Notes on Intuitionistic Fuzzy Sets Print ISSN 1310–4926, Online ISSN 2367–8283 2023, Volume 29, Number 4, 335–342 DOI: 10.7546/nifs.2023.29.4.335-342

Almost uniformly convergence on MV-algebra of intuitionistic fuzzy sets

Katarína Čunderlíková

Mathematical Institute, Slovak Academy of Sciences Štefánikova 49, 814 73 Bratislava, Slovakia e-mail: cunderlikova.lendelova@gmail.com

> This paper is dedicated to the 20-th anniversary of the research of intuitionistic fuzzy sets in Slovakia

Received: 16 October 2023 Accepted: 5 December 2023 **Revised:** 30 November 2023 **Online First:** 11 December 2023

Abstract: The aim of this contribution is to formulate some definitions of almost uniformly convergence for a sequence of observables in the MV-algebra of the intuitionistic fuzzy sets. We define a partial binary operation \ominus called difference on MV-algebra of intuitionistic fuzzy sets. As an illustration of the use the almost uniformly convergence we prove a variation of Egorov's theorem for the observables in MV-algebra of intuitionistic fuzzy sets.

Keywords: MV-algebra, ℓ -groups, Intuitionistic fuzzy sets, States, Observables, Difference, Almost uniformly convergence, Egorov's theorem.

2020 Mathematics Subject Classification: 03B52, 60A86, 60B10.

1 Introduction

The year 2023 is the 40-th anniversary of the invention of the concept and theory of intuitionistic fuzzy sets by K. T. Atanassov in the paper [1]. As an **intuitionistic fuzzy set A** on Ω he understands a pair (μ_A, ν_A) of mappings $\mu_A, \nu_A : \Omega \to [0, 1]$ such that $\mu_A + \nu_A \leq 1_{\Omega}$. The concept

Copyright © 2023 by the Author. This is an Open Access paper distributed under the terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https://creativecommons.org/licenses/by/4.0/

of the intuitionistic fuzzy sets is the generalization of the concept of the fuzzy sets introduced by L. Zadeh (see [13, 14]). Namely if $\mu_A : \Omega \longrightarrow [0, 1]$ is a fuzzy set, then $\mathbf{A} = (\mu_A, 1 - \mu_A)$ is the corresponding intuitionistic fuzzy set. Sometimes we need to work with intuitionistic fuzzy events. An **intuitionistic fuzzy event** is an intuitionistic fuzzy set $\mathbf{A} = (\mu_A, \nu_A)$ such that $\mu_A, \nu_A : \Omega \rightarrow [0, 1]$ are S-measurable (see [2, 3, 8]). The family of all IF-events on (Ω, S) will be denoted by \mathcal{F} .

In papers [7, 9] Riečan constructed the suitable MV-algebra $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ to the intuitionistic fuzzy space $(\mathcal{F}, \mathbf{m})$. In this paper we study an almost uniformly convergence for a sequence of observables on mentioned MV-algebra and we formulate some definitions of this convergence. As an example of the use of almost uniformly convergence we prove a variation of the Egorov's theorem for MV-algebra of intuitionistic fuzzy sets. This theorem says about a connection between almost everywhere convergence and almost uniformly convergence. We define a partial binary operation \ominus called difference on MV-algebra of intuitionistic fuzzy sets. We are inspired by the results of B. Riečan in paper [6]. There he studied an almost uniformly convergence in D-posets.

Remark that in a whole text we use a notation "IF" in short as the phrase "intuitionistic fuzzy".

2 MV-algebra of intuitionistic fuzzy sets

In this section we study the properties of the MV-algebra of IF-sets. In papers [7, 9] B. Riečan showed that any IF-space \mathcal{F} can be embedded to a convenient MV-algebra. Now we recall the basic notions about MV-algebras. By the Mundici theorem any MV-algebra can be defined by the help of an *l*-group (see [11]).

Definition 2.1 ([11]). *By an* ℓ *-group we shall mean the structure* $(G, +, \leq)$ *such that the following properties are satisfied:*

- (i) (G, +) is an Abelian group;
- (ii) (G, \leq) is a lattice;
- (iii) $a \le b \Longrightarrow a + c \le b + c$.

