About the L^{p} space of intuitionistic fuzzy observables

Katarína Čunderlíková

Mathematical Institute, Slovak Academy of Sciences
Štefánikova 49, 81473 Bratislava, Slovakia
e-mail: cunderlikova.lendelova@gmail.com

Revised: 30 April 2023
Accepted: 14 May 2023
Online First: 3 July 2023

Abstract

The aim of this paper is to define an L^{p} space of intuitionistic fuzzy observables. We work in an intuitionistic fuzzy space $(\mathcal{F}, \mathbf{m})$ with product, where \mathcal{F} is a family of intuitionistic fuzzy events and \boldsymbol{m} is an intuitionistic fuzzy state. We prove that the space L^{p} with corresponding intuitionistic fuzzy pseudometric $\rho_{I F}$ is a pseudometric space. Keywords: Intuitionistic fuzzy observable, Intuitionistic fuzzy state, Joint intuitionistic fuzzy observable, Function of several intuitionistic fuzzy observables, Product, L^{p} space, Pseudometric space, Intuitionistic fuzzy pseudometric.

2020 Mathematics Subject Classification: 03B52, 60A86.

1 Introduction

In paper [7], B. Riečan studied L^{p} space of fuzzy sets \mathcal{M}. He proved that this L^{p} space is a complete pseudometric space. A more general situation was studied in paper [8]. There, an L^{p} space was constructed for the observables of MV-algebra with product. In this case L^{p} is a complete pseudometric space, too.

In this paper, we define an L^{p} space of intuitionistic fuzzy observables and we prove that the space L^{p} with corresponding intuitionistic fuzzy pseudometric $\rho_{I F}$ is a pseudometric space. Since

	Copyright © 2023 by the Author. This is an Open Access paper distributed under the (©) (i) terms and conditions of the Creative Commons Attribution 4.0 International License (CC BY 4.0). https: //creativecommons.org/licenses/by/4.0/

the notion of intuitionistic fuzzy observable $x: \mathcal{B}(R) \rightarrow \mathcal{F}$ is a generalization of the notion of random variable $\xi: \Omega \rightarrow R$ (more precisely $\xi:(\Omega, \mathcal{S}, P) \rightarrow\left(R, \mathcal{B}(R), P_{\xi}\right)$), we are inspired by L^{p} space of random variables. There

$$
\int_{\Omega}|\xi|^{p} d P=\int_{R}|t|^{p} d P_{\xi}(t) .
$$

The distance in the L^{p} space of random variables is defined by the formula

$$
\rho(\xi, \eta)=\left(\int_{\Omega}|\xi-\eta|^{p} d P\right)^{\frac{1}{p}}=\left(\iint_{R^{2}}|u-v|^{p} d P_{T(u, v)}\right)^{\frac{1}{p}},
$$

where $T=(\xi, \eta): \Omega \rightarrow R^{2}, P_{T}: \mathcal{B}\left(R^{2}\right) \rightarrow[0,1], P_{T}(A)=P\left(T^{-1}(A)\right)$.
Remark that in the whole text we use the abbreviation "IF" for the term "intuitionistic fuzzy".

2 Preliminaries and auxiliary notions

The year 2023 is the 40-th anniversary of the invention of the concept and theory of intuitionistic fuzzy sets by K. T. Atanassov in the paper [1]. As an IF-set A on Ω he understands a pair $\left(\mu_{A}, \nu_{A}\right)$ of mappings $\mu_{A}, \nu_{A}: \Omega \rightarrow[0,1]$ such that $\mu_{A}+\nu_{A} \leq 1_{\Omega}$.

In this paper we will work with a family of intuitionistic fuzzy events on (Ω, \mathcal{S}) denoted by \mathcal{F}.

Recall that an IF-event is called an IF-set $\mathbf{A}=\left(\mu_{A}, \nu_{A}\right)$ such that the functions μ_{A}, ν_{A} : $\Omega \rightarrow[0,1]$ are \mathcal{S}-measurable (see [3, 2]).

