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Mathematical Institute, Slovak Academy of Sciences
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Abstract: The aim of this paper is to define an Lp space of intuitionistic fuzzy observables.
We work in an intuitionistic fuzzy space (F ,m) with product, where F is a family of intuitionistic
fuzzy events and m is an intuitionistic fuzzy state. We prove that the space Lp with corresponding
intuitionistic fuzzy pseudometric ρIF is a pseudometric space.
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1 Introduction

In paper [7], B. Riečan studied Lp space of fuzzy sets M. He proved that this Lp space is a
complete pseudometric space. A more general situation was studied in paper [8]. There, an Lp

space was constructed for the observables of MV-algebra with product. In this case Lp is a
complete pseudometric space, too.

In this paper, we define an Lp space of intuitionistic fuzzy observables and we prove that the
space Lp with corresponding intuitionistic fuzzy pseudometric ρIF is a pseudometric space. Since
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the notion of intuitionistic fuzzy observable x : B(R) → F is a generalization of the notion of
random variable ξ : Ω → R (more precisely ξ : (Ω,S, P ) → (R,B(R), Pξ)), we are inspired by
Lp space of random variables. There∫

Ω

|ξ|p dP =

∫
R

|t|p dPξ(t).

The distance in the Lp space of random variables is defined by the formula

ρ(ξ, η) =

(∫
Ω

|ξ − η|p dP
) 1

p

=

(∫∫
R2

|u− v|p dPT (u,v)

) 1
p

,

where T = (ξ, η) : Ω → R2, PT : B(R2) → [0, 1], PT (A) = P
(
T−1(A)

)
.

Remark that in the whole text we use the abbreviation “IF” for the term “intuitionistic fuzzy”.

2 Preliminaries and auxiliary notions

The year 2023 is the 40-th anniversary of the invention of the concept and theory of intuitionistic
fuzzy sets by K. T. Atanassov in the paper [1]. As an IF-set A on Ω he understands a pair (µA, νA)

of mappings µA, νA : Ω → [0, 1] such that µA + νA ≤ 1Ω.
In this paper we will work with a family of intuitionistic fuzzy events on (Ω,S) denoted by

F .
Recall that an IF-event is called an IF-set A = (µA, νA) such that the functions µA, νA :

Ω → [0, 1] are S-measurable (see [3, 2]).
On this family we use the Łukasiewicz binary operations ⊕,⊙ given by

A⊕B = ((µA + µB) ∧ 1Ω, (νA + νB − 1Ω) ∨ 0Ω)),

A⊙B = ((µA + µB − 1Ω) ∨ 0Ω, (νA + νB) ∧ 1Ω)),

for each A = (µA, νA) ∈ F , B = (µB, νB) ∈ F . The partial ordering is given by

A ≤ B ⇐⇒ µA ≤ µB, νA ≥ νB.

In the papers [9, 11], B. Riečan defined the notion of an IF-state as a mapping m : F → [0, 1]

with the following three conditions:

(i) m((1Ω, 0Ω)) = 1 , m((0Ω, 1Ω)) = 0;

(ii) if A⊙B = (0Ω, 1Ω) and A,B ∈ F , then m(A⊕B) = m(A) +m(B);

(iii) if An ↗ A (i.e., µAn ↗ µA, νAn ↘ νA), then m(An) ↗ m(A).

and he defined the notion of an IF-observable as a mapping x : B(R) → F satisfying the
following conditions:

(i) x(R) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) if A ∩B = ∅, then x(A)⊙ x(B) = (0Ω, 1Ω) and x(A ∪B) = x(A)⊕ x(B);

(iii) if An ↗ A, then x(An) ↗ x(A),
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where B(R) is a σ-algebra of the family J of all intervals in R of the form

[a, b) = {x ∈ R : a ≤ x < b}.

