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Abstract

In this article we remind parallels for intuitionistic fuzzy sets and mass assignment
theory, and propose a non-probabilistic-type entropy measure for both of them. The
proposed measure is a result of a common geometric interpretation valid for these
theories, and uses a ratio of distances between considering elements/support pairs
and crisp elements. It is also shown that the proposed measure can be defined in
terms of the ratio of cardinalities: of X N X¢ and X U X°.
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1 Introduction

Fuzziness, a feature of imperfect information, results from the lack of crisp distinction
between the elements belonging and not belonging to a set (i.c. the boundaries of the set
under consideration are not sharply defined). A measure of fuzziness often used and cited
in the literature is an entropy first mentioned by Zadeh [26]. The name entropy was chosen
due to an intrinsic similarity of equations to the ones in the Shannon entropy (Jaynes
[16]). However, the two functions measure fundamentally different types of uncertainty.
Basically, the Shannon entropy measures the average uncertainty in bits associated with
the prediction of outcomes in a random experiment.

De Luca and Termini [15] introduced some requirements which capture our intuitive
comprehension of the degree of fuzziness. Kaufmann [17] proposed to measure the degree
of fuzziness of any fuzzy set A by a metric distance between its membership function and
the membership function (charecteristic function) of its nearest crisp set. Another way
given by Yager [25] was to view the degree of fuzziness in terms of a lack of distinction
between the fuzzy set and its complement. Indeed, it is the lack of distinction between
sets and their complements that distinguishes fuzzy sets from crisp sets. The less the set
differs from its complement, the fuzzier it is. Kosko [19] investigated the fuzzy entropy in
relation to a measure of subsethood.



In this paper we propose a measure of fuzziness for intuitionistic fuzzy sets (Atanassov
[1], [2]) and mass assignment theory (Baldwin [4], [7]), [8]). First, we remind parallels and
a common geometrical representation for both theories (cf. Szmidt and Baldwin [21]).
The geometrical representation makes it possible to discuss the essence of the proposed
measure of entropy and illustrates the first way how to calculate it. It is also shown that
the proposed measure can be stated as the ratio of the cardinalities: that of X N X and
that of X U X¢, where X¢ is the complement of X. For the different approaches we refer
the interested reader to Burillo and Bustince [13], Ban [12], Cornelis and Kerre [14].

2 Brief introduction to intuitionistic fuzzy sets
As opposed to a fuzzy set in X (Zadeh [26]) , given by
A ={<apy(x)>|reX} (1)

“where 1, (z) € [0,1] is the membership function of the fuzzy set A', an intuitionistic
fuzzy set (Atanassov [1], [2]) A is given by

A={<z,pa(x),va(2) > | € X} (2)
where: jig 0 X — [0,1] and v4 : X — [0, 1] such that
0<yia(e) + valm)<1 3)

and yi4(7), va(z) € [0, 1] denote a degree of membership and a degree of non-membership
of x € A, respectively.
Obviously, each fuzzy set may be represented by the following intuitionistic fuzzy set

A= {< 'T‘7/I'A’(m)71—/l’A'(m) > |T EX} (4)
For each intuitionistic fuzzy set in X, we will call
ma(r) =1 — pa(x) — va(z) (5)

an intuitionistic fuzzy index (or a hesitation margin) of © € A and, it expresses a lack
of knowledge of whether z belongs to A or not (cf. Atanassov [2]). It is obvious that
O<ma(z)<1, for each x € X.

3 Brief introduction to mass assignment theory

The theory of mass assignment has been developed by Baldwin [4], [7], [8] to provide a
formal framework for manipulating both probabilistic and fuzzy uncertainty.

A fuzzy set can be converted into a mass assignment (Baldwin [3]). This mass assign-
ment represents a family of probability distributions.

Definition 1 Let A" be a normalized fuzzy set in X = {x} such that
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Figure 1: A common geometrical representation

A= i/ p(x)
r,€X

) = 1, ple)<ple;) for i>j

where ji(x) is the membership function.
The mass assignment associated with A" is (Baldwin [5])

{m} i U= p(ze), {wn, i} o p(@) = pwia)  for i=2,. (6)
with ju (vg) =0 for m ¢ X

Support Pairs (the basic representation of uncertainty in the language FRIL (Baldwin
at al. [7], [11]) are associated with mass assignments and represent an interval contain-
ing an unknown probability. Support Pairs are used to characterize uncertainty in facts
and conditional probabilities in rules. A Support Pair (n,p) comprises a necessary and
possible support and can be interpreted as an interval in which the unknown probability
lies. A voting interpretation is also useful (Baldwin and Pilsworth [6]): the lower (neces-
sary) support n represents the proportions of a sample population voting in favour of a
proposition, whereas (1 — p) represents the proportion voting against; (p — n) represents
the proportion abstaining.

