The Inclusion-Exclusion Principle on some algebraic structures

Jana Kelemenová, Mária Kuková
Faculty of Natural Sciences, Matej Bel University
Department of Mathematics
Tajovského 40
SK-974 01 Banská Bystrica, Slovakia
e-mail: kelemen@fpv.umb.sk, kukova@fpv.umb.sk

Abstract

This paper is a remark to the generalization of Grzegorzewski theorem [2]. He has proved the method of Inclusion- Exclusion Principle for a special case of IFevents. We apply it on different structures: commutative and associative algebraic systems and lattices.

Definition

Have an algebraic system with 2 binary operations: $(M,+,$.$) , and a mapping m$: $M \rightarrow<0,1>$ satisfying the following conditions:

1. The operations + , . are commutative and associative
2. The distributive law holds for every $a, b, c \in M$

$$
(a+b) \cdot c=a \cdot c+b \cdot c
$$

3. for every $c \in M$

$$
c . c=c
$$

4. for every $a, b \in M$

$$
m(a+b)=m(a)+m(b)-m(a . b)
$$

Example 1 Let $a, b, c \in M$. Then, $m((a+b) . c)=m(a . c+b . c)$, hence

$$
\begin{gathered}
m(a+b+c)=m(a+b)+m(c)-m((a+b) . c)= \\
=m(a)+m(b)+m(c)-m(a . b)-m(a . c)-m(b . c)+m(a . c . b . c)= \\
=m(a)+m(b)+m(c)-m(a . b)-m(a . c)-m(b . c)+m(a . b . c) .
\end{gathered}
$$

Proposition Let $a_{1}, \ldots, a_{n} \in M$. Then

$$
m\left(a_{1}+\ldots+a_{n}\right)=\sum_{i=1}^{n} m\left(a_{i}\right)-\sum_{i<j}^{n} m\left(a_{i} \cdot a_{j}\right)+\sum_{i<j<k}^{n} m\left(a_{i} \cdot a_{j} \cdot a_{k}\right)-\ldots+(-1)^{n+1} m\left(\prod_{i=1}^{n} a_{i}\right)
$$

Proof. We shall use induction. The assertion holds for $n=2$.
Let the assertion holds for $n \in N$:

$$
m\left(a_{1}+\ldots+a_{n}\right)=\sum_{i=1}^{n} m\left(a_{i}\right)-\sum_{i<j}^{n} m\left(a_{i} \cdot a_{j}\right)+\sum_{i<j<k}^{n} m\left(a_{i} \cdot a_{j} \cdot a_{k}\right)-\ldots+(-1)^{n+1} m\left(\prod_{i=1}^{n} a_{i}\right)
$$

Then

$$
\begin{gathered}
m\left(a_{1}+\ldots+a_{n+1}\right)=\sum_{i=1}^{n+1} m\left(a_{i}\right)-\sum_{i<j}^{n+1} m\left(a_{i} \cdot a_{j}\right)+\sum_{i<j<k}^{n+1} m\left(a_{i} \cdot a_{j} \cdot a_{k}\right)-\ldots+(-1)^{n+2} m\left(\prod_{i=1}^{n+1} a_{i}\right) \\
m\left(a_{1}+\ldots+a_{n}+a_{n+1}\right)=m\left(a_{1}+\ldots+a_{n}\right)+m\left(a_{n+1}\right)-m\left(\left(a_{1}+\ldots+a_{n}\right) \cdot a_{n+1}\right)= \\
=m\left(a_{1}+\ldots+a_{n}\right)+m\left(a_{n+1}\right)-m\left(a_{1} \cdot a_{n+1}+\ldots+a_{n} \cdot a_{n+1}\right)= \\
=\sum_{i=1}^{n} m\left(a_{i}\right)-\sum_{i<j}^{n} m\left(a_{i} \cdot a_{j}\right)+\sum_{i<j<k}^{n} m\left(a_{i} \cdot a_{j} \cdot a_{k}\right)-\ldots+(-1)^{n+1} m\left(\prod_{i=1}^{n} a_{i}\right)+m\left(a_{n+1}\right)- \\
-\left(\sum_{i=1}^{n} m\left(a_{i} \cdot a_{n+1}\right)-\sum_{i<j}^{n} m\left(a_{i} \cdot a_{j} \cdot a_{n+1}\right)+\ldots+(-1)^{n} \sum_{i=1}^{n} m\left(\prod_{k \neq i}^{n} a_{k}\right) \cdot a_{n+1}+\right. \\
+(-1)^{n+1} m\left(\left(\prod_{i=1}^{n} a_{i}\right) \cdot a_{n+1}\right)= \\
=\sum_{i=1}^{n+1} m\left(a_{i}\right)-\sum_{i<j}^{n+1} m\left(a_{i} \cdot a_{j}\right)+\sum_{i<j<k}^{n+1} m\left(a_{i} \cdot a_{j} \cdot a_{k}\right)+ \\
\ldots+(-1)^{n+1} \sum_{i=1}^{n+1} m\left(\prod_{k=1, k \neq i}^{n+1} a_{k}\right)+(-1)^{n+2} m\left(\prod_{i=1}^{n+1} a_{i}\right) .
\end{gathered}
$$

Example 2 Let (L, \vee, \wedge) be a distributive lattice, and $m: L \rightarrow<0,1>$ be such that

$$
m(a \vee b)+m(a \wedge b)=m(a)+m(b)
$$

for any $a, b \in L$. Put

$$
+=\vee, .=\wedge .
$$

Then all assumptions of Proposition are satisfied.

Example 3 Let F be the family of all IF subsets of Ω, i.e. $A=\left(\mu_{A}, \nu_{A}\right)$,

$$
\mu_{A}, \nu_{A}: \Omega \rightarrow<0,1>, \mu_{A}+\nu_{A} \leq 1
$$

Define

$$
\begin{aligned}
& A \vee B=\left(\mu_{A} \vee \mu_{B}, \nu_{A} \wedge \nu_{B}\right) \\
& A \wedge B=\left(\mu_{A} \wedge \mu_{B}, \nu_{A} \vee \nu_{B}\right)
\end{aligned}
$$

Let $m: F \rightarrow<0,1>$ be a Gödel state, i.e.

$$
m(A \vee B)+m(A \wedge B)=m(A)+m(B)
$$

Then again all assumptions of Proposition are satisfied.

References

[1] Atanassov, K.,1986, Intuitionistic Fuzzy Sets: Theory and Applications, Physica- Verlag.
[2] Grzegorzewski, P., 2010, (To appear), The Inclusion-Exclusion Principle for IF Events.

