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1 Introduction

For a piece of data represented by a fuzzy set, information conveyed consists of a membership
function. Subsequently, its related knowledge is derived from information placed in the context
considered, i.e. is context dependent. It may be, for example, a dual measure to entropy (as
considered in Quinlan [9]). The transformation of information into knowledge is critical from a
practical point of view (cf. Stewart [10]). It is a crucial task for problem solving and any analysis
of a specific situation and/or problem. A notable example may here be the omnipresent problem
of decision making.

In this paper we consider information conveyed by a piece of data represented by Atanassov’s
intuitionistic fuzzy set (A-IFS) and its related knowledge that is clearly context dependent.

Information represented by an A-IFS, may be considered just as a generalization of informa-
tion conveyed by a fuzzy set, and consists of the two terms present in the definition of an A-IFS,
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i.e., the membership and non-membership functions (“responsible” for the positive and negative
information, respectively). But, for practical purposes it seems expedient, even necessary, to also
take into account a so-called hesitation margin (cf. Szmidt and Kacprzyk [14], [15], [18], [16],
[19]), [20], Bustince et al. [5], [6], Szmidt and Kukier [23], [24], [25], etc.)

We show in this paper that the entropy alone, although calculated by taking into account the
hesitation margin as well (cf. Szmidt and Kacprzyk [16], [19]) may be not a satisfactory dual
measure of knowledge to be useful from the point of view of decision making or any specific
problem solving activity that is performed via the A-IFSs. The reason is that an entropy measure
answers the question about the fuzziness but does not consider reasons for the fuzziness. So, the
two situations, on the one hand, the one with the maximal entropy for a membership function
equal to a non-membership function (with both of them equal to 0.5), and – on the other hand –
when we know absolutely nothing, are equal from the point of view of the entropy measure (in
terms of the A-IFSs). However, from the point of view of decision making the two situations
are quite different. This is the motivation of this paper as we propose here a new measure of
knowledge for the A-IFSs. The proposed measure is not going to replace the entropy measures
but may complement them by capturing additional features which are relevant when making
decisions.

The new measure of knowledge is tested on several well known benchmarks commonly used
in the broadly perceived analysis of data from the University of California, Irvine repository
(UCI), and on one real data set.

2 Brief introduction to A-IFSs

One of the possible generalizations of a fuzzy set in X (Zadeh [26]) given by

A
′
= {< x, µA′ (x) > |x ∈ X} (1)

where µA
′ (x) ∈ [0, 1] is the membership function of the fuzzy set A′ , is an A-IFS (Atanassov [1],

[3]) A is given by
A = {< x, µA(x), νA(x) > |x ∈ X} (2)

where: µA : X → [0, 1] and νA : X → [0, 1] such that

0<µA(x) + νA(x)<1 (3)

and µA(x), νA(x) ∈ [0, 1] denote a degree of membership and a degree of non-membership of
x ∈ A, respectively.

Obviously, each fuzzy set may be represented by the following A-IFS

A = {< x, µA′ (x), 1− µA′ (x) > |x ∈ X} (4)

An additional concept for each A-IFS in X , that is not only an obvious result of (2) and (3) but
which is also relevant for applications, we will call (Atanasov [3])

πA(x) = 1− µA(x)− νA(x) (5)
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a hesitation margin of x ∈ A which expresses a lack of knowledge of whether x belongs to A or
not (cf. Atanassov [3]). It is obvious that 0<πA(x)<1, for each x ∈ X .

The hesitation margin turns out to be important while considering the distances (Szmidt and
Kacprzyk [14], [15], [18], entropy (Szmidt and Kacprzyk [16], [19]), similarity (Szmidt and
Kacprzyk [20]) for the A-IFSs, etc. i.e., the measures that play a crucial role in virtually all
information processing tasks.

Hesitation margins turn out to be relevant for applications - in image processing (cf. Bustince
et al. [5], [6]) and classification of imbalanced and overlapping classes (cf. Szmidt and Kukier [23],
[24], [25]), group decision making, negotiations, voting and other situations (cf. Szmidt and
Kacprzyk papers).

In our further considerations we will use the notion of distances. In Szmidt and Kacprzyk [15],
[18], Szmidt and Baldwin [11], [12], it is shown why in the calculation of distances between A-
IFSs one should use all three terms describing A-IFSs.