For each ℓ -group G, an element $u \in G$ is said to be a strong unit of G, if for all $a \in G$ there is an integer $n \ge 1$ such that $nu \ge a$ (nu is the sum $u + \ldots + u$ with n).

Example 2.1. Let (Ω, S) be a measurable space, S be a σ -algebra. Consider

 $\mathcal{G} = \{ \mathbf{A} = (\mu_A, \nu_A); \mu_A, \nu_A : \Omega \to R \text{ are } \mathcal{S} - \text{measurable functions} \}, \\ \mathbf{A} + \mathbf{B} = (\mu_A + \mu_B, \nu_A + \nu_B - 1_{\Omega}), \\ \mathbf{A} \leq \mathbf{B} \iff \mu_A \leq \mu_B, \nu_A \geq \nu_B.$

Then $(\mathcal{G}, +, \leq)$ is an ℓ -group with the neutral element $\mathbf{0} = (0_{\Omega}, 1_{\Omega})$,

$$\mathbf{A} - \mathbf{B} = (\mu_A - \mu_B, \nu_A - \nu_B + \mathbf{1}_{\Omega})$$

and the lattice operations

$$\mathbf{A} \lor \mathbf{B} = (\mu_A \lor \mu_B, \nu_A \land \nu_B),$$

$$\mathbf{A} \land \mathbf{B} = (\mu_A \land \mu_B, \nu_A \lor \nu_B).$$

Definition 2.2 ([11]). An MV-algebra is an algebraic system $(M, \oplus, \odot, \neg, 0, u)$, where \oplus, \odot are binary operations, \neg is a unary operation, 0, u are fixed elements, which can be obtained by the following way: there exists a lattice group $(G, +, \leq)$ such that $M = \{x \in G; 0 \leq x \leq u\}$, where 0 is the neutral element of G, u is a strong unit of G, and

$$a \oplus b = (a+b) \wedge u,$$

$$a \odot b = (a+b-u) \vee 0,$$

$$\neg a = u-a.$$

Here \lor , \land *are the lattice operations with respect to the order and* $\neg a$ *is the opposite element of the element* a *with respect to the operation of the group.*

Example 2.2. Let (Ω, S) be a measurable space, \mathcal{M} the family of all pairs $\mathbf{A} = (\mu_A, \nu_A)$, where $\mu_A, \nu_A : \Omega \to [0, 1]$ are S-measurable functions,

$$\mathbf{A} \oplus \mathbf{B} = ((\mu_A + \mu_B) \wedge \mathbf{1}_{\Omega}, (\nu_A + \nu_B - \mathbf{1}_{\Omega}) \vee \mathbf{0}_{\Omega}),$$

$$\mathbf{A} \odot \mathbf{B} = ((\mu_A + \mu_B - \mathbf{1}_{\Omega}) \vee \mathbf{0}_{\Omega}, (\nu_A + \nu_B) \wedge \mathbf{1}_{\Omega})),$$

$$\neg \mathbf{A} = (\mathbf{1}_{\Omega} - \mu_A, \mathbf{1}_{\Omega} - \nu_A).$$

Then the system $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ is an *MV*-algebra. Here the corresponding group is $(\mathcal{G}, +, \leq)$ considered in Example 1.

Definition 2.3 ([11]). An MV-algebra M is said to be σ -complete if its underlying lattice is σ -complete, i.e., every non-empty countable subset of M has a supremum in M.

Every finite MV-algebra M is σ -complete - indeed, M is complete, in the sense that every non-empty subset of M has a supremum in M.

Definition 2.4 ([10]). Let $(M, \oplus, \odot, \neg, 0, u)$ be an *MV*-algebra. By a finitely additive state on an *MV*-algebra *M* is considered each monotone mapping (i.e. $a \le b \Rightarrow m(a) \le m(b)$) $m: M \to [0, 1]$ satisfying the following conditions:

(i)
$$m(u) = 1, m(0) = 0;$$

(ii) $a \odot b = 0 \Rightarrow m(a \oplus b) = m(a) + m(b)$.