Similarly, we can formulate the notion of an n-dimensional IF-observable as a mapping
x : B(Rn) → F with the following conditions:

(i) x(Rn) = (1Ω, 0Ω), x(∅) = (0Ω, 1Ω);

(ii) ifA∩B = ∅, A,B ∈ B(Rn), then x(A)⊙x(B) = (0Ω, 1Ω) and x(A∪B) = x(A)⊕x(B);

(iii) if An ↗ A, then x(An) ↗ x(A) for each A,An ∈ B(Rn).

If n = 1, we simply say that x is an IF-observable.

Remark that the composition of an IF-state m and an IF-observable x is a probability measure
denoted mx, i.e., mx(C) = m(x(C)) for each C ∈ B(R).

In [10], B. Riečan defined the notion of a joint IF-observable and proved its existence. The
joint IF-observable of the IF-observables x, y is a mapping h : B(R2) → F satisfying the
following conditions:

(i) h(R2) = (1Ω, 0Ω), h(∅) = (0Ω, 1Ω);

(ii) if A,B ∈ B(R2) and A ∩B = ∅, then

h(A ∪B) = h(A)⊕ h(B) and h(A)⊙ h(B) = (0Ω, 1Ω);

(iii) if A,An ∈ B(R2) and An ↗ A, then h(An) ↗ h(A);

(iv) h(C ×D) = x(C) · y(D) for each C,D ∈ B(R).

There · is a product operation on the family of IF-events F introduced in [6]. It is defined by

A ·B = (µA · µB, νA + νB − νA · νB)

for each A = (µA, νA),B = (µB, νB) ∈ F .
If we have several IF-observables and a Borel measurable function, we can define the

IF-observable, which is the function of several IF-observables. Regarding this, we provide the
following definition, see [5].

Let x1, . . . , xn : B(R) → F be IF-observables, hn their joint IF-observable and gn : Rn → R

a Borel measurable function. Then we define the IF-observable gn(x1, . . . , xn) : B(R) → F by
the formula

gn(x1, . . . , xn)(A) = hn
(
g−1
n (A)

)
.

for each A ∈ B(R).
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3 Lp space of IF-observables

In this section, we formulate Lp space of IF-observables. We can consider an IF-observable x
instead of a random variable and a joint IF-observable h instead of a random vector.

Definition 3.1. Fix a real number p ≥ 1. Let (F ,m) be an IF-space with product. We say that
an IF-observable x : B(R) → F belongs to Lp

m if there exists the integral∫
R

|t|p dmx(t).

If x, y : B(R) → F are the IF-observables and hxy : B(R2) → F is their joint IF-observable,
then we define the IF-observable x− y : B(R) → F by the formula

(x− y)(A) = hxy
(
g−1(A)

)
for eachA ∈ B(R), where g : R2 → R is a Borel measurable function defined by g(u, v) = u−v.

Proposition 3.1. Let (F ,m) be an IF-space with product. If the IF-observables x, y : B(R) → F
are in Lp

m, then the IF-observable x− y : B(R) → F is in Lp
m.

Proof. From definition of IF-observable x− y we have

(x− y)(A) = hxy
(
g−1(A)

)
for each A ∈ B(R), where g(u, v) = u − v and hxy is the joint IF-observable of IF-observables
x, y.

Consider the probability space (R2,B(R), P = m ◦ hxy) and the random variables ξ, η :

R2 → R defined by
ξ(u, v) = u, η(u, v) = v.

Evidently,

Pξ(A) = P
(
ξ−1(A)

)
= m ◦ hxy

(
ξ−1(A)

)
= m

(
hxy(A×R)

)
= m

(
x(A) · y(R)

)
= m

(
x(A) · (1Ω, 0Ω)

)
= m

(
x(A)

)
= mx(A) (1)

and

Pη(A) = P
(
η−1(A)

)
= m ◦ hxy

(
η−1(A)

)
= m

(
hxy(R× A)

)
= m

(
x(R) · y(A)

)
= m

(
(1Ω, 0Ω) · y(A)

)
= m

(
y(A)

)
= my(A). (2)
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Since x, y ∈ Lp
m, i.e., the integrals

∫
R
|t|p dmx(t),

∫
R
|t|p dmy(t) exist, then by (1), (2) we have∫∫

R2

|ξ|p dP =

∫
R

|t|p dPξ(t) =

∫
R

|t|p dmx(t) <∞,∫∫
R2

|η|p dP =

∫
R

|t|p dPη(t) =

∫
R

|t|p dmy(t) <∞.