The most often used distances between A-IFSs A,B in X = {x1,, . . . , xn} are:
– the normalized Hamming distance (Szmidt and Baldwin [11], [12], Szmidt and Kacprzyk [15],
[18]):

lIFS(A,B) =
1

2n

n∑
i=1

(|µA(xi)− µB(xi)|+ |νA(xi)− νB(xi)|+ |πA(xi)− πB(xi)|) (6)

– and the normalized Euclidean distance (Szmidt and Baldwin [11], [12], Szmidt and Kacprzyk
[15], [18]):

qIFS(A,B) =

= (
1

2n

n∑
i=1

(µA(xi)− µB(xi))
2 + (νA(xi)− νB(xi))2 + (πA(xi)− πB(xi))2)

1
2 (7)

For distances (6), and (7) we have 0<lIFS(A,B)<1, and 0<qIFS(A,B)<1. Clearly these dis-
tances satisfy the conditions of the metric.

Also the notation of a complement set AC will be used

AC = {〈x, νA(x), µA(x), πA(x)〉|x ∈ X} (8)

2.1 Entropy

It is necessary to stress that the entropy we examine and then use here is a non-probabilistic-
type entropy measure for the A-IFSs in the sense of De Luca and Termini [7] axioms which
are intuitive and have been widely employed in the fuzzy literature. The axioms were properly
reformulated for A-IFSs (see Szmidt and Kacprzyk [16]).

In our further considerations concerning the entropy, in addition to the distances, the concept
of a cardinality of an A-IFS will also be useful.

Definition 1 (Szmidt and Kacprzyk [16], [17]) Let A be an A-IFS in X . First, we define the
following two cardinalities of an A-IFS:
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• the least (”sure”) cardinality of A is equal to the so-called sigma-count (cf. Zadeh [26],
[27], and is called here the min

∑
Count:

minCard(A) = min
∑

Count(A) =
n∑

i=1

µA(xi) (9)

• the biggest cardinality of A, which is possible due to πA, is called the max
∑
Count, and

is equal to

maxCard(A) = max
∑

Count(A) =
n∑

i=1

(µA(xi) + πA(xi)) (10)

and, clearly, for Ac (where Ac is a complement of A) we have

minCard(Ac) = min
∑

Count(Ac) =
n∑

i=1

νA(xi) (11)

maxCard(Ac) = max
∑

Count(Ac) =
n∑

i=1

(νA(xi) + πA(xi)) (12)

Then the cardinality of an A-IFS is defined as a number from the interval:

CardA ∈ [min
∑

Count(A),max
∑

Count(A)] (13)

Remark: in the above formulas (9)–(13), for i = 1, we will use later, for simplicity, the following
symbols: minCount(A) instead min

∑
Count(A), maxCount(A) instead max

∑
Count(A),

minCount(Ac) instead min
∑
Count(Ac), maxCount (Ac) instead max

∑
Count(Ac).

The measure of entropy answers the question: how fuzzy is a fuzzy set? In other words, en-
tropy E(x) measures the whole missing information which may be necessary to say if an element
x fully belongs or fully does not belong to our set (see Szmidt and Kacprzyk [16]).

Definition 2 A ratio-based measure of fuzziness i.e., entropy of an intuitionistic fuzzy element is
given in the following way:

E(x) =
a

b
(14)

where a is a distance(x, xnear) from x to the nearer point xnear among M(1, 0, 0) and N(0, 1, 0),
and b is the distance(x, xfar) from x to the farer point xfar among M(1, 0, 0) and N(0, 1, 0).

Formula (14) describes the degree of fuzziness for a single element belonging to an A-IFS. For n
elements belonging to an A-IFS we have

E =
1

n

n∑
i=1

E(xi). (15)

Fortunately enough, while applying the Hamming distances in (14), the entropy of A-IFSs is
the ratio of the biggest cardinalities (max

∑
Counts) involving only x and xc. The following

theorem was proven in (Szmidt and Kacprzyk [16]).

Theorem 1 A generalized entropy measure of an A-IFS with n elements is

E =
1

n

n∑
i=1

maxCount(xi ∩ xci)
maxCount(xi ∪ xci)

. (16)
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3 Measure of information and knowledge for the A-IFSs

The information concerning a particular element x belonging to (the support of) an A-IFS is
equal to µ(x) + ν(x), or, in other words: 1− π(x). But it is one aspect of information only. For
each fixed π there are different possibilities of combination between µ and ν. The combination
between them influences strongly the amount of knowledge. The knowledge (for a fixed π) is
different for the distant values between µ and ν, and for the close values between µ and ν. For
example, if π = 0.1, the knowledge for the situation while µ = 0.85 and ν = 0.05 is bigger than
for the case: µ = 0.45 and ν = 0.45. Entropy proposed by Szmidt and Kacprzyk ([16], [17]) is a
good measure answering the question how fuzzy is an A-IFS (when considering the entropy one
is not interested in the reasons of fuzziness). But when making decision, one is also interested in
making differences between the following situations:

• we have no information at all, and

• we have a large number of arguments in favor but an equally large number of arguments in
favor of the opposite statement.

