Third Int. Workshop on GNs, Sofia, 1 Oct. 2002, 49-58

ON SOME GENERALIZED NET MODELS OF MULTIAGENT SYSTEMS -
PART II
Trifon Trifonov' and Krassimir Atanassov’
1 CLBME - Bulg. Academy of Sciences, Acad. G. Bonchev Str., 105 Block,
Sofia-1113, Bulgaria,
e-mails: trifon.trifonov@mail.clbme.bas.bg, krat@bgcict.acad.bg

Abstract: Some generalized nets (an extension of the Petri net) models of multiagent
systems are described.

Keywords: Agent, Generalized net, Multiagent system

1. INTRODUCTION

Multiagent systems are tools for system modelling, which rely on task distribution among
several autonomous and intelligent units, called agents. Such systems quickly find application
in areas, such as engineering, computer science and artificial intelligence. Many authors have
tried to formalize the terms “agent” and “multiagent system”, and today there exist many
different approaches to multiagent architectures (see [2]-[8]). Multiagent systems develop
fast, because they offer a new look at the problem of process modelling. They supply parallel
task execution by distributing it among autonomous intelligent units (agents), which inhabit
a dynamic environment, about which they sometimes do not have full information. As in
[1], we will think that an agent is “...rational, communicative, active, autonomous..., flexible,
adaptive, self-learning and mobile”. We consider the main components of the agents to be:

- input

- output

- central decision-making unit

- unit for message generating and interpreting.

In [1], the authors have proposed generalized nets as tools for multiagent system mod-
elling. The full definition of the concept of a Generalized Net (GN) can be found in [9].
Some of the reasons for this choice are that:

- GNs have proved to be a suitable tool for modelling other formal objects for artificial
intelligence (e.g. expert systems [10], machine learning [11])

- like multiagent systems, GNs supply parallel task execution through appropriate algo-
rithms (see [9])

- multiagent systems are commonly used for process modelling or solution of a particular
problem, so it seems appropriate to look for another modelling tool their representation,
such being GNs

- apart from being a formal tool, GNs have a convenient visual representation which to
help monitoring a process, simulated by a multiagent system.

49

In [1] we regarded the possibility for modelling an entire multiagent system in the terms
of GNs, constructing the first GN-model of a multiagent system. We will remind this model
and then present other possible models.

2. SECOND GENERALIZED NET MODEL OF A MULTIAGENT SYSTEM

In the present model we shall consider the following preliminaries :

- the problem we want to solve is given - this could be a particular task, or a particular
process;

- the connections between agents are preliminary determined;

- the role of every agent in the system is cleared out.

In [1] we used the term A-transition.

Definition: A-transition is a transition
< L1,L2,t1,t2,'l°, AI, O >,

for which:

1) there exists a place P € L; N Ly (static condition),

2) Ll—"Lz#@OTLz—[q?ém,

3) for every place @ € Ly — L either an A-transition Z; =< L;,Ls,... > exists and
x € Ly, — Ly, or it is an input place for whole GN,

4) for every place © € L, — Ly either an A-transition Z; =< L, L,,... > exists and
x € Ly — L2, or it is an output place for whole GN,

5) in every moment of the active period of the GN there is exactly one token Tp in place
P (dynamic condition).

We call place P the agent place and token Tp - the place token, i.e., the token will loop
only in this place. We shall assume that every A-transition represents exactly one agent. A
multiagent system is modelled by a GN E, for which

(VZ € A)(Z is an A-transition)

The logic of an agent is built in the predicate index matrix r of the A-transition, and the
characteristics of the state token represent the agent state in an arbitrary moment of the GN
model time. Agent communication is performed by transition of tokens from one A-transition
to another via their common place - output for the first transition and input for the second
one. When an agent, modelled by an A-transition, decides to initiate communication, its
state token splits into two tokens, one of which is the new state token, and the other token
carries in its characteristics information about the other agent. The last token is placed into
an appropriate output place, from which it is accepted by the other agent, and merges with
its state token.