On this family we use the Lukasiewicz binary operations \oplus, \odot given by

$$
\begin{aligned}
& \left.\mathbf{A} \oplus \mathbf{B}=\left(\left(\mu_{A}+\mu_{B}\right) \wedge 1_{\Omega},\left(\nu_{A}+\nu_{B}-1_{\Omega}\right) \vee 0_{\Omega}\right)\right), \\
& \left.\mathbf{A} \odot \mathbf{B}=\left(\left(\mu_{A}+\mu_{B}-1_{\Omega}\right) \vee 0_{\Omega},\left(\nu_{A}+\nu_{B}\right) \wedge 1_{\Omega}\right)\right),
\end{aligned}
$$

for each $\mathbf{A}=\left(\mu_{A}, \nu_{A}\right) \in \mathcal{F}, \mathbf{B}=\left(\mu_{B}, \nu_{B}\right) \in \mathcal{F}$. The partial ordering is given by

$$
\mathbf{A} \leq \mathbf{B} \Longleftrightarrow \mu_{A} \leq \mu_{B}, \nu_{A} \geq \nu_{B} .
$$

In the papers [9, 11], B. Riečan defined the notion of an IF-state as a mapping $\mathbf{m}: \mathcal{F} \rightarrow[0,1]$ with the following three conditions:
(i) $\mathbf{m}\left(\left(1_{\Omega}, 0_{\Omega}\right)\right)=1, \mathbf{m}\left(\left(0_{\Omega}, 1_{\Omega}\right)\right)=0$;
(ii) if $\mathbf{A} \odot \mathbf{B}=\left(0_{\Omega}, 1_{\Omega}\right)$ and $\mathbf{A}, \mathbf{B} \in \mathcal{F}$, then $\mathbf{m}(\mathbf{A} \oplus \mathbf{B})=\mathbf{m}(\mathbf{A})+\mathbf{m}(\mathbf{B})$;
(iii) if $\mathbf{A}_{n} \nearrow \mathbf{A}$ (i.e., $\left.\mu_{A_{n}} \nearrow \mu_{A}, \nu_{A_{n}} \searrow \nu_{A}\right)$, then $\mathbf{m}\left(\mathbf{A}_{n}\right) \nearrow \mathbf{m}(\mathbf{A})$.
and he defined the notion of an IF-observable as a mapping $x: \mathcal{B}(R) \rightarrow \mathcal{F}$ satisfying the following conditions:
(i) $x(R)=\left(1_{\Omega}, 0_{\Omega}\right), x(\emptyset)=\left(0_{\Omega}, 1_{\Omega}\right)$;
(ii) if $A \cap B=\emptyset$, then $x(A) \odot x(B)=\left(0_{\Omega}, 1_{\Omega}\right)$ and $x(A \cup B)=x(A) \oplus x(B)$;
(iii) if $A_{n} \nearrow A$, then $x\left(A_{n}\right) \nearrow x(A)$,
where $\mathcal{B}(R)$ is a σ-algebra of the family \mathcal{J} of all intervals in R of the form

$$
[a, b)=\{x \in R: a \leq x<b\} .
$$

Similarly, we can formulate the notion of an n-dimensional IF-observable as a mapping $x: \mathcal{B}\left(R^{n}\right) \rightarrow \mathcal{F}$ with the following conditions:
(i) $x\left(R^{n}\right)=\left(1_{\Omega}, 0_{\Omega}\right), x(\emptyset)=\left(0_{\Omega}, 1_{\Omega}\right)$;
(ii) if $A \cap B=\emptyset, A, B \in \mathcal{B}\left(R^{n}\right)$, then $x(A) \odot x(B)=\left(0_{\Omega}, 1_{\Omega}\right)$ and $x(A \cup B)=x(A) \oplus x(B)$;
(iii) if $A_{n} \nearrow A$, then $x\left(A_{n}\right) \nearrow x(A)$ for each $A, A_{n} \in \mathcal{B}\left(R^{n}\right)$.

If $n=1$, we simply say that x is an IF-observable.
Remark that the composition of an IF-state \mathbf{m} and an IF-observable x is a probability measure denoted \mathbf{m}_{x}, i.e., $\mathbf{m}_{x}(C)=\mathbf{m}(x(C))$ for each $C \in \mathcal{B}(R)$.