In other words, we would like to have a measure making a difference between (0.5, 0.5, 0), and
(0, 0, 1). To distinguish between these two types of situations, we should take into account, beside
the entropy measure, also the hesitation margin π.

A good measure of the amount of the knowledge (useful from the point of view of decision
making) related to a separate element x ∈ X seems to be:

K(x) = 1− 0.5(E(x) + π(x)) (17)

where E(x) is an entropy measure given by (14) (Szmidt and Kacprzyk [16]), π(x) is the hesita-
tion margin.

MeasureK(x) (17) makes it possible to meaningfully represent what, in our context, is meant
by the amount of knowledge, and is simple both conceptually and numerically which is a big
asset while solving complex real world problems.

The properties of (17) are a consequence of the properties of entropy measure E(x), and the
fact that the lack of information π(x) was added, and normalized, namely:

1. 0 ≤ K(x) ≤ 1;

2. K(x) = K(xC);

3. For a fixed value of π, K(x) behaves dually to the entropy measure (i.e., as 1− E(x));

4. For a fixed E(x), K(x) increases while π decreases.

In Figure 1 we can see the shape of K(x), and its contour plot.
For n elements, the total amount of knowledge K is:

K =
1

n

n∑
i=1

(1− 0.5(E(xi) + π(xi))) (18)
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Figure 1: a) - measure I(x); b) - its contourplot

To experimentally verify if the proposed measure of knowledge K (17) for the A-IFSs gives
expected results, we use several well known benchmarks from the University of California, Irvine
repository (UCI) (previously, in Szmidt, Kacprzyk, Bujnowski [22] we have examined Quinlan’s
example [9], the so-called “Saturday Morning”).

3.0.1 Results for some benchmarks

We test measure “K” on several well known benchmarks commonly used in the broadly perceived
analysis of data from the University of California, Irvine repository (UCI), and one real data set
(IVH 3-4). We use the data sets consisting of 2 classes with different numbers of attributes and
instances, namely:
– “Pima” (UCI, 768 instances, 8 attributes, 2 classes),
– “Ionosphere2” (UCI, 351 instances, 33 attributes, 2 classes),
– “Sonar” (UCI, 208 instances, 60 attributes, 2 classes),
– real data “IVH 3-4” (“IVH” means an intraventricular hemorrhage – a bleeding into the brain’s
ventricular system, where the cerebrospinal fluid is produced and circulates through towards the
subarachnoid space. It can result from physical trauma or from hemorrhaging in stroke; 26 at-
tributes, 2 classes).

To obtain the results we construct an A-IFS counterpart of each data set (the method is de-
scribed in Szmidt and Kacprzyk [21], and in [13]).

Next, for each attribute of the data set considered, the measure of the amount of knowledge
K (17), and entropy E (14)–(15) is calculated. To evaluate both measures we construct two
intuitionistic fuzzy trees: the first tree constructed using the entropy, the second tree by using
measure K (both measures may give different order of the attributes, and as a result, different
trees). We have verified the accuracy for both trees and the results are summarized in Table 1.

The values of classification accuracy presented in Table 1 are obtained with the 10–fold cross-
validation (in 10 experiment so that they are average results obtained from 100 trees). The size of
the training and testing subsets was 50/50 % in each experiment.

In Table 1 we have the following information. In the first column there is the name of the
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Table 1: Classification accuracy of classification for some benchmarks using entropy (14) or
measure K (17) tree based techniques

Data Pru- Measure Correctly recognized [%]
ned class “1” class “0” together

Pima (5,2), training No Entropy 73.95 + 6.84 83.39 + 3.73 80.10 + 0.57
Pima (5,2), testing No Entropy 67.27 + 12.22 80.24 + 7.01 75.72 + 4.37
Pima (5,2), training No Measure K 67.35 + 7.88 86.28 + 3.98 79.67 + 0.57
Pima (5,2), testing No Measure K 59.78 + 11.21 82.10 + 7.45 74.31 + 4.34
Pima (5,2), training Yes Entropy 59.78 + 4.54 87.04 + 2.20 77.53 + 0.50
Pima (5,2), testing Yes Entropy 57.58 + 9.94 85.46 + 5.78 75.73 + 4.28
Pima (5,2), training Yes Measure K 56.95 + 5.39 88.32 + 2.73 77.38 + 0.62
Pima (5,2), testing Yes Measure K 53.40 + 11.31 86.30 + 5.97 74.82 + 4.42