The advantages and disadvantages of the model are cleared out in [1], but for the sake
of the presentation completeness we will summarize them here. At first, it is seen that we
model a prebuilt multiagent system, as every agent’s logic should is preliminarly determined.
Then, the connections between agents are fixed at the design phase of model and cannot be
altered. If the agents in the multiagent system should be highly communicative, then all
the connections between them can overload the net structure, making it too complex even

a0

for computer simulation. In [1] various solutions are offered to reduce the negative effects
of such disadvantages. These include applying of the optimization operator Gy, which 1is
described in details in [9], as well as using Self-Modifying GNs (SMGN) to model adaptive
agent architectures.

In fact the main disadvantage of this GN model is that it supposes the multiagent system
is built “at once”. It can be considered as a direct representation of a multiagent system in
GNs. Although this is a formal translation from one object to another, in practical use it
may be difficult to apply it directly. It is commonly not suitable for one to think in terms
of multiagent systems and to design in terms of GN In the next section we will regard a
rather different approach. We will consider a particular GN model and will enhance it with
a multiagent system.

3. DESIGNING A MULTIAGENT SYSTEM IN A GENERALIZED NET
MODEL

Let us suppose we want to design a working GN model, solving a problem or simulating a
process. Let us also suppose we want to use a multiagent system in order to obtain parallel
execution and task distribution. We assume that we are able to build an appropriate GN
model. We shall not concentrate on that step of the solution, more information about
designing GN models can be found in [9]. Let

E=<< A, ma,xp,¢,f 01,0, > < K, 75,0 >, < T,1°t* > < X,8,b>>

be the GN model. We will build a new model E’, which has a multiagent system built-in.
Let
7 =< Ll,Lz,tl,tg,T, A[, a >, Z €A

Let us describe a new transition (see Fig. 1)

z
li "y
OO
l:n Un
~O
lz
o)
S
Fig. 1

7' =< L}, Ly, t1,ta,r', M', 0 >,
corresponding to Z, where

Lll =I,U {lz},L; =L, U {lz},lz ¢ L

a1

(Vly € L1)(Vly € Ly)(ry,y, = 11,1, &M 1, = My, ,)
(Vi € Ll)(?“fl,lz = false&M] ;, = 0)
(Vlz € Ly)(ry,,, = false& M, =0)
i, =true, My =1

In fact for every transition Z € A we specify an unique place {7 and token kz, where Iz ¢ L
and kz ¢ I\.
Let us consider the new GN model

B =<< A zq, 7L, F 01,0, > < K' 75, 0 >, < T80 >, < X', 9 b >>

where
A'={Z'|Z € A}
L, = {lz|Z € A}
K, = {kz|Z € A}
K'=KUK,

(VI € L)((1) = e(1)&(Viz € La)(d(Iz) = 1),
(VE € K)(X'(k) = X(k)),
(Vk € K)('(k) = B(k)).

The only elements we have not yet fully defined are the predicate index matrix 7', the
predicate evaluating function f', and the characteristic assignment functions X' and @'.
These are the GN elements that will be used to model the multiagent system. Informally,
we add to each transition Z in the GN a new place [z, which is input and output for
the transition. This place represents an agent, attached to the transition. Inside each
“agent” place there must always be exactly one token, kz, which, as in the previous model,
represents the agent state. Similarly we will call it the state token. No tokens may enter
or leave the agent place, so that the state token does not have any direct interaction with
other tokens. We have already defined the characteristic functions X’ and @’ on all the
tokens in . Considering a state token, we must define these functions in an appropriate
way in order to model the behaviour of a multiagent system. As in the previous model,
we cannot give strict definitions for these functions, as we are offering a general model of a
multiagent system. However, if we assume that there is a problem defined, then there are
certain properties that the characteristic functions should have. The X’ function describes
the initial characteristics of the tokens, and therefore the initial agent states. If the regarded
multiagent system supposes initial agent knowledge and logic, then X’ should be defined
to describe the initial characteristics of each agent’s state token, according to the agent’s
position in the multiagent system. The @’ function is more interesting, as soon as it describes
the token characteristic in the next moment of time. The agent paradigm supposes that an
agent is an intelligent unit and still agents depend on each other and communicate in the
whole multiagent system. In this GN model, ®' describes the whole behaviour of an agent.
As long as ®' depends on the previous characteristic of the state token, it determines the
next move of the agent, according to its previous actions and its initial state. We assume
that if the function is defined to handle as many cases of agent behaviour as possible, then
it can model intelligent reactions of an agent. On the other hand, @' can depend not

