INTUITIONISTIC FUZZY GRAPHS FROM α_{-1} β_{-} AND $(\alpha_{1}$ $\beta)_{-}$ LEVELS

Anthony Shannon and Krassimir Atanassov **

- * University of Technology, Sydney, NSW 2007, AUSTRALIA e-mail: tony@zen.maths.uts.edu.au
- ** Math. Research Lab., P.O.Box 12, Sofia-1113, BULGARIA and Central Lab. on Biomedical Engineering Bulg. Acad. of Sciences, Acad. G. Bonchev str., Bl. 105, Sofia-1113, BULGARIA e-mail: krat@bgcict.bitnet

Some months ago, following [1], we introduced in [2] the concept "an Intuitionistic Fuzzy Graph" (IFGs), which is based on the theory of the Intuitionistic Fuzzy Sets (IFSs) [3]. In [4] it was shown that the IFGs can be described by means of the Index Matrix (IMs; [5]). Here we shall make the next step on the research of the IFGs.

Let the oriented graph G = (V, A) be given (see, e.g. [6]), where V is a set of vertices and A is a set of arcs. Every graph arc connects two graph vertices. Therefore, $A \subset V \times V$ and hence A can be described as a $\{1,0\}$ -matrix. Such an interpretation of graphs is well known - it is used, for example, in [6]. There, the rows and the columns of the matrices used are indexed by the identifiers of the vertices, or of the vertices and of the arcs. The graph G has the following matrix:

Following [7], we shall make the next step, replacing this matrix with an IM. Practically, the semantic form of the matrix may be the same, but now we can use the IM-apparatus described above. On the other hand, we can modify the above matrix form to the following $G = \{V_I \cup \bar{V}, \ \bar{V} \cup V_{O'}, \{a_{i,j}\}\}$, where V_I , V_O and \bar{V} are respectively the sets of the graph input, ouitput and internal vertices. From each vertex of the first type there starts at least one arc, but none enters; in each vertex of the second type at least one arc enters, but none starts; every vertex of the third type has at least one arc ending in it and at least one arc going out from it. In this case for the vertives $v_P \in V_I$ and $v_Q \in V_O$, if there exists an arc, $a_{p,Q} = 1$ and if there is no arc $a_{p,Q} = 0$, but always $a_{Q,D} = 0$.

Obviously, first, the graph matrix (in the sense of IH) now will be of a smaller dimension than the ordinary graph matrix, and second, it can be nonsquare, unlike the ordinary graph matrices.

As in the ordinary case, if a = 1 for the vertex $v_p \in \bar{V}$, then this vertex has a loop.

Following [8], we shall define five cases of Cartesian products of two IFSs. Let $\rm E_4$ and $\rm E_2$ be two universes and let

$$A = \{ \langle x, \mu_{A}(x), \tau_{A}(x) \rangle / x \in E_{1} \},$$

$$B = \{ \langle y, \mu_{B}(y), \tau_{B}(y) \rangle / y \in E_{2} \}.$$

be two IFSs over them. We shall define:

A o₁ B = {<<x, y>, $\mu_A(x), \mu_B(y), \tau_A(x), \tau_B(y)>/x \in E_1 & y \in E_2$ },

A o₂ B = {<< x_1 y>, $\mu_A(x) + \mu_B(y) - \mu_A(x)$, $\mu_B(y)$, $\tau_A(x)$, $\tau_B(y) > /x \in E_4$ & $y \in E_2$ },

A o_3 B = {<<x, y>, $\mu_A(x)$, $\mu_B(y)$, $\tau_A(x) + \tau_B(y) - \tau_A(x)$, $\tau_B(y) > /x \in E_1$ &y $\in E_2$ },

 $A \circ_{4} B = \{ \langle \langle x, y \rangle, \min(\mu_{A}(x), \mu_{B}(y) \}, \max(\tau_{A}(x), \tau_{B}(y) \} \rangle / x \in E_{4} \otimes y \in E_{2} \},$

A o_5 B = {<<x, y>, max($\mu_A(x), \mu_B(y)$), min($\tau_A(x), \tau_B(y)$)>/x $\in E_1 \otimes y \in E_2$ }.

Following [4] we shall describe the IM-representation of a given IFG.

Let E_1 and E_2 be two sets, let everywhere below $x \in E_1$ and $y \in E_2$ and let operation $o \in \{o_1, \dots, o_5\}$. Therefore $\langle x, y \rangle \in E_1$ o E_2 . The set $G^* = \{\langle \langle x, y \rangle, \mu_G(x, y), \tau_G(x, y) \rangle / \langle x, y \rangle \in E_1$ o E_2 is called an o-IFG (shortly, IFG), if the functions $\mu_G \colon E_1$ o E_2 -> $\{0, 1\}$ and $\tau_G \colon E_1 \times E_2$ -> $\{0, 1\}$ define the degree of membership and the degree of non-membership of the element $\langle x, y \rangle \in E_1$ o E_2 to the set G, which is a subset of E_1 o E_2 , respectively, and for every $\langle x, y \rangle \in E_1$ o E_2 :

$$0 \le \mu_G(\mathbf{x}, \mathbf{y}) + \tau_G(\mathbf{x}, \mathbf{y}) \le 1$$

(see [2]). For simplicity below, we shall write G instead of G ...