Ionosphere2 (4,3), tr No Entropy 97.07 + 1.69 88.44 + 3.14 93.97 + 0.75
Ionosphere2 (4,3), te No Entropy 95.10 + 4.59 81.84 + 11.47 90.36 + 4.50
Ionosphere2 (4,3), tr No Measure K 96.20 + 1.63 90.23 + 3.01 94.06 + 0.68
Ionosphere2 (4,3), te No Measure K 94.23 + 5.55 83.15 + 10.89 90.25 + 5.18
Ionosphere2 (4,3), tr Yes Entropy 97.00 + 1.80 83.38 + 2.52 92.11 + 1.01
Ionosphere2 (4,3), te Yes Entropy 94.75 + 5.38 80.19 + 10.93 89.54 + 5.06
Ionosphere2 (4,3), tr Yes Measure K 96.31 + 1.92 84.17 + 2.63 91.95 + 1.17
Ionosphere2 (4,3), te Yes Measure K 94.35 + 5.56 80.53 + 10.73 89.40 + 5.13

Sonar (5,3), training No Entropy 96.41 + 2.32 96.08 + 2.23 96.23 + 0.73
Sonar (5,3), testing No Entropy 79.24 + 12.83 79.45 + 11.91 79.39 + 7.55
Sonar (5,3), training No Measure K 96.78 + 2.40 96.63 + 2.31 96.70 + 0.91
Sonar (5,3), testing No Measure K 79.80 + 14.66 81.94 + 11.93 80.88 + 7.76
Sonar (5,3), training Yes Entropy 91.41 + 3.08 94.64 + 2.54 93.14 + 1.30
Sonar (5,3), testing Yes Entropy 75.94 + 14.06 79.67 + 12.09 77.94 + 7.84
Sonar (5,3), training Yes Measure K 91.84 + 2.80 94.64 + 2.40 93.34 + 1.38
Sonar (5,3), testing Yes Measure K 76.52 + 16.26 80.27 + 12.31 78.50 + 8.41

IVH 3-4 (5,3), training No Entropy 75.86 + 9.98 98.03 + 0.98 96.38 + 0.68
IVH 3-4 (5,3), testing No Entropy 21.33 + 30.71 95.09 + 4.39 89.52 + 4.52
IVH 3-4 (5,3), training No Measure K 80.21 + 12.06 97.75 + 1.00 96.44 + 0.57
IVH 3-4 (5,3), testing No Measure K 22.67 + 30.75 94.34 + 4.54 88.96 + 4.65
IVH 3-4 (5,3), training Yes Entropy 17.79 + 11.26 99.16 + 2.46 93.09 + 1.83
IVH 3-4 (5,3), testing Yes Entropy 5.33 + 14.77 98.18 + 3.82 91.24 + 3.58
IVH 3-4 (5,3), training Yes Measure K 18.07 + 11.80 99.36 + 2.10 93.29 + 1.59
IVH 3-4 (5,3), testing Yes Measure K 5.50 + 15.18 98.29 + 3.37 91.34 + 3.13

tested data, the two numbers in the brackets mean the number of triangle representations used for
granulation of the attributes space, and the depth of the tree, respectively. We can also find out if
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the results concern the training or testing data. In the second column we can see if the tree has
been pruned or not. In the third column we have information which measures was applied while
constructing a tree. In the last three columns there are results of classification, for each class
separately, and the general accuracy (for both classes together).

Measure K gives better results (test set) for the Sonar data, for the unpruned tree of depth 3,
80.9 % of instances is correctly recognized while using measure K, while for the same kind of
tree (depth 3, unpruned) built via the entropy, 79.4 % of instances is correctly classified. Class “1”
of the Sonar data is equally well seen by both measures but Class “0” is better recognized while
using measure K (K: 81.9 %; entropy: 79.5 %).

General accuracy for Pima data (pruned tree of depth 2, training subset) is slightly better for
entropy (75.7 %) than for measure K (74.8 %) but class “0” is better recognized via applying
measure K (86,3 %) than while using entropy 85.5 %).

A similar situation occurs for Ionosphere2, unpruned tree of depth 3: the general accuracy
is slightly better while applying the entropy (90.4 %) than measure K (90.3 %) but class “0” is
better seen while applying measure K (83.2 %) than while applying the entropy (81.8 %).

For the IVH 3-4 data, the pruned tree of depth 3, the general accuracy is slightly better for
measure K (91.3 %) than for the entropy (91.2 %). The same situation is visible for recognizing
both classes separately: for class “1”, using the entropy we get a worse result, i.e. 5.3 % of
correctly seen cases, while for measure K the 5.5 % of accuracy is obtained. For class “0”, using
the entropy we obtain a worse result again – 98.2 % of the correctly recognized instances than for
measure K for which it is 98.3 %.

4 Conclusions

We have discussed and tested on some benchmarks from the UCI a measure of knowledge for the
A-IFSs. The measure keeps the advantages of the entropy measure (reflecting the relationship of
the positive and negative knowledge) but additionally also emphasizes the influence of the amount
of the lacking information (expressed by the hesitation margin). The measure has been intended
to be useful from the point of view of decision making.
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