52

only of the previous characteristics of the considered token, but on all the other tokens’
characteristics. Therefore, by describing ®' appropriately, we can represent some interaction
between the agents, which hardly can be called “communication”, but more suitable is to
be called “dependence”. An agent can depend not only on the state of another agent, but
also of the previous states it has been in. Of course, considering some restrictions in GNs,
no characteristic function can depend on future events, or else a deadlock can occur. And
finally, ® can depend on other GN elements that are outside the multiagent system model.
Although, if we allow for a certain model some agent to depend on an arbitrary GN element,
this could make a model unclear. Since every agent place is attached to a transition, it
will be reasonable to impose the restriction for an agent to depend only on the elements,
concerning its transition, e.g. its predicates, arc capacities, input and output places, and
the tokens inside them. In fact this is not a restriction, since we allow any agent’s behaviour
to depend on other agents’ characteristics. Thus, an agent can receive indirect information
about any particular element of the GN by “contacting” the corresponding agents. Implying
such condition is not a restriction but a “design rule” in order to produce a clear model.
Another possibility is to divide each agent’s characteristics in two groups - “public” and
“private”. Then we require an agent’s @ function to depend only on such characteristic
of another agent, which are classified “public”. Such classification has descriptive, rather
than semantic meaning and it should be considered only if necessary. For example, let us
regard a multiagent system with its agent’s characteristics classified. If we decide to expand
such a system by adding new transitions and agents, then they should consider only public
characteristics of other agents, which would reflect on the definition of their characteristic
functions. As conclusion, the agent behaviour, described by the & function, is determined
by the agent’s history, by the states of other agents and indirectly by the state of the whole
GN model.

The predicate index matrix r’ and predicate evaluating function f’ define the application
of the multiagent system in the GN. Regarding the model we discuss, we suppose that there
is an adequate reason to design a multiagent system in a GN - e.g. to aid solving a problem,
or to help in some process simulation. As long as E’ is an extension of E, we may assume
that most of the elements in 7' are the same as in 7. In fact, for a certain transition we need
to alter only the predicates for the arcs, which must let through tokens according to the
state of an agent (the agent token characteristics). Of course, the predicate condition may
be more complex and describe composite dependences on several agents. Since the predicate
index matrix is the most flexible element of the GN, it can serve in the interaction between
the multiagent system and the rest of the GN model. For example, the control over an
entire transition can be turned over to an agent, by defining appropriately the transition’s
predicate index matrix. On the other hand, agent depending conditions can easily be mixed
with other conditions, producing a composite predicate, depending partially on an agent and
partially on another condition, regarding the whole GN model. In conclusion, by defining
these GN elements: 7', f', X', ®', we can consider the task of describing a multiagent system
inside a GN model completed.

Formally, the model just described seems an adequate solution. It is simple and builds
the multiagent system over an existing GN. We have reduced the number of the GN elements
to be described to four - ', f', X', ®. The predicate index matrix r’, as well as the evaluating
function f’ can be easily defined, having in mind the task we want to solve. However, we
have completely disregarded the complexity that the agent modelling functions X’ and ¢’ can
reach, thus making the real implementation and simulation of the model impossible. Since

33

they are both used to describe agent behaviour, they gather all the load in the description
of a multiagent system. It is not improbable for these function not to have any convenient
representation. Thus, for a certain multiagent system we may know that it is formally
modellable, but it can be difficult to implement it. This is a disadvantage, as long as GNs
are commonly used to simulate a process. Since X' and @' describe in details how should the
agent behave in different cases, we receive a long and unclear definition. This reduces the
abstraction level and takes the model closer to the particular implementation and further
from the multiagent system idea. There is another disadvantage of this approach. GNx
are often used not only to simulate, but also analyze processes. The time in GNs allows to
track down temporal dependence and order of multiple events. Since we assume that the
calculation of characteristic function does not take more than one step of the model - a very
rough approximation indeed, this model of a multiagent system hides clear temporal causal
relationships. The dependence of X’ and @' on characteristics of other tokens is regarded in
[12] as an “ideal connection”. The solution to this problem is to replace ideal connections
with material connections. This approach is discussed in the next section.