We must note immediately, that the μ - and τ -values of every element $\langle x, y \rangle \in E_i$ o E_i are given (abstractly defined or measured by some means) directly. In the particular case, the μ - and τ -components of a given IFG can be obtained by some ways using the above Cartesian product definitions.

On the basis of the above definitions, we can show the form of the IM-representation of a given IFG. It is $G = \{V_1, V_1, A\}$, where $V = \{v_1, v_2, \dots, v_n\}$ and

where $\langle \mu(\mathbf{v_i}, \mathbf{v_j}), \tau(\mathbf{v_i}, \mathbf{v_j}) \rangle \in [0, 1] \times [0, 1], i.e., the arc between vertices <math>\mathbf{v_i}$ and $\mathbf{v_j}$ is indexed by $\langle \mu(\mathbf{v_i}, \mathbf{v_j}), \tau(\mathbf{v_i}, \mathbf{v_j}) \rangle$.

Obviously, this IFG representation can be transformed to the form G = $\{V_{\bar{1}} \cup \bar{V}, \ \bar{V} \cup V_{\bar{O}}, \ A\}$, too.

Following [9], we shall define for the given α , $\beta \in [0, 1]$ and for the given IFG G = [V, V, A]:

- the IFG $H_{\alpha}(G) = \{V', V'', A'\}$ for which the arc between the vertices v_i and v_i is indexed by $\langle a_{i,i}, b_{i,i} \rangle$, where:

$$a_{i,j} = \begin{cases} \mu(v_i, v_j), & \text{if } \mu(v_i, v_j) \ge \alpha \\ 0, & \text{otherwise} \end{cases}$$

$$b_{i,j} = \begin{cases} \gamma(v_i, v_j), & \text{if } \mu(v_i, v_j) \ge \alpha \\ 1, & \text{otherwise} \end{cases}$$

- the IFG $N^{\beta}(G) = \{V', V'', A'\}$ for which the arc between the vertices v_i and v_j is indexed by $\langle a_{i,j}, b_{i,j} \rangle$, where:

$$a_{i,j} = \begin{cases} \mu(v_i, v_j), & \text{if } \tau(v_i, v_j) \leq \beta \\ 0, & \text{otherwise} \end{cases}$$

$$b_{i,j} = \begin{cases} i, & \text{otherwise} \\ \tau(v_i, v_j), & \text{if } \tau(v_i, v_j) \leq \beta \end{cases}$$

- the IFG $N_{\alpha,\beta}(G) = \{V', V', A'\}$ for which the arc between the vertices v_i and v_j is indexed by $\langle a_{i,j}, b_{i,j} \rangle$, where:

$$a_{i,j} = \begin{cases} \mu(v_i, v_j), & \text{if } \mu(v_i, v_j) \ge \alpha \text{ and } \tau(v_i, v_j) \le \beta \\ 0, & \text{otherwise} \end{cases}$$

$$b_{i,j} = \begin{cases} \tau(v_i, v_j), & \text{if } \tau(v_i, v_j) \le \beta \text{ and } \tau(v_i, v_j) \le \beta \\ i, & \text{otherwise} \end{cases}$$

and $\mathbf{v}_i \in V'$, $\mathbf{v}_j \in V''$, iff \mathbf{v}_i , $\mathbf{v}_j \in V$ and if in the first and in the third case $\mathbf{a}_{i,j} \geq \alpha$ and if in the second and in the third case $\mathbf{b}_{i,j} \leq \beta$.

For the IMs $A = \{K, L, \{\langle a'_{i}, l_{j}, a''_{k_{i}}, l_{j}\rangle\}\}, B = \{P, Q, \{\langle b'_{p_{r'}}, q_{s'}, b''_{p_{r'}}, q_{s'}\rangle\}\}, where$