For intuitionistic fuzzy sets (cf. Section 2) we have

e the proportion of a sample population voting in favour of a proposition is equal to
4t (membership function),

e the proportion voting against is equal to v (non-membership function),

e 7 represents the proportion abstaining.
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Table 1:

Baldwin’s voting model | IFS voting model
voting in favour n /L
voting against 1—p v
abstaining p—n T

In Table 1 equality of parameters from Baldwin’s voting model and from intuitionistic
fuzzy set (IFS) voting model is presented.

So we can represent a Support Pair (n, p) using notation of intuitionistic fuzzy sets in
the following way

(n,p) = (n,n+p—n) = (1, p+7) (7)
i.e.. a Support Pair in Baldwin’s voting model can be expressed by using notation of
intuitionistic fuzzy sets. But it is necessary to stress that it is not just simple equivalence.
In our considerations a simplyfing assumption was done - we put a sign of equalty to prob-
abilities (mass assignment theory) and memberships/non-memberships. This assumption
is valid under the condition that each value of membership/non-membership occurs with
the same probability for each element ;. In this paper, for the sake of simplicity we follow
this assumption. Hovewer, in general, probabilities for intuitionistic fuzzy sets are calcu-
lated as was discussed in (Szmidt [20], Szmidt and Kacprzyk [22], Szmidt and Baldwin
21)).

Let us look at three Support Pairs (7) of special interests (Baldwin and Pilsworth [6])

e (1, 1) which represents total support for the associated statement,

(0, 0) which represents total support against, and

(0, 1) which characterizes complete uncertainty in the support.

Of course the above Support Pairs have exactly the same meaning in intuitionistic
fuzzy set models (under the assumption that we consider probabilities for intu-
itionistic fuzzy memberships/non-memberships as it was explained in (Szmidt [20],
Szmidt and Kacprzyk [22], Szmidt and Baldwin [21]):

(1, 1) means that =1 and 7 = 0, i.e. total support,

(0, 0) means + = 0 and 7 = 0 what involves v = 1, i.e. total support against,
e (0, 1) means yt = 0 and m = 1 i.e.: complete uncertainty in the support.

In other words both Support Pairs and intuitionistic fuzzy set models give the same
intervals containing the probability of the fact being true, and the difference between the
upper and lower values of intervals is a measure of the uncertainty associated with the
fact.

The mass assignment structure is best used to represent knowledge that is statistically
based such that the values can be measured, even if the measurements themselves are
approximate or uncertain (Baldwin [9]).
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4 Common geometrical interpretation

Having in mind that the parameters characteristic for intuitionistic fuzzy sets add up to
one, i.e.

p+v+m=1 (8)

and the same for their counterparts for mass assignment theory (see (7) and Table 1), i.e

n+(1l—-p)+(p—n)=1 (9)

and each of the parameters is from interval [0, 1], we can imagine a unit cube (Figure
1) inside which there is ABD triangle where the above equations are fulfilled. In other
words, ABD triangle represents a surface where coordinates of any element belonging to
an intuitionistic fuzzy set or representing any Support Pair can be represented. Each point
belonging to ABD triangle is described via three coordinates: (p,v,m) = (n,1—p,p—n)
— respectively for intuitionistic fuzzy set theory and mass assignment theory. Points A
and B represent crisp elements. Point A(1,0,0) - represents elements fully belonging to
an intuitionistic fuzzy set as 1 = 1, or equivalently, 100% population voting for (as n =1
). Point B(0,1,0) represents elements fully not belonging to an intuitionistic fuzzy set
as v = 1 or equivalently, 100% population voting against (as 1 — p = 1). Point D(0,0,1)
represents elements about which we are not able to say if they belong or not belong to an
intuitionistic fuzzy set (intuitionistic fuzzy index 7= = 1) or equivalently, the proportion
abstaining p — n = 1. Segment AB (where m = 0) represents elements belonging to
classical fuzzy sets (y1 + v = 1), or the situation when p —n = 0 what means in terms of
mass assignments that there is not uncertainty in the voting model.