Comparing the two models described until this point, we see that they differ a lot. The
first model describes a whole multiagent system, while the second extends a GN model to
contain a multiagent system. The first model is clear, since it represents a multiagent system
using all GN elements, but is restricted, as we may use only A-transitions, describe processes
only in terms of multiagent systems by predefining a static structure of the net. The second
model is more flexible, since it can combine GN elements with multiagent system elements,
but its definition uses a small subset of the GN elements, thus making the modelling of more
complex multiagent system difficult. We shall consider another model, which combines some
of the advantages of both models.

4. THIRD GENERALIZED NET MODEL OF A MULTIAGENT SYSTEM

Let us consider the term extended A-transition.
Definition: Eaxtended A-transition is called a transition

< L]_,Lz,tl,tg,?‘, A[, a >,

for which (see Fig. 2):

1) there exists place P € Ly N Ly, which is called agent place (static condition),

2) Ly~ Ly # 0 or Ly — L # 0,

3) there exists a place v € Ly — L, either an extended A-transition Z; =< L’l, L;, >
exists and @ € L, — L}, or it is an input place for whole GN, or

4) there exists @ € L, — L either an extended A-transition Z; =< Ly, Ly, ... > exists
and z € L} — L2, or it is an output place for whole GN,

5) in every moment of the active period of the GN there is exactly one token Tp in place
P, which is called state token (dynamic condition).

Places x that satisfy 3) or 4) will be called A-places. Any arc between two A-places will
be called an A-arc.

The main difference between A-transition and extended A-transition is that we do not
restrict the extended A-transition to have common places only with other A-transitions.
Informally, an ertended A-transition is a hybrid between a normal transition and an A-
transition. Since here the universal quantifier along with 2) implies the existential quantifier,

54

the term extended A-transition is more general than the term A-transition, i.e. every A-
transition is an extended A-transition.

4
ty vz
~O
v |z,
OO
4 "y
OO
l:n Un
OO
lz
)
-/
Fig. 2

Let Z; be a transition and Z, be an A-transition. Then, if the operation Z; U Z; is
correctly defined, the transition Z = Z; U Z, is an extended A-transition. This is easily
checked, as conditions 1), 2) and 5) are fulfilled from the corresponding conditions in the
definition of the A-transition Z,. Since 2) is true, then either Ly — Ly # $ or Ly — L1 # 0. If
Ly — Ly # 0, then 3) in the definition of A-transition implies 3) in the definition of extended
A-transition. Else, L, — Ly # 0, then 4) in the definition of A-transition implies 4) in the
definition of extended A-transition. Therefore, “3) or 4)” is true and Z is an extended
A-transition.

Let us consider a GN model:

E =<< A7y mh, ¢ 00,0, >, < K' 71, 0 >, < T 101" >, < X', @' 0 >>
and a GN model of a multiagent system, built according to the A-transition model
E"=<< A" n'\ nl, ", f",0],05 > < K" 7y, 0 >, < T" ¢ t"™ >, < X", @" b" >>
All transitions in A" are A-transitions. We can assume that:
K'NnK"=9
I'nL"=9¢

Furthermore, let us assume that |A’| = |A”|. This can be achieved by adding empty transi-
tions to either A’ or A”. And finally, let us assume that there exists a function f : A’ — A",
so that f is a bijection and (VZ € A')(Z and f(Z) have the same names). This will allow
to merge all the transitions of the both GNs. The union operator over GNs is described in
[8]. Now let us consider the model £ = E'U E". If E =<< A,... >,... >, then it is true
that (VZ € A)(Z is an extended A-transition). The received GN K is a GN model with a

multiagent system.