Therefore, the random variables ξ, η belong to Lp
P and the random variable ξ − η belong to

Lp
P , too. Since g(u, v) = u− v = ξ(u, v)− η(u, v), then we have

mx−y = m ◦ (x− y)

= m ◦ hxy ◦ g−1

= m ◦ hxy ◦ (ξ − η)−1

= P
(
(ξ − η)−1

)
= P(ξ−η)

and ∫
R

|t|p dmx−y(t) =

∫
R

|t|p dP(ξ−η)(t) =

∫∫
R2

|ξ − η|p dP .

But ξ − η ∈ Lp
P , i.e., the integral

∫∫
R2 |ξ − η|p dP exists, hence the integral

∫
R
|t|p dmx−y(t)

exists and x− y ∈ Lp
m.

Definition 3.2. Let (F ,m) be an IF-space with product. For each IF-observables x, y ∈ Lp
m

define the map ρIF : Lp
m × Lp

m → R by

ρIF (x, y) =

 0 if x = y,( ∫∫
R2 |g|p d(m ◦ hxy)

) 1
p

if x ̸= y,

where hxy : B(R2) → F is the joint IF-observable of IF-observables x, y and the Borel measurable
function g : R → R is given by g(u, v) = u− v.

Remark 3.3. The map ρIF : Lp
m × Lp

m → R given by

ρIF (x, y) =

 0 if x = y,( ∫∫
R2 |g|p d(m ◦ hxy)

) 1
p

if x ̸= y,

can be rewritten in the following form

ρIF (x, y) =

 0 if x = y,( ∫
R
|t|p dmx−y(t)

) 1
p

if x ̸= y.

Really ∫∫
R2

|g|p d(m ◦ hxy) =

∫
R

|t|p d(m ◦ hxy ◦ g−1)(t)

=

∫
R

|t|p d(m ◦ (x− y))(t)

=

∫
R

|t|p dmx−y(t).
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Proposition 3.2. The IF-space (Lp
m, ρIF ) is a pseudometric space.

Proof. By the Definition 3.2, we have ρIF (x, x) = 0 and ρIF (x, y) ≥ 0.

Now, we prove the symmetry. Consider any different IF-observables x, y ∈ Lp
m. Let hxy be the

joint IF-observable of IF-observables x, y and hyx be the joint IF-observable of IF-observables
y, x. Put φ(u, v) = (v, u), then hyx = hxy ◦ φ−1. Really,

hxy ◦ φ−1(A×B) = hxy(B × A)

= x(B) · y(A)
= y(A) · x(B)

= hyx(A×B).

If we put g(u, v) = u− v and ψ(w) = −w, then we obtain

my−x = m ◦ (y − x)

= m ◦ hyx ◦ g−1

= m ◦ hxy ◦ φ−1 ◦ g−1

= m ◦ hxy ◦ (g ◦ φ)−1

= m ◦ hxy ◦ (ψ ◦ g)−1

= m ◦ hxy ◦ g−1 ◦ ψ−1

= m ◦ (x− y) ◦ ψ−1

= mx−y ◦ ψ−1.

Hence (
ρIF (y, x)

)p
=

∫∫
R2

|g|p d(m ◦ hyx)

=

∫
R

|t|p dmy−x(t)

=

∫
R

|t|p d(mx−y ◦ ψ−1)(t)

=

∫
R

| − t|p dmx−y(t)

=

∫
R

|t|p dmx−y(t)

=

∫∫
R2

|g|p d(m ◦ hxy)

=
(
ρIF (x, y)

)p
.