A finitely additive state is a state, if moreover

(iii)
$$a_n \nearrow a \Rightarrow m(a_n) \nearrow m(a)$$
.

We say that m is faithful (also called, strictly positive) if $m(x) \neq 0$ whenever $x \neq 0, x \in M$.

Example 2.3. Let $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ be the *MV*-algebra constructed in Example 2.2. By a state on an *MV*-algebra \mathcal{M} we understand each monotone mapping $m : \mathcal{M} \to [0, 1]$ (i.e. $\mathbf{A} \leq \mathbf{B} \Rightarrow m(\mathbf{A}) \leq m(\mathbf{B})$) satisfying the following conditions:

- (i) $m((1_{\Omega}, 0_{\Omega})) = 1, m((0_{\Omega}, 1_{\Omega})) = 0;$
- (*ii*) $\mathbf{A} \odot \mathbf{B} = (0_{\Omega}, 1_{\Omega}) \Rightarrow m(\mathbf{A} \oplus \mathbf{B}) = m(\mathbf{A}) + m(\mathbf{B});$
- (iii) $\mathbf{A}_n \nearrow \mathbf{A} \Rightarrow m(\mathbf{A}_n) \nearrow m(\mathbf{A})$

for all $\mathbf{A}, \mathbf{A}_n, \mathbf{B} \in \mathcal{M}, n \in \mathbb{N}$.

Following proposition says about the properties of a state m on the MV-algebra M.

Proposition 2.1 ([11]). Let m be a finitely additive state on an MV-algebra M. Then we have:

- (*i*) $m(\neg a) = 1 m(a)$ for all $a \in M$;
- (ii) *m* is a valuation: $m(a) + m(b) = m(a \oplus b) + m(a \odot b)$ for all $a, b \in M$;
- (iii) if m is faithful, then m is strictly monotone: if a < b, then m(a) < m(b);
- (iv) *m* is also a valuation with respect to the underlying lattice order of *M*; stated otherwise, for all $a, b \in M$, we have $m(a) + m(b) = m(a \lor b) + m(a \land b)$;
- (v) *m* is subadditive, in the sense that $m(a \lor b) \le m(a \oplus b) \le m(a) + m(b)$.

Each state on MV-algebra is sub- σ -additive.

Lemma 2.1 ([5]). Let m be a state on MV-algebra M. Then

$$m\left(\bigvee_{n=1}^{\infty}a_n\right) \le \sum_{n=1}^{\infty}m(a_n)$$

for each sequence $(a_n)_1^{\infty}$, $a_n \in M$.

Now we recall the definition of *n*-dimensional observable in MV-algebras.

Definition 2.5 ([11]). Let M be an MV-algebra. An n-dimensional observable of M is a map $x : \mathcal{B}(\mathbb{R}^n) \to M$ satisfying the following conditions:

- (*i*) $x(R^n) = u;$
- (ii) whenever $A, B \in \mathcal{B}(\mathbb{R}^n)$ and $A \cap B = \emptyset$, then $x(A \cup B) = x(A) \oplus x(B)$;
- (iii) for all $A, A_i \in \mathcal{B}(\mathbb{R}^n)$, $i \in N$, if $A_i \nearrow A$, then $x(A_i) \nearrow x(A)$.

When n = 1 we say that x is an observable.

The condition (ii) above states that, whenever $A \cap B = \emptyset$, then $x(A \cup B) = x(A) + x(B)$ in the ℓ -group with strong unit corresponding to M.

Example 2.4. Let $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ be the *MV*-algebra constructed in Example 2.2. An *n*-dimensional observable of *MV*-algebra \mathcal{M} is a map $x : \mathcal{B}(\mathbb{R}^n) \to \mathcal{M}$ satisfying the following conditions:

- (*i*) $x(R^n) = (1_\Omega, 0_\Omega);$
- (ii) whenever $A, B \in \mathcal{B}(\mathbb{R}^n)$ and $A \cap B = \emptyset$, then $x(A \cup B) = x(A) \oplus x(B)$;
- (iii) for all $A, A_i \in \mathcal{B}(\mathbb{R}^n)$, $i \in N$, if $A_i \nearrow A$, then $x(A_i) \nearrow x(A)$.