1))

The formal way to produce a GN model is rather inconvenient for it imposes to have
already designed GN and multiagent system models. In fact it is far more difficult to design
them separately, because they work together. Before presenting informal methods for the
design of such a multiagent system GN model, let us look more closely at the model just
described. Formally, such a model is a GN, consisting of extended A-transitions. Informally,
just as with A-transitions, we will regard the agent place in an extended A-transition as
an agent. The state token’s characteristic will display the agent state. The communication
between agents is performed in the same way as in the A-transition model. Since an input
A-place is an output A-place for another extended A-transition or it is an input for the whole
GN, any tokens in it should merge with the state token to inherit some of the characteristics
and thus receive information. Similarly, when an agent decides to transmit information to
another extended A-transition or the environment, its state token splits and the new token,
bearing outgoing information, is transferred to the appropriate output A-place. This com-
munication model was already discussed in Section 2, and in more detail in [1]. We will only
concentrate on the new features the extended A-transition provides. At first, compared to
the previous model, the communication between agents is realized through a material con-
nection, rather than an ideal connection (see [12]). This approach has the disadvantage that
communication needs more model time to be performed than the simple dependence in the
characteristic functions, considered in the previous section. However, the material connec-
tion allows a much clearer representation of the model. Since communication is performed
via the visible GN elements in a GN model simulation - such as the tokens and transitions,
it is much easier in this model to display casual relationships between agents. Compared
to the second model, here we have true communication, rather than just dependence on
characteristics. In the multiagent system concept, the communication between two agents is
a process, which invloves both agents. The second model displays only the role of the agent,
which initiates the communication. By defining dependences of X’ and ®’, it is theoretically
possible to obtain information about another agent without its participation. Therefore,
the model currently considered describes better the dynamics in communication. Another
advantage of this model is the usage of the extended A-transition. As with the A-transition
model, it allows a clearer and more intuitive definition of an agent. The predicate index ma-
trix r and the predicate evaluation function f carry out most of the agent logic, connected
with communication. Agent behaviour is managed again by the characteristic functions X
and @, but they only depend on previous agent states, i.e. the state token characteristics.

The considered model combines two approaches. It allows to solve the task not only in
terms of multiagent systems, but by combining the advantages of the two instruments. In
fact in the GN model, built of extended A-transitions, exist two separate contours. Thus
the GN and the multiagent system can work paralelly and independent. If necessary, the
model can be built in such way, that the GN contour uses information, gathered by the
multiagent systems - state token characteristics, and the agents in the multiagent system
can use information of the GN model components. This can easily be done only by using GN
components - predicates and characteristic function. However, following the idea, that the
model should be clear, at the design phase should be pointed the roles of both the multiagent
contour and the ordinary GN contour. The two contours should not be mixed - i.e. one
place to be used in both contours. This is only suitable as means for material connection
between the two contours. However, for the model to be more effective, the two contours
should be separated both structurally and semantically and any connection between them
should be defined in the predicates and/or the characteristic functions (“ideal connection”).

56

We can look at this model at two different angles. At first, we can regard it as a GN
model, which has be enhanced with a multiagent system. Note that we do not require the
multiagent system contour to be continuous, so in one GN model there could be several
separate multiagent systems, each built for a different purpose. Therefore, we can enhance
an arbitrary GN model with different multiagent systems. On the other hand, we can regard
this model as a multiagent system, connected to a non-agent-based system, such as the GN.
In both cases we get a model, which combines the flexibility of the GN, and the distributed
intelligence of the multiagent system.

As we discussed, the disadvantages of the second model - nonintuitive and hard defini-
tions, difficult realisation of the model, could be overcomed by using extended A-transitions.
There still exist the same problems, which occured with the A-transition model - fixed con-
nections hetween the agents and overloaded structure of the model. The solutions can be
the same as in the A-transition model (see [1]) namely usage of SMGN, serving agents and
optimization operator in order to reduce the number of places. Still, in the A-transition
model these problems were of much greater importance, since we used the GN to model
only a multiagent system. In the extended A-transition model, we can rearrange the roles,
played by the multiagent system and the rest of the GN in order to optimize the multia-
gent system representation. There is no formal way to define which tasks are suitable for
the agent contour and which are suitable for the GN contour. However, in this model we
have the possibility to restructure the model anytime we encounter hardships in the model
representation. This optimization can be not only to the multiagent contour - by shifting
responsibility to the GN, but a GN model can also benefit by designing a multiagent contour
to undertake some of the work.