In [10], B. Riečan defined the notion of a joint IF-observable and proved its existence. The joint IF-observable of the IF-observables x, y is a mapping $h: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{F}$ satisfying the following conditions:
(i) $h\left(R^{2}\right)=\left(1_{\Omega}, 0_{\Omega}\right), h(\emptyset)=\left(0_{\Omega}, 1_{\Omega}\right)$;
(ii) if $A, B \in \mathcal{B}\left(R^{2}\right)$ and $A \cap B=\emptyset$, then

$$
h(A \cup B)=h(A) \oplus h(B) \text { and } h(A) \odot h(B)=\left(0_{\Omega}, 1_{\Omega}\right) ;
$$

(iii) if $A, A_{n} \in \mathcal{B}\left(R^{2}\right)$ and $A_{n} \nearrow A$, then $h\left(A_{n}\right) \nearrow h(A)$;
(iv) $h(C \times D)=x(C) \cdot y(D)$ for each $C, D \in \mathcal{B}(R)$.

There \cdot is a product operation on the family of IF-events \mathcal{F} introduced in [6]. It is defined by

$$
\mathbf{A} \cdot \mathbf{B}=\left(\mu_{A} \cdot \mu_{B}, \nu_{A}+\nu_{B}-\nu_{A} \cdot \nu_{B}\right)
$$

for each $\mathbf{A}=\left(\mu_{A}, \nu_{A}\right), \mathbf{B}=\left(\mu_{B}, \nu_{B}\right) \in \mathcal{F}$.
If we have several IF-observables and a Borel measurable function, we can define the IF-observable, which is the function of several IF-observables. Regarding this, we provide the following definition, see [5].

Let $x_{1}, \ldots, x_{n}: \mathcal{B}(R) \rightarrow \mathcal{F}$ be IF-observables, h_{n} their joint IF-observable and $g_{n}: R^{n} \rightarrow R$ a Borel measurable function. Then we define the IF-observable $g_{n}\left(x_{1}, \ldots, x_{n}\right): \mathcal{B}(R) \rightarrow \mathcal{F}$ by the formula

$$
g_{n}\left(x_{1}, \ldots, x_{n}\right)(A)=h_{n}\left(g_{n}^{-1}(A)\right)
$$

for each $A \in \mathcal{B}(R)$.

$3 \quad L^{p}$ space of IF-observables

In this section, we formulate L^{p} space of IF-observables. We can consider an IF-observable x instead of a random variable and a joint IF-observable h instead of a random vector.
Definition 3.1. Fix a real number $p \geq 1$. Let $(\mathcal{F}, \mathbf{m})$ be an $I F$-space with product. We say that an IF-observable $x: \mathcal{B}(R) \rightarrow \mathcal{F}$ belongs to L_{m}^{p} if there exists the integral

$$
\int_{R}|t|^{p} d \mathbf{m}_{x}(t)
$$

If $x, y: \mathcal{B}(R) \rightarrow \mathcal{F}$ are the IF-observables and $h_{x y}: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{F}$ is their joint IF-observable, then we define the IF-observable $x-y: \mathcal{B}(R) \rightarrow \mathcal{F}$ by the formula

$$
(x-y)(A)=h_{x y}\left(g^{-1}(A)\right)
$$

for each $A \in \mathcal{B}(R)$, where $g: R^{2} \rightarrow R$ is a Borel measurable function defined by $g(u, v)=u-v$.
Proposition 3.1. Let $(\mathcal{F}, \mathbf{m})$ be an IF-space with product. If the $I F$-observables $x, y: \mathcal{B}(R) \rightarrow \mathcal{F}$ are in $L_{\mathbf{m}}^{p}$, then the IF-observable $x-y: \mathcal{B}(R) \rightarrow \mathcal{F}$ is in $L_{\mathbf{m}}^{p}$.
Proof. From definition of IF-observable $x-y$ we have

$$
(x-y)(A)=h_{x y}\left(g^{-1}(A)\right)
$$

for each $A \in \mathcal{B}(R)$, where $g(u, v)=u-v$ and $h_{x y}$ is the joint IF-observable of IF-observables x, y.

