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Abstract: The aim of this contribution is to formulate some definitions of almost uniformly
convergence for a sequence of observables in the M 1/ -algebra of the intuitionistic fuzzy sets. We
define a partial binary operation © called difference on MV -algebra of intuitionistic fuzzy sets.
As an illustration of the use the almost uniformly convergence we prove a variation of Egorov’s
theorem for the observables in MV -algebra of intuitionistic fuzzy sets.
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1 Introduction

The year 2023 is the 40-th anniversary of the invention of the concept and theory of intuitionistic
fuzzy sets by K. T. Atanassov in the paper [1]. As an intuitionistic fuzzy set A on () he
understands a pair (4, v4) of mappings 14,4 : Q — [0, 1] such that pa+v4 < 1g. The concept
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of the intuitionistic fuzzy sets is the generalization of the concept of the fuzzy sets introduced by
L. Zadeh (see [13, 14]). Namely if u4 : Q — [0,1] is a fuzzy set, then A = (ua,1 — pa)
is the corresponding intuitionistic fuzzy set. Sometimes we need to work with intuitionistic
fuzzy events. An intuitionistic fuzzy event is an intuitionistic fuzzy set A = (ua,4) such
that a4, v4 : 2 — [0, 1] are S-measurable (see [2, 3, 8]). The family of all IF-events on (€2, S)
will be denoted by F.

In papers [7, 9] Riean constructed the suitable MV -algebra (M, &, ®, -, (0, 1), (1a, 0q))
to the intuitionistic fuzzy space (F, m). In this paper we study an almost uniformly convergence
for a sequence of observables on mentioned MV -algebra and we formulate some definitions of
this convergence. As an example of the use of almost uniformly convergence we prove a variation
of the Egorov’s theorem for MV -algebra of intuitionistic fuzzy sets. This theorem says about
a connection between almost everywhere convergence and almost uniformly convergence. We
define a partial binary operation © called difference on MV -algebra of intuitionistic fuzzy sets.
We are inspired by the results of B. RieCan in paper [6]. There he studied an almost uniformly
convergence in D-posets.

Remark that in a whole text we use a notation “IF” in short as the phrase “intuitionistic fuzzy”.

2 MV-algebra of intuitionistic fuzzy sets

In this section we study the properties of the MV -algebra of IF-sets. In papers [7, 9] B. RieCan
showed that any IF-space / can be embedded to a convenient M 1 -algebra. Now we recall the
basic notions about MV -algebras. By the Mundici theorem any M V' -algebra can be defined by
the help of an [-group (see [11]).

Definition 2.1 ([11]). By an (-group we shall mean the structure (G, +, <) such that the following

properties are satisfied:
(i) (G,+) is an Abelian group;
(ii) (G, <) is alattice;
(iii) a<b=—a+c<b+ec

For each (-group G, an element u € G is said to be a strong unit of G, if for all a € G there is an
integer n > 1 such that nu > a (nu is the sum u + . . . + u with n).

Example 2.1. Let (2, S) be a measurable space, S be a o-algebra. Consider

G = {A=(pua,va);pa,va:Q— RareS — measurable functions},
A+B = (ua+psvatvs—la)
A<B <= pua<pup,va>vp.

Then (G, +, <) is an (-group with the neutral element 0 = (0q, 1q),
A —B = (pa—pp,va—vp+1a)
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and the lattice operations

AVB = (uaVup,vaAvg),
AANB = (uaApp,vaVug).

Definition 2.2 ([11]). An MV -algebra is an algebraic system (M, ®,®,—,0,u), where &, ® are
binary operations, — is a unary operation, 0, u are fixed elements, which can be obtained by the
following way: there exists a lattice group (G, +, <) such that M = {x € G;0 < = < u}, where
0 is the neutral element of G, u is a strong unit of G, and

a®db = (a+0b)Au,
a®b = (a+b—u)VO0,

-a = u—a.

Here \/, N\ are the lattice operations with respect to the order and —a is the opposite element of

the element a with respect to the operation of the group.

Example 2.2. Let (£, S) be a measurable space, M the family of all pairs A = (114, v4), where

pa,va : Q — [0, 1] are S-measurable functions,

A®SB = ((pa+ps)Alg, (va+ve—1a)V0q),
AOB = ((pa+ps—1a)VO0q, (va+vp)Alg)),
—A = (lo — pa,lg —va).