KALAP = KALAQ = KAPAQ = LAPAQ = ϕ , some operations and relations can be defined (see $\{5\}$). Two of these operations and an relation (in the intuityionistic fuzzy form) are the following:

$$A \cap B = \{K \cap P, L \cap G, \{\langle c_{u_i}^{\dagger} v_{w_i}, c_{u_i}^{*} v_{w_i}^{*} \rangle \}\}, \text{ where}$$

$$\langle c'_{1}, v'_{1}, c''_{1}, v'_{2} \rangle = \langle \min(a'_{1}, b'_{1}, b'_{1}, q'_{1}), \max(a''_{1}, b''_{1}, b''_{1}, q'_{1}) \rangle$$

for $t_{ij} = k_{ij} = p_{r} \in K \cap P$ and $v_{w} = l_{ij} = q_{g} \in L \cap Q$ and

$$A \cup B = \{K \cup F, L \cup Q, \{\langle c_{u}', v_{w}', c_{u}'', v_{w}'\rangle\}\}, \text{ where}$$

$$\langle c_{\mathbf{t_{u'}}}^{\prime} \mathbf{v_{w'}}^{\prime} c_{\mathbf{t_{u'}}}^{\prime} \mathbf{v_{w}} \rangle = \begin{cases} \langle a_{\mathbf{k_{i'}}}^{\prime} 1_{\mathbf{j}}^{\prime} a_{\mathbf{k_{i'}}}^{\prime} 1_{\mathbf{j}}^{\prime} & a_{\mathbf{k_{i'}}}^{\prime} 1_{\mathbf{j}}^{\prime} & a_{\mathbf{k_{i'}}}^{\prime} 1_{\mathbf{j}}^{\prime} & a_{\mathbf{k_{i'}}}^{\prime} \mathbf{v_{i'}} & a_{\mathbf{k_{i'}}}^$$

In [2] are introduced the following two IFS-operators:

 $\Box A = \{\langle x, \mu_A(x), i-\mu_A(x)\rangle/x\in E\},$

 $QA = \{\langle x, 1-\gamma_A(x), \gamma_A(x) \rangle / x \in E\},$

and here we shall introduce two other IFS-operators (see [3]):

 $C(A) = \{\langle x, \max_{x \in E} \mu(x), \min_{x \in E} \tau(x) \rangle / x \in E\},$

 $I(A) = \{\langle x, \min \mu(x), \max \tau(x) \rangle / x \in E\},$ $x \in E \quad A \quad x \in E \quad A$

which can be transformed for the IFG-case directly.

The following theorems hold.

THEOREM 1: For every two IFGs A and B and for every two α, β € [0, 1]:

(a)
$$N_{\alpha,\beta}(A) = N_{\alpha}(A) \cap N^{\beta}(A)$$
,

(b)
$$\mathbf{N}_{\alpha, \beta}(\mathbf{A} \cap \mathbf{B}) = \mathbf{N}_{\alpha, \beta}(\mathbf{A}) \cap \mathbf{N}_{\alpha, \beta}(\mathbf{B})$$
,

(c)
$$\mathbf{N}_{\alpha, \beta}(\mathbf{A} \cup \mathbf{B}) = \mathbf{N}_{\alpha, \beta}(\mathbf{A}) \cup \mathbf{N}_{\alpha, \beta}(\mathbf{B})$$
.

THEOREM 2: For every IFG G and for every two α_i $\beta \in [0, 1]$:

(a) $DN_{\alpha, \beta}(G) \supset N_{\alpha, \beta}(DG)$,

(b) $N_{\alpha, \beta}(QG) \subset QN_{\alpha, \beta}(G)$,

(c) $C(\mathbb{N}_{\alpha, \beta}(G)) \subset \mathbb{N}_{\alpha, \beta}(C(G))$,

(d) $I(\mathbb{N}_{\alpha, \beta}(G)) \supset \mathbb{N}_{\alpha, \beta}(I(G))$.

REFERENCES:

- [1] Kaufmann A., Introduction a la theorie des sour-ensembles flous, Paris, Masson, 1977.
- [2] Shannon A., Atanassov K., A first step to a theory of the intuitionistic fuzzy graphs, Proceedings of FUBEST (D. Lakov, Ed.), Sofia, Sept. 28-30, 1994, 59-61.
 [3] Atanassov K., Intuitionistic fuzzy sets, Fuzzy sets and Systems
- tems, Vol. 20 (1986), No. 1, 87-96.
 [4] Atanassov K., Index matrix representation of the intuitionis-
- tic fuzzy graphs, Prepr. MRL-MFAIS-10-94, Sofia, 1994, 36-41. [5] Atanassov K. Generalized index matrices, Comptes rendus de l' Academie Bulgare des Sciences, Vol. 40, 1987, No. 11, 15-18.
 [6] Christofides N., Graph Theory, Academic Press, New York, 1975.
- [7] Atanassov K., Shannon A., An application of index matrices in graph theory, submitted to Discrete Mathematics.
- [8] Atanassov K., Stoyanova D., Cartesian products over intuitionistic fuzzy sets, Hethodology of Math. Modelling, Vol. 1, Sofia, 1990, 296-298.
- [9] Atanassov K., Review and new results on intuitionistic fuzzy sets. Preprint IH-MFAIS-1-88, Sofia, 1988.