Consider the probability space $\left(R^{2}, \mathcal{B}(R), P=\mathbf{m} \circ h_{x y}\right)$ and the random variables ξ, η : $R^{2} \rightarrow R$ defined by

$$
\xi(u, v)=u, \quad \eta(u, v)=v .
$$

Evidently,

$$
\begin{align*}
P_{\xi}(A) & =P\left(\xi^{-1}(A)\right) \\
& =\mathbf{m} \circ h_{x y}\left(\xi^{-1}(A)\right) \\
& =\mathbf{m}\left(h_{x y}(A \times R)\right) \\
& =\mathbf{m}(x(A) \cdot y(R)) \\
& =\mathbf{m}\left(x(A) \cdot\left(1_{\Omega}, 0_{\Omega}\right)\right) \\
& =\mathbf{m}(x(A)) \\
& =\mathbf{m}_{x}(A) \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
P_{\eta}(A) & =P\left(\eta^{-1}(A)\right) \\
& =\mathbf{m} \circ h_{x y}\left(\eta^{-1}(A)\right) \\
& =\mathbf{m}\left(h_{x y}(R \times A)\right) \\
& =\mathbf{m}(x(R) \cdot y(A)) \\
& =\mathbf{m}\left(\left(1_{\Omega}, 0_{\Omega}\right) \cdot y(A)\right) \\
& =\mathbf{m}(y(A)) \\
& =\mathbf{m}_{y}(A) . \tag{2}
\end{align*}
$$

Since $x, y \in L_{\mathbf{m}}^{p}$, i.e., the integrals $\int_{R}|t|^{p} d \mathbf{m}_{x}(t), \int_{R}|t|^{p} d \mathbf{m}_{y}(t)$ exist, then by (1), (2) we have

$$
\begin{aligned}
\iint_{R^{2}}|\xi|^{p} d P & =\int_{R}|t|^{p} d P_{\xi}(t)=\int_{R}|t|^{p} d \mathbf{m}_{x}(t)<\infty \\
\iint_{R^{2}}|\eta|^{p} d P & =\int_{R}|t|^{p} d P_{\eta}(t)=\int_{R}|t|^{p} d \mathbf{m}_{y}(t)<\infty
\end{aligned}
$$

Therefore, the random variables ξ, η belong to L_{P}^{p} and the random variable $\xi-\eta$ belong to L_{P}^{p}, too. Since $g(u, v)=u-v=\xi(u, v)-\eta(u, v)$, then we have

$$
\begin{aligned}
\mathbf{m}_{x-y} & =\mathbf{m} \circ(x-y) \\
& =\mathbf{m} \circ h_{x y} \circ g^{-1} \\
& =\mathbf{m} \circ h_{x y} \circ(\xi-\eta)^{-1} \\
& =P\left((\xi-\eta)^{-1}\right) \\
& =P_{(\xi-\eta)}
\end{aligned}
$$

and

$$
\int_{R}|t|^{p} d \mathbf{m}_{x-y}(t)=\int_{R}|t|^{p} d P_{(\xi-\eta)}(t)=\iint_{R^{2}}|\xi-\eta|^{p} d P
$$

But $\xi-\eta \in L_{P}^{p}$, i.e., the integral $\iint_{R^{2}}|\xi-\eta|^{p} d P$ exists, hence the integral $\int_{R}|t|^{p} d \mathbf{m}_{x-y}(t)$ exists and $x-y \in L_{\mathbf{m}}^{p}$.

Definition 3.2. Let $(\mathcal{F}, \mathbf{m})$ be an $I F$-space with product. For each $I F$-observables $x, y \in L_{\mathbf{m}}^{p}$ define the map $\rho_{I F}: L_{\mathbf{m}}^{p} \times L_{\mathbf{m}}^{p} \rightarrow R$ by

$$
\rho_{I F}(x, y)= \begin{cases}0 & \text { if } x=y \\ \left(\iint_{R^{2}}|g|^{p} d\left(\mathbf{m} \circ h_{x y}\right)\right)^{\frac{1}{p}} & \text { if } x \neq y\end{cases}
$$

where $h_{x y}: \mathcal{B}\left(R^{2}\right) \rightarrow \mathcal{F}$ is the joint IF-observable of IF-observables x, y and the Borel measurable function $g: R \rightarrow R$ is given by $g(u, v)=u-v$.
Remark 3.3. The map $\rho_{I F}: L_{\mathbf{m}}^{p} \times L_{\mathbf{m}}^{p} \rightarrow R$ given by