Then the system (M, ®,®,—, (0q, 1q), (1g,0q)) is an MV -algebra. Here the corresponding
group is (G, +, <) considered in Example 1.

Definition 2.3 ([11]). An MV -algebra M is said to be o-complete if its underlying lattice is
o-complete, i.e., every non-empty countable subset of M has a supremum in M.

Every finite MV -algebra M is o-complete - indeed, M is complete, in the sense that every
non-empty subset of M has a supremum in M.

Definition 2.4 ([10]). Let (M,®,®,—,0,u) be an MV -algebra. By a finitely additive state
on an MV -algebra M is considered each monotone mapping (i.e. a < b = m(a) < m(b))
m : M — [0, 1] satisfying the following conditions:

(i) m(u) =1,m(0) =0;
(ii) a ©b=0= m(a®b) =m(a)+m(b).
A finitely additive state is a state, if moreover
(iii) a, / a = m(a,) / m(a).

We say that m is faithful (also called, strictly positive) if m(x) # 0 whenever x # 0, x € M.
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Example 2.3. Let (M, @, ®, 7, (0q, 1q), (1, 0q)) be the M V-algebra constructed in Example 2.2.
By a state on an MV -algebra M we understand each monotone mapping m : M — [0, 1] (i.e.
A < B = m(A) < m(B)) satisfying the following conditions:

(i) m((1lg,0q)) = 1,m((0q, 1g)) = 0;
(i) A ®B = (0q,1g) = m(A @ B) = m(A) +m(B);
(iii) A, /A =m(A,) /m(A)
forall A;A,,B e M, née N.
Following proposition says about the properties of a state m on the MV -algebra M.
Proposition 2.1 ([11]). Let m be a finitely additive state on an MV-algebra M. Then we have:
(i) m(—a) =1—m(a) foralla € M;
(ii) m is a valuation: m(a) +m(b) = m(a @ b) +m(a ® b) forall a,b € M;
(iii) if m is faithful, then m is strictly monotone: if a < b, then m(a) < m(b),

(iv) m is also a valuation with respect to the underlying lattice order of M stated otherwise,
forall a,b € M, we have m(a) + m(b) = m(a V b) + m(a A b);

(v) m is subadditive, in the sense that m(a V b) < m(a & b) < m(a)+ m(b).
Each state on MV -algebra is sub-o-additive.

Lemma 2.1 ([S]). Let m be a state on MV-algebra M. Then

m( \/ an> < Zm(an)
n=1 n=1
for each sequence (a,,)?, a, € M.

Now we recall the definition of n-dimensional observable in M V-algebras.

Definition 2.5 ([11]). Let M be an MV-algebra. An n-dimensional observable of M is a map
x : B(R") — M satisfying the following conditions:

(i) (R") = u;
(ii) whenever A, B € B(R") and AN B = (), then x(AU B) = z(A) ® z(B);
(iii) forall A, A; € B(R"), i€ N ,if A; /' A, then x(4A;) / x(A).
When n = 1 we say that x is an observable.

The condition (ii) above states that, whenever A N B = (), then z(AU B) = z(A) 4+ x(B) in
the ¢-group with strong unit corresponding to M.

338



Example 2.4. Let (M, D, ®, =, (0q, 1q), (1, 0q)) be the MV -algebra constructed in Example 2.2.
An n-dimensional observable of MV-algebra M is a map x : B(R") — M satisfying the
following conditions:

(i) z(R") = (1o, On);
(ii) whenever A, B € B(R") and AN B = (), then x(AU B) = x(A) ® x(B);
(iii) forall A, A; € B(R"),1 € N ,if A; /' A, then x(4A;) / x(A).

When n = 1 we say that x is an observable.

3 Almost uniformly convergence in MV-algebra of IF-sets

In this section we study an almost uniformly convergence of observables in MV-algebra of IF-sets
constructed in Example 2.2. We show some definitions of this convergence.

Definition 3.1. Let (M, &, ®, —, (0g,1q),(10,0q)) be the MV-algebra constructed in Example 2.2

and m be a state. We say that the sequence (x,)° of the observables converges m-almost

uniformly to 0, if

Va >0 FAeM: m(-A) < a,
¥B>0 JkeN Vn>k: A<z.((=88)).

The Definition 3.1 can be rewritten in the following form.