We already see that the extended A-transition model can be created not only in the
formal way, described above, i.e. by uniting a GN model with an A-transition model. We
can start by designing a new GN model (as described in [9]) and if we encounter a process,
which can be conveniently modelled with the use of multiagent system, then we simply
include a multiagent contour in the GN model we are designing. Another approach would
be if we start designing a multiagent system and we decide to include some non-multiagent
elements, which can be described with GN elements. Here we see the last disadvantage of
the A-transition model overcome. There is no need to design the whole model “at once”.
We can build a GN model and then simulate it. If we decide to add other GN components
or even other multiagent systems, we can achieve this just by adding appropriate contours
and defining their elements.

5. CONCLUSION

We have considered different approaches to multiagent systems modelling with GNs. The
first model (A-transition model) is used to model a whole multiagent system, which is already
designed. This is a simple and intuitive model, using different GN elements to model agents,
agent communication and agent logic. Its main disadvantage is the restrictions to use only A-
transitions, which can result in difficulties in practical realizations of the model. The second
model describes how to enhance a GN with amultiagent system. A formal method for the
GN conversion is presented and the multiagent system is built only of four GN elements -
the predicate index matrix, predicate evaluating function and the characteristic function. In
this simple model agent communication is substituted by function dependence, i.e. “ideal

o7

connection”. Problems with the pratical application can arise when the dependences of
agents on one another are complex, or when the agent logic is too complicated to use a
simple function. The model, considered in the last section, is closest to the creating a suitable
modelling instrument, using multiagent systems. Starting from the idea of multiagent system
representation in terms of GNs, we conclude that the best solution is to combine both of
them in order to produce a better model. Such mixed model is represented in terms of GNs,
because they can represent other formal objects - expert systems, neural networks, UML
diagrams, which can be included to receive a highly heterogenic GN model, which can be
used in simulation of wider variety of processes.

REFERENCES

[1] Trifonov T., K. Atanassov, On Some Generalized Net Models of Multiagent Sys-
tems, Proceedings of the Second Int. Workshop on Intuitionistic Fuzzy Sets and
Generalized Nets, Warszawa, 24-25 July 2002 (in press).

[2] Hodjat B., C. Savoie, M. Amamiyan Adaptive Agent Oriented Software Architec-
ture, http://lanl.arxiv.org/pdf/cs.DC/9812014, 1998.

[3] Cohen P., A. Cheyer, M. Wang, S. C. Baeg, OAA: An Open Agent Architecture,
AAAI Spring Symposium, 1994.

[4] Wolpert D., K. Wheeler, K. Tumer, General principles of learning-based multiagent
systems, http://lanl.arxiv.org/pdf/cs.MA /9905005, 1999.

[5] Wolpert D., K. Tumer, An introduction to collective intelligence,
http://lanl.arxiv.org/pdf/cs.LG/9908014, 1999.

[6] Haddadi A., Communication and Cooperation in Agent Systems, Springer, Berlin,
1995.

[7] Intelligent Agents, (M. Wooldridge, N. Jenkings, Eds.), Springer, Berlin, 1995.

[8] Intelligent Agents. V, (J. Miiller, M. Singh, S. Rao, Eds.), Springer, Berlin, 1999.

[9] Atanassov K., Generalized Nets, Singapore, World Scientific, 1991.

[10] Atanassov K., Generalized Nets in Artificial Intelligence, Vol. 1: Generalized Net-
s and Expert Systems, Sofia, 'Prof Marin Drinov’ Publishing House of Bulgarian
Academy of Sciences, 1998.

[11] Atanassov K., H. Aladjov, Generalized Nets in Artificial Intelligence, Vol. 2: Gen-
eralized Nets and Machine Learning, Sofia, 'Prof Marin Drinov’ Publishing House
of Bulgarian Academy of Sciences, 2000.

[12] Atanassov K., Radeva V., On the abstract systems with properties, Advanced Stud-
ies in Contemporary Mathematics, Vol.4, No. 1, 2001, 55-71.

[13] Koycheva E., T. Trifonov, H. Aladjov, Modelling Of UML Sequence Diagrams With
Generalized Nets, Proceedings of the First Int. IEEE Symposium “Intelligent Sys-
tems” 15’2002, Varna, Sept. 10-12, 2002, Vol. 3, 79-84.

38