The geometrical representation made it possible to introduce proper formulas for calcu-
lating distances between intuitionistic fuzzy sets, and between support pairs. We remind
here only the formulas needed in out further considerations. For more details we refer
readers to (Szmidt and Baldwin [21], Szmidt and Kacprzyk [23]).

e the normalized Hamming distance between any two intuitionistic fuzzy sets A and
B containing k elements

lirs(A,B) = 2i Z lta(ws) — pp(x)| + lval@:) — ve(z)| + |ma(es) — mp(zHID)

and its counterpart, i.e.

e the normalized Hamming distance for two sets of facts A and B reprezented via
support pairs

k
hosss(AB) = 53 (matr) = mae)| + (1 = patr) = (1 = pula)| +
nes

+ |pales) = nalw) = (po(a:) — np(i))]) (11)
For (10) and (11), there holds, respectively: 0<l;ps(A, B)<1 and 0</pass(4, B)<1
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In our further considerations on entropy, besides the distances, the concept of car-
dinality will be also useful. In (Szmidt [20], Szmidt and Kacprzyk [24]) a definition of
cardinalities for intuitionistic fuzzy sets is given. Having in mind that definition and
the above considerations concerning parallels of intuitionistic fuzzy set theory and mass
assignment theory, we give one definition expressed in terms of both theories.

Definition 2 Let A be an intuitionistic fuzzy set with k elements (intuitionistic fuzzy
set theory) or equivalently, a mass assignment with k suport pairs. First, we define the
following two cardinalities:

o the least ("sure”) cardinality of A is equal to the so-called sigma-count (cf. Zadeh [26]),
and is called here the min Y. Count:

k
min Card(A) = min )  Count(A Z pa(z:) = n( (12)
i=1

e the biggest cardinality of A, which is possible due to wa, is called the max - Count,
and is equal to

max C’ard(A = max Y  Count(A) =

Z pra(as) +ma(a Zm ) (13)

and, clearly, for A¢ (where A is a complement of A) we have

k k

min Card(A°) = miny_ Count(A°) =Y val(z;) =D (1 —pa(z:)) (14)

i=1 i=1

max Card(Ac) = max »  Count(A°) =
k

Z va(r) +ma(2:) = > (1 —na(z;)) (15)

i=1

Then the cardinality of an intuitionistic fuzzy set or a respective mass assignment is
defined as a number from the interval:

CardA € [min)  Count(A), max ) _ Count(A)] (16)

5 Entropy

Entropy we examine here is a non-probabilistic-type entropy measure. It is entropy in
the sense of De Luca and Termini [15] axioms which are intuitive and have been widely
employed in the fuzzy literature.

De Luca and Termini (1972) first axiomatized non-probabilistic entropy. The axioms
were formulated in the following way. Let E be a set-to-point mapping £ : F/(2%) — [0, 1].
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Figure 2: The triangle ABD (cf. Fig. 1) explaining a ratio-based measure of fuzziness

Hence E is a fuzzy set defined on fuzzy sets. E is an entropy measure if it satisfies the
four De Luca and Termini axioms:

E(A)=0 if Ae€2” (Anon-fuzzy) (17)
E(A)=1 iff ja(r;) =05 forall i (18)
E(A)<E(B) if A is less fuzzy than B (19)
ie., if
pa(r)<ps(r) when jus(2)<0.5
and

pa(x) > pp(r) when pp(r) > 0.5

E(A) = E(4°) (20)

Since the De Luca and Termini axioms (17)-(20) were formulated for fuzzy sets (given
only by their membership functions, and describing the situation depicted by the segment
AB in Figure 2), they were reformulated for the intuitionistic fuzzy sets as follows (Szmidt
[20], Szmidt and Kacprzyk [24]):

E(A)=0 iff Ae€2” (Anon-fuzzy) (21)
E(A) =1 it pa(x;) =va(x;) forall i (22)
E(A)<E(B) if A is less fuzzy than B (23)
ie., if
pa(x)<pp(r) and va(zr) > vp(r) for  pp(x)<vp(z)
or

pa(r) > pp(r) and  va(v)<vg(z) for pp(r) > vp(r)
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E(A) = B(A%) (24)

For mass assignment theory axioms (21) and (24) are identical, the counterparts of
axioms (22) and (23) are as follows:

E(A)=1 i na(r;) =1—pa(x;) forall i (25)
E(A)<E(B) if A is less fuzzy than B (26)
ie., if
na(x)<np(r) and 1—pa(r) >1—pp(x) for np(r)<l —pp(r)
or

na(xr) > nglr) and 1 —pa(z)<l —pp(z) for np(r) >1—ps(r)