When n = 1 we say that x is an observable.

3 Almost uniformly convergence in MV-algebra of IF-sets

In this section we study an almost uniformly convergence of observables in MV-algebra of IF-sets constructed in Example 2.2. We show some definitions of this convergence.

Definition 3.1. Let $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ be the *MV*-algebra constructed in Example 2.2 and *m* be a state. We say that the sequence $(x_n)_1^{\infty}$ of the observables converges *m*-almost uniformly to 0, if

$$\forall \alpha > 0 \quad \exists \mathbf{A} \in \mathcal{M} : \ m(\neg \mathbf{A}) < \alpha, \\ \forall \beta > 0 \quad \exists k \in N \ \forall n \ge k : \ \mathbf{A} \le x_n \big((-\beta, \beta) \big).$$

The Definition 3.1 can be rewritten in the following form.

Definition 3.2. Let $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ be the *MV*-algebra constructed in Example 2.2 and *m* be a state. We say that the sequence $(x_n)_1^{\infty}$ of the observables converges *m*-almost uniformly to 0, if

$$\forall \alpha > 0 \quad \exists \mathbf{A} \in \mathcal{M} : \ m(\mathbf{A}) > 1 - \alpha, \\ \forall \beta > 0 \quad \exists k \in N \ \forall n \ge k : \ \mathbf{A} \le x_n \big((-\beta, \beta) \big).$$

Now we define a partial binary operation \ominus called **difference** on the *MV*-algebra of IF-sets and we formulate a definition of almost uniformly convergence using this partial binary operation. We are inspired by paper [6]. There B. Riečan studied an almost uniformly convergence in *D*-posets.

Let $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ be the *MV*-algebra constructed in *Example 2.2*. If $\mathbf{A} = (\mu_A, \nu_A) \in \mathcal{M}$, $\mathbf{B} = (\mu_B, \nu_B) \in \mathcal{M}$ and $\mathbf{B} \leq \mathbf{A}$, then we define a partial binary operation \ominus on \mathcal{M} by

$$\mathbf{A} \ominus \mathbf{B} = ((\mu_A - \mu_B) \lor \mathbf{0}_{\Omega}, (\nu_A - \nu_B + \mathbf{1}_{\Omega}) \land \mathbf{1}_{\Omega}).$$

It is easy to see, that $\mathbf{A} \ominus \mathbf{B} = \mathbf{A} \odot \neg \mathbf{B}$. Really

$$\mathbf{A} \odot \neg \mathbf{B} = (\mu_A, \nu_A) \odot (\mathbf{1}_{\Omega} - \mu_B, \mathbf{1}_{\Omega} - \nu_B)$$

= $((\mu_A + \mathbf{1}_{\Omega} - \mu_B - \mathbf{1}_{\Omega}) \lor \mathbf{0}_{\Omega}, (\nu_A + \mathbf{1}_{\Omega} - \nu_B) \land \mathbf{1}_{\Omega})$
= $((\mu_A - \mu_B) \lor \mathbf{0}_{\Omega}, (\nu_A - \nu_B + \mathbf{1}_{\Omega}) \land \mathbf{1}_{\Omega}) = \mathbf{A} \ominus \mathbf{B}.$

Definition 3.3. Let $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ be the *MV*-algebra constructed in Example 2.2 and m be a state. We say that the sequence $(x_n)_1^{\infty}$ of the observables converges m-almost uniformly to 0, if

$$\forall \alpha > 0 \ \exists \mathbf{C} \in \mathcal{M} : \ m(\mathbf{C}) > 1 - \alpha, \\ \forall \beta > 0 \ \exists k \in N \ \forall n \ge k \ \exists \mathbf{C}_n \in \mathcal{M}, \ m(\mathbf{C}_n) < \alpha, \ \mathbf{C}_n \le \mathbf{C}_{n+1} \le \mathbf{C} : \mathbf{C} \ominus \mathbf{C}_n \le x_n \big((-\beta, \beta) \big) .$$