Next we prove the triangle inequality. Let x, y, z : B(R) → F be three different IF-observables.
Consider a joint IF-observable hxyz : B(R3) → F of IF-observables x, y, z. Then

hxyz(A×B × C) = x(A) · y(B) · z(C)

for each A,B,C ∈ B(R).
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Consider the probability space (R3,B(R3), P = m ◦ hxyz). Then the mappings ξ, η, ζ :

R3 → R defined by

ξ(u, v, w) = u, η(u, v, w) = v, ζ(u, v, w) = w

are the random variables and

Pξ(A) = P
(
ξ−1(A)

)
= P (A×R×R)

= m
(
hxyz(A×R×R)

)
= m

(
x(A) · y(R) · z(R)

)
= m

(
x(A) · (1Ω, 0Ω) · (1Ω, 0Ω)

)
= m

(
x(A)

)
= mx(A). (3)

Similarly,

Pη(A) = my(A), Pζ(A) = mz(A) (4)

for each A ∈ B(R). Using (3), (4) and x, y, z ∈ Lp
m, we obtain that ξ, η, ζ ∈ Lp

P .
Put g(u, v) = u− v and πxy(u, v, w) = (u, v). Then hxy = hxyz ◦π−1

xy is a joint IF-observable
of IF-observables x, y. Really,

hxy(A×B) = hxyz(A×B ×R)

= x(B) · y(A) · z(R)
= x(A) · y(B) · (1Ω, 0Ω)
= x(A) · y(B).

Since

mx−y = m ◦ (x− y)

= m ◦ hxy ◦ g−1

= m ◦ hxyz ◦ π−1
xy ◦ g−1

= m ◦ hxyz ◦ (g ◦ π)−1

= P ◦ (g ◦ πxy)−1,
then

ρIF (x, y) =

(∫∫
R2

|g|p d(m ◦ hxy)
) 1

p

=

(∫
R

|t|p dmx−y(t)

) 1
p

=

(∫
R

|t|p d(P ◦ (g ◦ πxy)−1)(t)

) 1
p

=

(∫∫∫
R3

|g ◦ πxy|p dP
) 1

p

=

(∫∫∫
R3

|ξ − η|p dP
) 1

p

.
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Analogously, we obtain

mx−z = P ◦ (g ◦ πxz)−1, my−z = P ◦ (g ◦ πyz)−1

and

ρIF (x, z) =

(∫∫∫
R3

|ξ − ζ|p dP
) 1

p

, ρIF (y, z) =

(∫∫∫
R3

|η − ζ|p dP
) 1

p

,

where πxz(u, v, w) = (u,w), πyz(u, v, w) = (v, w) and hxz = hxyz ◦ π−1
xz is a joint IF-observable

of IF-observables x, z and hyz = hxyz ◦ π−1
yz is a joint IF-observable of IF-observables y, z.

Finally, using the triangle inequality and the symmetry in Lp
P and the symmetry in Lp

m we
have

ρIF (x, y) =

(∫∫∫
R3

|ξ − η|p dP
) 1

p

≤
(∫∫∫

R3

|ξ − ζ|p dP
) 1

p

+

(∫∫∫
R3

|ζ − η|p dP
) 1

p

= ρIF (x, z) + ρIF (z, y).

Therefore, the IF-space (Lp
m, ρIF ) is a pseudometric space.

4 Conclusion

The paper is devoted to an Lp space of IF-observables with respect the IF-state m. We proved
that (Lp

m, ρIF ) is a pseudometric space. The presented results are the generalization of the results
in [7], because if µA : Ω −→ [0, 1] is a fuzzy set, then A = (µA, 1 − µA) : Ω → [0, 1]2 is the
corresponding intuitionistic fuzzy set. The Definition 3.1 generalizes the notion of integrable and
square integrable IF-observable introduced in [4].
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[6] Lendelová, K. (2006). Conditional IF-probability. Lawry, J. et al. (Eds.). Soft Methods for
Integrated Uncertainty Modelling. Advances in Soft Computing, Vol. 37, Springer-Verlag
Berlag Heidelberg, 275–283.
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