$$
\rho_{I F}(x, y)= \begin{cases}0 & \text { if } x=y \\ \left(\iint_{R^{2}}|g|^{p} d\left(\mathbf{m} \circ h_{x y}\right)\right)^{\frac{1}{p}} & \text { if } x \neq y\end{cases}
$$

can be rewritten in the following form

$$
\rho_{I F}(x, y)= \begin{cases}0 & \text { if } x=y \\ \left(\int_{R}|t|^{p} d \mathbf{m}_{x-y}(t)\right)^{\frac{1}{p}} & \text { if } x \neq y\end{cases}
$$

Really

$$
\begin{aligned}
\iint_{R^{2}}|g|^{p} d\left(\mathbf{m} \circ h_{x y}\right) & =\int_{R}|t|^{p} d\left(\mathbf{m} \circ h_{x y} \circ g^{-1}\right)(t) \\
& =\int_{R}|t|^{p} d(\mathbf{m} \circ(x-y))(t) \\
& =\int_{R}|t|^{p} d \mathbf{m}_{x-y}(t) .
\end{aligned}
$$

Proposition 3.2. The IF-space $\left(L_{\mathbf{m}}^{p}, \rho_{I F}\right)$ is a pseudometric space.
Proof. By the Definition 3.2, we have $\rho_{I F}(x, x)=0$ and $\rho_{I F}(x, y) \geq 0$.
Now, we prove the symmetry. Consider any different IF-observables $x, y \in L_{\mathbf{m}}^{p}$. Let $h_{x y}$ be the joint IF-observable of IF-observables x, y and $h_{y x}$ be the joint IF-observable of IF-observables y, x. Put $\varphi(u, v)=(v, u)$, then $h_{y x}=h_{x y} \circ \varphi^{-1}$. Really,

$$
\begin{aligned}
h_{x y} \circ \varphi^{-1}(A \times B) & =h_{x y}(B \times A) \\
& =x(B) \cdot y(A) \\
& =y(A) \cdot x(B) \\
& =h_{y x}(A \times B) .
\end{aligned}
$$

If we put $g(u, v)=u-v$ and $\psi(w)=-w$, then we obtain

$$
\begin{aligned}
\mathbf{m}_{y-x} & =\mathbf{m} \circ(y-x) \\
& =\mathbf{m} \circ h_{y x} \circ g^{-1} \\
& =\mathbf{m} \circ h_{x y} \circ \varphi^{-1} \circ g^{-1} \\
& =\mathbf{m} \circ h_{x y} \circ(g \circ \varphi)^{-1} \\
& =\mathbf{m} \circ h_{x y} \circ(\psi \circ g)^{-1} \\
& =\mathbf{m} \circ h_{x y} \circ g^{-1} \circ \psi^{-1} \\
& =\mathbf{m} \circ(x-y) \circ \psi^{-1} \\
& =\mathbf{m}_{x-y} \circ \psi^{-1} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\left(\rho_{I F}(y, x)\right)^{p} & =\iint_{R^{2}}|g|^{p} d\left(\mathbf{m} \circ h_{y x}\right) \\
& =\int_{R}|t|^{p} d \mathbf{m}_{y-x}(t) \\
& =\int_{R}|t|^{p} d\left(\mathbf{m}_{x-y} \circ \psi^{-1}\right)(t) \\
& =\int_{R}|-t|^{p} d \mathbf{m}_{x-y}(t) \\
& =\int_{R}|t|^{p} d \mathbf{m}_{x-y}(t) \\
& =\iint_{R^{2}}|g|^{p} d\left(\mathbf{m} \circ h_{x y}\right) \\
& =\left(\rho_{I F}(x, y)\right)^{p} .
\end{aligned}
$$

Next we prove the triangle inequality. Let $x, y, z: \mathcal{B}(R) \rightarrow \mathcal{F}$ be three different IF-observables. Consider a joint IF-observable $h_{x y z}: \mathcal{B}\left(R^{3}\right) \rightarrow \mathcal{F}$ of IF-observables x, y, z. Then

$$
h_{x y z}(A \times B \times C)=x(A) \cdot y(B) \cdot z(C)
$$

for each $A, B, C \in \mathcal{B}(R)$.