Definition 3.2. Let (M, ®, ®, —, (0q,1q),(1q,0q)) be the M V-algebra constructed in Example 2.2

and m be a state. We say that the sequence (x,)3° of the observables converges m-almost

uniformly to 0, if

Va>0 JAeM: m(A)>1—aq,
V>0 dke N Vn>k: Agmn((—ﬁ,ﬁ)).

Now we define a partial binary operation & called difference on the MV -algebra of IF-sets
and we formulate a definition of almost uniformly convergence using this partial binary operation.
We are inspired by paper [6]. There B. RieCan studied an almost uniformly convergence in
D-posets.

Let (M, ®,®,, (0q, 1a), (1o, 0q)) be the MV -algebra constructed in Example 2.2. If A =
(a,va) € M, B = (up,vp) € Mand B < A, then we define a partial binary operation © on
M by

ASB=((pa—ps)VO0q,(va—ve+ 1lg) A lg).

It is easy to see, that A & B = A ® —B. Really

A®-B = (ua,va)© (lg —pp, 1o —vp)
= ((pa+1lo—pp —1a) VO0q, (va + 1o — vB) A lo)
= ((/’LA_,LLB>\/OQ7(VA_7/B+1Q>/\]_Q):A@B.
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Definition 3.3. Let (M, ®, ®, —, (0g,1q),(10,0q)) be the MV-algebra constructed in Example 2.2
and m be a state. We say that the sequence (x,)3° of the observables converges m-almost

uniformly to 0, if

Va>03CeM: m(C)>1—q,
V8>03ke NVn>k 3C, € M,m(C,) <a, C, <Cp1 <C:COC, <z,((—8,8)).

In [12] F. Chovanec proved that every MV -algebra M is a D-poset, where b S a = b ® —a.
Recall that D-poset is partially ordered set D with the greatest element 1, and with a partial
binary operation & such that b & a is defined if and only if a < b and satisfying the following
conditions (see [12]):

(i) ifa <b,thenbSa<bandbo (boa)=a
(i) ifa <b<cthenboa<cOaand (cSa)©(cOb) =bOa;

In paper [5] we formulated an almost uniformly convergence for a family of IF-events F.
We proved a variation of the Egorov’s theorem, too. The results were the generalization of the
results in [4], because if g : Q — [0,1] is a fuzzy set, then A = (ua,1 — pa) : Q@ —
[0,1]? is the corresponding intuitionistic fuzzy set. Next theorem shows a connection between
m-almost everywhere convergence and m-almost uniformly convergence of the observables in
the MV -algebra (M, @, ®, =, (0q, 1q), (1o, 0q)) constructed in Example 2.2 with respect to the
state m.

Theorem 3.1. (A variation of Egorov’s Theorem) Let (M, ®, ®, —, (0g, 1a), (1q,0q)) be the
MYV -algebra constructed in Example 2.2 and m be a state. If a sequence (x.,,)7° of the observables
converges m-almost everywhere to 0, then the sequence (x,)}° converges m-almost uniformly
to 0.

o

Proof. Let a sequence of the observables (x,);° converges m-almost everywhere to 0. By
Definition 2.13 in [11] we have

n(AVA=((-53))

-Ae((-49)

n=~k

Put

Then A} < A}, and

(V)= (VA= ((53)) = v

for every p, i.e. lim m(Ap) =1.
By (1) we have that for every o > 0 and every p there exists Ap € M such that

340



Put -
_ P
A= /\ Ak(p)’
p=1

then using De Morgan rules we have

p=1

Therefore using sub-o-additivity of state m (see Lemma 2.1) and using the inequality (2) we

m(-A) = m< V ﬁAz(m> < Zm(ﬁAz(m) <> % -

p=1 p=1 p=1

obtain

To every 3 > 0 choose p such that ]l? < 3. Then

® N 11 11

p=1 n=k( pp

i.e. by Definition 3.1 the sequence (,,);° of observables converges m-almost uniformly to 0. [

4 Conclusion

The paper is concerned in a probability theory on the MV -algebra (M, &, ®, =, (0g,1q),(10,0q))
constructed in Example 2.2. We formulated three definitions of m-almost uniformly convergence
for a sequence of observables in the MV -algebra M. We defined a partial binary operation &
called difference on mentioned MV -algebra M. Therefore the MV -algebra M is a D-poset
(M, <,6,(1q,0q)). We proved the Egorov’s theorem and we showed the connection between
an almost everywhere convergence and an almost uniformly convergence of observables in MV -
algebra M.
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