,)}  -  
* ,*  *** '51 :0 4s (40)

u

6 Concluding remarks

We reminded the parallels of intuitionistic firzzy sets and mass assignment theory. Next,

we forrnulated the counterparts of De Lrrca and Termirri axioms for both theories. Starting

frorn the sarne geometrical interpretation for both theories, w€ introduced a common

measllre of non-probabilistic entropy. Two ways of calcttlating the measllre of entropy

were proposeo.
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