Consider the probability space $\left(R^{3}, \mathcal{B}\left(R^{3}\right), P=\mathbf{m} \circ h_{x y z}\right)$. Then the mappings ξ, η, ζ : $R^{3} \rightarrow R$ defined by

$$
\xi(u, v, w)=u, \quad \eta(u, v, w)=v, \quad \zeta(u, v, w)=w
$$

are the random variables and

$$
\begin{align*}
P_{\xi}(A) & =P\left(\xi^{-1}(A)\right) \\
& =P(A \times R \times R) \\
& =\mathbf{m}\left(h_{x y z}(A \times R \times R)\right) \\
& =\mathbf{m}(x(A) \cdot y(R) \cdot z(R)) \\
& =\mathbf{m}\left(x(A) \cdot\left(1_{\Omega}, 0_{\Omega}\right) \cdot\left(1_{\Omega}, 0_{\Omega}\right)\right) \\
& =\mathbf{m}(x(A)) \\
& =\mathbf{m}_{x}(A) \tag{3}
\end{align*}
$$

Similarly,

$$
\begin{equation*}
P_{\eta}(A)=\mathbf{m}_{y}(A), \quad P_{\zeta}(A)=\mathbf{m}_{z}(A) \tag{4}
\end{equation*}
$$

for each $A \in \mathcal{B}(R)$. Using (3), (4) and $x, y, z \in L_{\mathbf{m}}^{p}$, we obtain that $\xi, \eta, \zeta \in L_{P}^{p}$.
Put $g(u, v)=u-v$ and $\pi_{x y}(u, v, w)=(u, v)$. Then $h_{x y}=h_{x y z} \circ \pi_{x y}^{-1}$ is a joint IF-observable of IF-observables x, y. Really,

$$
\begin{aligned}
h_{x y}(A \times B) & =h_{x y z}(A \times B \times R) \\
& =x(B) \cdot y(A) \cdot z(R) \\
& =x(A) \cdot y(B) \cdot\left(1_{\Omega}, 0_{\Omega}\right) \\
& =x(A) \cdot y(B) .
\end{aligned}
$$

Since

$$
\begin{aligned}
\mathbf{m}_{x-y} & =\mathbf{m} \circ(x-y) \\
& =\mathbf{m} \circ h_{x y} \circ g^{-1} \\
& =\mathbf{m} \circ h_{x y z} \circ \pi_{x y}^{-1} \circ g^{-1} \\
& =\mathbf{m} \circ h_{x y z} \circ(g \circ \pi)^{-1} \\
& =P \circ\left(g \circ \pi_{x y}\right)^{-1},
\end{aligned}
$$

then

$$
\begin{aligned}
\rho_{I F}(x, y) & =\left(\iint_{R^{2}}|g|^{p} d\left(\mathbf{m} \circ h_{x y}\right)\right)^{\frac{1}{p}} \\
& =\left(\int_{R}|t|^{p} d \mathbf{m}_{x-y}(t)\right)^{\frac{1}{p}} \\
& =\left(\iint_{R}|t|^{p} d\left(P \circ\left(g \circ \pi_{x y}\right)^{-1}\right)(t)\right)^{\frac{1}{p}} \\
& =\left(\iiint_{R^{3}}\left|g \circ \pi_{x y}\right|^{p} d P\right)^{\frac{1}{p}} \\
& =\left(\iiint_{R^{3}}|\xi-\eta|^{p} d P\right)^{\frac{1}{p}} .
\end{aligned}
$$

Analogously, we obtain

$$
\mathbf{m}_{x-z}=P \circ\left(g \circ \pi_{x z}\right)^{-1}, \quad \mathbf{m}_{y-z}=P \circ\left(g \circ \pi_{y z}\right)^{-1}
$$

and

$$
\rho_{I F}(x, z)=\left(\iiint_{R^{3}}|\xi-\zeta|^{p} d P\right)^{\frac{1}{p}}, \quad \rho_{I F}(y, z)=\left(\iiint_{R^{3}}|\eta-\zeta|^{p} d P\right)^{\frac{1}{p}}
$$

where $\pi_{x z}(u, v, w)=(u, w), \pi_{y z}(u, v, w)=(v, w)$ and $h_{x z}=h_{x y z} \circ \pi_{x z}^{-1}$ is a joint IF-observable of IF-observables x, z and $h_{y z}=h_{x y z} \circ \pi_{y z}^{-1}$ is a joint IF-observable of IF-observables y, z.