In [12] F. Chovanec proved that every MV-algebra M is a D-poset, where $b \ominus a = b \odot \neg a$. Recall that D-poset is partially ordered set D with the greatest element 1_D and with a partial binary operation \ominus such that $b \ominus a$ is defined if and only if $a \leq b$ and satisfying the following conditions (see [12]):

- (i) if $a \leq b$, then $b \ominus a \leq b$ and $b \ominus (b \ominus a) = a$;
- (ii) if $a \le b \le c$, then $b \ominus a \le c \ominus a$ and $(c \ominus a) \ominus (c \ominus b) = b \ominus a$;

In paper [5] we formulated an almost uniformly convergence for a family of IF-events \mathcal{F} . We proved a variation of the Egorov's theorem, too. The results were the generalization of the results in [4], because if $\mu_A : \Omega \longrightarrow [0,1]$ is a fuzzy set, then $\mathbf{A} = (\mu_A, 1 - \mu_A) : \Omega \rightarrow \Omega$ $[0,1]^2$ is the corresponding intuitionistic fuzzy set. Next theorem shows a connection between m-almost everywhere convergence and m-almost uniformly convergence of the observables in the *MV*-algebra $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ constructed in *Example 2.2* with respect to the state *m*.

Theorem 3.1. (A variation of Egorov's Theorem) Let $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ be the *MV*-algebra constructed in Example 2.2 and m be a state. If a sequence $(x_n)_1^{\infty}$ of the observables converges m-almost everywhere to 0, then the sequence $(x_n)_1^{\infty}$ converges m-almost uniformly *to* 0.

Proof. Let a sequence of the observables $(x_n)_1^\infty$ converges *m*-almost everywhere to 0. By Definition 2.13 in [11] we have

$$m\left(\bigwedge_{p=1}^{\infty}\bigvee_{k=1}^{\infty}\bigwedge_{n=k}^{\infty}x_n\left(\left(-\frac{1}{p},\frac{1}{p}\right)\right)\right)=1.$$

Put

$$\mathbf{A}_{k}^{p} = \bigwedge_{n=k}^{\infty} x_{n} \left(\left(-\frac{1}{p}, \frac{1}{p} \right) \right).$$

Then $\mathbf{A}_{k}^{p} \leq \mathbf{A}_{k+1}^{p}$ and

$$m\left(\bigvee_{k=1}^{\infty} \mathbf{A}_{k}^{p}\right) = m\left(\bigvee_{k=1}^{\infty} \bigwedge_{n=k}^{\infty} x_{n}\left(\left(-\frac{1}{p}, \frac{1}{p}\right)\right)\right) = 1$$
(1)

for every p, i.e. $\lim_{p \to \infty} m(\mathbf{A}_k^p) = 1$. By (1) we have that for every $\alpha > 0$ and every p there exists $\mathbf{A}_{k(p)}^p \in \mathcal{M}$ such that

$$m\left(\neg \mathbf{A}_{k(p)}^{p}\right) < \frac{\alpha}{2^{p}}.$$
(2)

Put

$$\mathbf{A} = \bigwedge_{p=1}^{\infty} \mathbf{A}_{k(p)}^{p},$$

then using De Morgan rules we have

$$\neg \mathbf{A} = \bigvee_{p=1}^{\infty} \neg \mathbf{A}_{k(p)}^{p}$$

Therefore using sub- σ -additivity of state m (see Lemma 2.1) and using the inequality (2) we obtain

$$m(\neg \mathbf{A}) = m\left(\bigvee_{p=1}^{\infty} \neg \mathbf{A}_{k(p)}^{p}\right) \le \sum_{p=1}^{\infty} m\left(\neg \mathbf{A}_{k(p)}^{p}\right) < \sum_{p=1}^{\infty} \frac{\alpha}{2^{p}} = \alpha.$$

To every $\beta > 0$ choose p such that $\frac{1}{p} < \beta$. Then

$$\mathbf{A} = \bigwedge_{p=1}^{\infty} \mathbf{A}_{k(p)}^{p} \le \mathbf{A}_{k(p)}^{p} = \bigwedge_{n=k(p)}^{\infty} x_{n} \left(\left(-\frac{1}{p}, \frac{1}{p} \right) \right) \le x_{n} \left(\left(-\frac{1}{p}, \frac{1}{p} \right) \right) \le x_{n} (-\beta, \beta),$$

i.e. by Definition 3.1 the sequence $(x_n)_1^{\infty}$ of observables converges *m*-almost uniformly to 0.