Differences between (18)-(19), and both (22)-(23) and (25)-(26) occur as we demand
that the counterparts of the axioms (18)(19) for fuzzy sets are fulfilled (for intuitionistic
fuzzy sets and mass assignments) not only for point G (Figure 2), but for the whole
segment DG

The fuzziness of a fuzzy set, or its entropy, answers the question: how fuzzy is a
fuzzy set. The same question may be posed in a case of an intuitionistic fuzzy set or
an mass assignment. We will discuss the term fuzziness having in mind our geometric
interpretation of intuitionistic fuzzy sets and mass assignments (Figure 1), concentrating
mainly on the triangle ABD - Figure 2.

As was discussed earlier, non-fuzzy set (a crisp set) corresponds to the point A [point
A represents the elements fully belonging to a set as (pa,va,m4) = (1,0,0) or (n4,1 —
pa,pa—na) = (1,0,0)] and the poiut B [point B represents the elements which fully does
not belong to a set as (jig, vp, 75) = (0,1,0) or (n4,1—pa,pa —na) = (0,1,0)]. Points
A and B representing a crisp set have the degree of fuzziness equal to 0.

A fuzzy set corresponds to the segment AB. When we move from point A towards
point B (along the segment AB, we go through points for which the membership function
(or equivalently - population voting for) decreases (from 1 at point A to 0 at point B),
the non-membership function (or equivalenty - population voting against) increases (from
0 at point A to 1 at point B). For the midpoint G (Figure 2) the values of both the
membership and non-membership functions are equal 0.5. So, the midpoint G has the
degree of fuzziness equal 100% (we do not know if the elements represented by point G
belong or if they do not belong to our set). On the segment AG the degree of fuzziness
grows (from 0% at A to 100% at G). The same situation occurs on the segment BG. The
degree of fuzziness is equal 0% at B, grows towards G (here it is equal to 100%).

An intuitionistic fuzzy set or a mass assignment is represented by the triangle ABD
and its interior. All points which are above the segment AB represent elements with a
hesition margin margin (or equivalently - the proportion abstaining) greater than 0. The
most undefinded is point D. As the hesitation margin for D is equal 1, we can not tell if
the elements represented by this point belong or do not belong to the set. The distance
from D to A (full belonging) is equal to the distance to B (full non-belonging). So, the
degree of fuzziness for D is equal 100%. But the same situation occurs for all elements
x; represented by the segment DG. For DG we have pipc(ri) = vpa(®i), mpa(ri) > 0
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(equality only for point G), and certainly jipg(7;) + vpa(ri) + mpa(:) = 1. In terms of
the support pairs for DG we have npg(7;) = 1—ppa(®i), ppa(®i) —npa(ri) > 0 (equality
only for point G). For every x; € DG we have: distance(A,x;)=distance(B, x;).

This geometric representation motivates a ratio-based measure of fuzziness (a similar
approach was proposed in (Kosko [19]) to calculate the entropy of fuzzy sets).

A ratio-based measure of fuzziness i.e., entropy of an intuitionistic fuzzy element or a
support pair represented by point X (belonging to triangle ABD) is given in the following
way:

Definition 3
B(X) =2 (27)

where a is a distance(X, X,ear) from X to the nearer point Xpeqr among A and B, and b
is the distance(X, Xy,,) from X to the farer point Xyq, among A and B.

The geometric interpretation confirms that (27) satisfies axioms (21)—-(24) and (25)-
(26).

An interpretation of entropy (27) can be as follow. This entropy measures the whole
missing information which may be necessary to have no doubts when classifying the point
X (representing an element from an intuitionistic fuzzy set or a support pair) to the area
of consideration, i.e. to say say that an element/support pair represented by X fully
belongs (point A) or fully does not belong (point B) to our set.

Formula (27) describes the degree of fuzziness for a single element belonging to an
intuitionistic fuzzy set or for a single support pair. For k elements/support pairs we have

E=§§Eaa (28)

Fortunately enough, while applying the Hamming distances in (27), the entropy of
intuitionistic fuzzy sets is the ratio of the biggest cardinalities (max Y- Counts) involving
only X and X¢ The following theorem was proven (Szmidt [20], Szmidt and Kacprzyk
[24]).