Finally, using the triangle inequality and the symmetry in L_{P}^{p} and the symmetry in $L_{\mathbf{m}}^{p}$ we have

$$
\begin{aligned}
\rho_{I F}(x, y) & =\left(\iiint_{R^{3}}|\xi-\eta|^{p} d P\right)^{\frac{1}{p}} \\
& \leq\left(\iiint_{R^{3}}|\xi-\zeta|^{p} d P\right)^{\frac{1}{p}}+\left(\iiint_{R^{3}}|\zeta-\eta|^{p} d P\right)^{\frac{1}{p}} \\
& =\rho_{I F}(x, z)+\rho_{I F}(z, y) .
\end{aligned}
$$

Therefore, the IF-space $\left(L_{\mathbf{m}}^{p}, \rho_{I F}\right)$ is a pseudometric space.

4 Conclusion

The paper is devoted to an L^{p} space of IF-observables with respect the IF-state \mathbf{m}. We proved that $\left(L_{\mathbf{m}}^{p}, \rho_{I F}\right)$ is a pseudometric space. The presented results are the generalization of the results in [7], because if $\mu_{A}: \Omega \longrightarrow[0,1]$ is a fuzzy set, then $\mathbf{A}=\left(\mu_{A}, 1-\mu_{A}\right): \Omega \rightarrow[0,1]^{2}$ is the corresponding intuitionistic fuzzy set. The Definition 3.1 generalizes the notion of integrable and square integrable IF-observable introduced in [4].

Acknowledgements

This publication was supported by grant VEGA 2/0122/23 and by the Operational Programme Integrated Infrastructure (OPII) for the project 313011BWH2: InoCHF - Research and development in the field of innovative technologies in the management of patients with CHF, co-financed by the European Regional Development Fund.

References

[1] Atanassov, K. T. (1983). Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Reprinted: Int. J. Bioautomation, 2016, 20(S1), S1-S6.
[2] Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica Verlag, New York.
[3] Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory, Springer, Berlin.
[4] Bartková, R., \& Čunderlíková, K. (2018). About Fisher-Tippett-Gnedenko theorem for intuitionistic fuzzy events. Kacprzyk, J., et al. (Eds.). Advances in Fuzzy Logic and Technology 2017. IWIFSGN 2017, EUSFLAT 2017. Advances in Intelligent Systems and Computing, Vol. 641, Springer, Cham, 125-135.
[5] Čunderlíková, K. (2019). m-almost everywhere convergence of intuitionistic fuzzy observables induced by Borel measurable function. Notes on Intuitionistic Fuzzy Sets, 25(2), 29-40.
[6] Lendelová, K. (2006). Conditional IF-probability. Lawry, J. et al. (Eds.). Soft Methods for Integrated Uncertainty Modelling. Advances in Soft Computing, Vol. 37, Springer-Verlag Berlag Heidelberg, 275-283.
[7] Riečan, B. (1999). On the L^{p} space of observables. Fuzzy Sets and Systems, 105(2), 299-306.
[8] Riečan, B. (2000). On the L^{p} space of observables on product MV algebras. International Journal of Theoretical Physics, 39(3), 851-858.
[9] Riečan, B. (2006). On a problem of Radko Mesiar: General form of IF-probabilities. Fuzzy Sets and Systems, 157(11), 1485-1490.
[10] Riečan, B. (2006). On the probability and random variables on IF events. Ruan, D. (Eds.). Applied Artificial Intelligence, Proceedings of 7th FLINS Conference, Genova, 138-145.
[11] Riečan, B. (2012). Analysis of fuzzy logic models. Koleshko, V. (Ed.). Intelligent Systems, INTECH, 219-244.