4 Conclusion

The paper is concerned in a probability theory on the MV-algebra $(\mathcal{M}, \oplus, \odot, \neg, (0_{\Omega}, 1_{\Omega}), (1_{\Omega}, 0_{\Omega}))$ constructed in Example 2.2. We formulated three definitions of m-almost uniformly convergence for a sequence of observables in the MV-algebra \mathcal{M} . We defined a partial binary operation \ominus called difference on mentioned MV-algebra \mathcal{M} . Therefore the MV-algebra \mathcal{M} is a D-poset $(\mathcal{M}, \leq, \ominus, (1_{\Omega}, 0_{\Omega}))$. We proved the Egorov's theorem and we showed the connection between an almost everywhere convergence and an almost uniformly convergence of observables in MValgebra \mathcal{M} .

Acknowledgements

This publication was supported by grant VEGA 2/0122/23 and by the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: InoCHF – Research and Development in the field of innovative technologies in the management of patients with CHF, co-financed by the European Regional Development Fund.

References

 Atanassov, K. T. (1983). Intuitionistic fuzzy sets. *VII ITKR Session, Sofia, 20-23 June 1983* (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted *International Journal Bioautomation*, 20, S1–S6.

- [2] Atanassov, K. T. (1999). *Intuitionistic Fuzzy Sets: Theory and Applications*. Physica Verlag, New York.
- [3] Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets. Springer, Berlin.
- [4] Bartková, R., Riečan, B. & Tirpáková, A. (2017). *Probability Theory for Fuzzy Quantum Spaces with Statistical Applications*. Bentham eBooks, Sharjah.
- [5] Čunderlíková, K. (2023). On another type of convergence for intuitionistic fuzzy observables. Submitted to *Mathematics*.
- [6] Riečan, B. (1997). On the convergence of observables in *D*-posets. *Tatra Mountains Mathematical Publications*, 12, 7–12.
- [7] Riečan, B. (2007). Probability Theory on IF Events. *Algebraic and Proof-theoretic Aspects of Non-classical Logics*. Lecture Notes in Computer Science, vol 4460, Aguzzoli, S., Ciabattoni, A., Gerla, B., Manara, C., Marra, V. Eds., Springer, Berlin, Heidelberg, 290–308.
- [8] Riečan, B. (2009). On the probability and random variables on IF events. *Applied Artificial Intelligence, Proceedings of the 7th International FLINS Conference*, 29–31 August 2006, Genova, Italy, 138–145.
- [9] Riečan, B. (2015). On finitely additive IF-states. Mathematical Foundations, Theory, Analyses: Proceedings of the 7th IEEE International Conference Intelligent Systems, 24-26 September 2014, Warsaw, Poland, Volume 1, 149–156.
- [10] Riečan, B. (2015). Embedding of IF-states to MV-algebras. Mathematical Foundations, Theory, Analyses: Proceedings of the 7th IEEE International Conference Intelligent Systems, 24-26 September 2014, Warsaw, Poland, Volume 1, 157–162.
- [11] Riečan, B. & Mundici, D. (2002). Probability in MV-algebras. *Handbook of Measure Theory* (*Pap, E. Ed.*), Elsevier, Amsterdam, 869–909.
- [12] Riečan, B., & Neubrunn, T. (1997). Integral, Measure, and Ordering. Kluwer Academic Publishers, Dordrecht and Ister Science, Bratislava.
- [13] Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–358.
- [14] Zadeh, L. A. (1968). Probability measures on fuzzy sets. *Journal of Mathematical Analysis and Applications*, 23, 421–427.