Theorem 1 A generalized entropy measure of an intuitionstic fuzzy set of k£ elements is

1 Xk: max Count(X; N X¥)
ok max Count(X; U X?)

i=1

E ) (29)

where (Atanassov [1], [2]):

X;NnXS= <min(/1/X,;,/1/Xf), max(vy,, I/XiC)>

X;UX:i= <max(/1,xi, fixe), min(vx,, I/Xic)>

The same Theorem 1, i.e. (29) is valid for an mass assignment with & support pairs
where

X,NX; = <min(nxi,nxic), max(l —px,, 1 — pr)>
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X, UXP = <max(n/Xi,n,Xf), min(1l — px,, 1 — PX;)>

where a complement X¢ represents a support pair (1 — p;,n;), i.e. the coordinates of X7
are the following:

Xf = (1 = Pis N, Pi — ni)

Example 1 Let us calculate the entropy for an element /suport pair represented by point
X;. The coordinates of X expressed in terms of intuitionistic fuzzy sets are X; = (y1, v, ),
and in terms of mass assignment are equal to (n,1 — p,p —n). Let the coordinates are
the following

31 1
Y=o (30)
Thus from (10), (11)
1
drrs(A, X1) = dpass(A, Xi) 1——;4_’0__;_;_'0_ 2} =3
3 5
dips(B, X1) = dass(B, X1) |0 — ZI ‘1 _ _| Lo l -2

As dips(A, X1) = darass(A, X1), we will denote the both distances as d(A, X7).
From (27)

LIRS SRR A 1)

2
We can obtain the same result using formula (29) and having in mind that

13 1
Xi= (= -, —
! (6’4’12)
and
131
XiNXS= (52, =)= X¢
NAT=(G ) =N
max Count(X; N X7) + L_3
! 6 12 12
1 1
X1UX1=(“767—2):X1
3 1 10
(X ¢ -4 —
max Count(X; U X7) = 4+ 5= 13
so that
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max Count(X; N X{) 3
E(Xy) = = - 32
(X1) max Count(X; U X{) 10 (82)

i.e. the same value as (31).

Let us consider another element represented by Xy with the coordinates

1 1
X2 (_2'107 2) (33)
From (10), (11), (27) we have
d(A,Xy) |[L—3+l0-0+]0—3 1
_ ( < 2) _ 2 2 _
( 3 2) ’0—§‘+|1—0l+‘0—§’
or having in mind that X$ = (0, %, %), we obtain
(& 1 1 C
. 1 1
X2 UX; = (5,0’5) = X
and
max Count(Xo N X§) &1
E(Xy) = -2 _
(X) max Count(Xo U X§) 1 2 (35)

i.e. the same value as (34).
For another element represented by X3 with the coordinates X3 = (%, %, i), we obtain

due to (27)

1 1 1
d(B,Xs) Jo—4+1-4[+jo-4 % 3
or, taking into account that X§ = (%, %, %),
XgﬂXé:: (_7_’ )=X§
111
Xz UX5 = (571,1) = X3
we obtain from (29)
max Count(Xs N X§) 3 2
E(X3) = =2 = 37
(Xs) max Count(X3 U X§) 3 3 (37)

i.e. the same value as (36).
It is worth noticing that despite of the fact that the lack of knowledge concerning Xs,

ie. Tx, = Px, — Nx, = 0.5 is greater than that for X3 (i.e., 7x, = px, — nx, = 0.25) ,
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the entropy of Xy is less than the entropy of X3. It can be explained simply via axiom
(23). This case is also a good illustration of the nature of entropy. For point X, in the
best case which can be achieved is a crisp point, i.e.

(/le2 + Tx,, VFz) = (sz, 1 —T)Xz) = (1»0) (38)

while for X3, the best what can be attained is

31
-, = 39
i (39)
Formula (38) means that in the best case X3 can attain a crisp point A (Figure 2),
whereas X3 (39) will never do this. So, a (degree of) fuzziness is bigger for X3 than for
Xo.
From (28) we can calculate entropy of an intuitionistic fuzzy set Z C X = {X, Xy, X3}.
Taking into account (31), (35), and (36) we have

(:“’XB + 7TX3,VX3) = (pr I- st) = (

E(Z) = %{E(Xl) + E(X2) + E(X3)} = %(% + % + g) = 0.49 (40)
[]

6 Concluding remarks

We reminded the parallels of intuitionistic fuzzy sets and mass assignment theory. Next,
we formulated the counterparts of De Luca and Termini axioms for both theories. Starting
from the same geometrical interpretation for both theories, we introduced a common
measure of non-probabilistic entropy. Two ways of calculating the measure of entropy
were proposed.
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