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Abstract: Intuitionistic fuzzy set (IFS) is a very interesting soft computing technique use to
tackle/handle imprecisions embedded in multi-criteria decision-making (MCDM) problems.
Correlation coefficient has proven to be an important measuring operator in an intuitionistic
fuzzy setting with regard to its applications in solving MCDM problems. In this paper, Xu et
al.’s method of correlation coefficient between IFSs is modified because it fails the axiomatic
properties of correlation coefficient between IFSs, and hence generalized for a better output. That
is, this paper is aimed at modifying and generalizing the triparametric correlation coefficient
for IFSs proposed by Xu et al. with applications to some MCDM problems. Some numerical
examples are supplied to authenticate the superiority of this new correlation coefficient for IFSs
over some similar existing correlation coefficient measures. Subsequently, some MCDM prob-
lems such as medical diagnosis and pattern recognition problems represented in intuitionistic
fuzzy pairs are determined with the aid of the novel correlation coefficient. An intuitionistic
fuzzy clustering algorithm based on this novel correlation coefficient with applications could be
an interesting research for future work.
Keywords: Fuzzy set, Intuitionistic fuzzy set, Correlation coefficient, Multi-criteria decision
making.
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1 Introduction

MCDM deals with decisions involving the choice of a best alternative from several potential
candidates in a decision, subject to several criteria or attributes that may be concrete or vague.

MCDM methods are used to help decision-makers make their decision according to their
preferences to enhance best choice among the alternatives, in cases where there is more than
one conflicting criterion [24]. Nonetheless, the ideas of fuzziness and imprecision posed a great
challenge in MCDM problems.

In a quest to arrest the challenge posed by fuzziness and imprecision, Zadeh [34] introduced
the theory of fuzzy sets. Fuzzy set constitutes a membership degree, µ which ascribes to each
element of universe of discourse, a number from the closed interval, [0, 1] to specify the degree
of belongingness to the set under deliberation. However, fuzzy set theory could not accurately
tackle the imprecisions/fuzziness embedded in decision-making process. As a result, various
generalizations of fuzzy sets such as intuitionistic fuzzy sets (IFSs), Pythagorean fuzzy sets, etc.
were presented. Atanassov [1] proposed the notion of IFSs by combining membership degree,
µ and non-membership degree, ν with hesitation margin, π such that their sum is one with an
additional property that µ + ν ≤ 1. IFS offers a framework which reasonably restricts fuzziness
and imprecision and hence, very appropriate in modelling many real-life problems [3, 4, 6, 7, 10–
16, 21, 25, 26, 30, 31].

Correlation coefficient is of paramount important in sciences and engineering. In correlation
analysis, the joint relationship of two variables can be certified with the help of a measure of
interdependency of the two variables. In statistics, the values of the correlation coefficient are in
the range, [−1, 1] in which the value of the correlation coefficient is 1 when two variables have
linear relation in the same direction (two variables either increase or decrease). In contrast, the
value of the correlation coefficient is −1 when two variables are linearly inverted (one variable
increases, while the other decreases). The notion of correlation coefficient was first studied in
fuzzy context in [8, 9] and supplemented in [5]. For better application in MCDM problems,
correlation coefficient was introduced in intuitionistic fuzzy context [18]. Since correlation coef-
ficient for IFSs is very productive, some new versions of it were proposed and applied to MCDM
problems [19, 20, 22, 23, 27–29, 32, 33]. Garg [17] listed some limitations of correlation coeffi-
cients for IFSs studied in [27, 32, 33], all with triparametric approach. The limitations prompted
this present study. Thus, this study modifies and generalizes a correlation coefficient between
IFSs in [33] for better result.

The motivation for the paper is to introduce a new correlation coefficient for IFSs that modifies
and generalizes the one studied in [33] with better interpretation and output when apply to MCDM
problems. Precisely, this paper presents an axiomatic definition of correlation coefficient for
IFSs, modifies the correlation coefficient for IFSs in [33] because it fails the axiomatic properties
of correlation coefficient, generalizes the modified version and authenticates its advantage and
illustrates its applications in some selected MCDM problems. The remaining parts of the paper
are thus; Section 2 provides some preliminaries on IFSs, while Section 3 covers the notion of
correlation coefficient for IFSs with numerical illustrations and presents a number of results.
Section 4 discusses the application of the introduced method in some MCDM problems such as
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medical diagnosis and pattern recognition problems captured in intuitionistic fuzzy pairs. Finally,
Section 5 concludes the paper and provides direction for further studies.

2 Preliminaries

Some relevant notions like fuzzy sets and IFSs are recall for reference and completeness. Suppose
S is a non-empty set that is fixed, then the following definitions follow.

Definition 2.1. [34] A fuzzy set M̃ of S which is characterized by a membership function
µM̃ : S → [0, 1] is of the form

M̃ = {〈s, µM̃(s)〉 | s ∈ S}. (1)

Definition 2.2. [1] An IFS M of S is an object having the form

M = {〈µM(s), νM(s)

s
〉 | s ∈ S} (2)

or

M = {〈s, µM(s), νM(s)〉|s ∈ S}, (3)

where the functions

µM(s) : S → [0, 1] and νM(s) : S → [0, 1] (4)

are the degree of membership and the degree of non-membership, respectively of the element
s ∈ S to M , and for every s ∈ S,

0 ≤ µM(s) + νM(s) ≤ 1. (5)

For each M of S,
πM(s) = 1− µM(s)− νM(s) (6)

is the intuitionistic fuzzy set index or hesitation margin of s in S. The hesitation margin πM(s) is
the degree of non-determinacy of s ∈ S, to M and πM(s) ∈ [0, 1]. The hesitation margin is the
function that states lack of knowledge of whether s ∈ S or s /∈ S. Thus,

µM(s) + νM(s) + πM(s) = 1. (7)

Example 2.3. Let S = {s1, s2, s3} be a fixed universe of discourse and

M = {〈0.7, 0.2
s1
〉, 〈0.5, 0.3

s2
〉, 〈0.8, 0.2

s3
〉}

be an intuitionistic fuzzy set of S. Then, the indexes of the elements s1, s2, s3 to M are

πM(s1) = 0.1, πM(s2) = 0.2 and πM(s3) = 0.0.
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Definition 2.4. [2] Suppose M,N ∈ IFS(S), where IFS(S) denotes the set of all IFSs of S.
Then, we have the following:

(i) M̄ = {〈s, νM(s), µM(s)〉|s ∈ S}.

(ii) M ∪N = {〈s,max(µM(s), µN(s)),min(νM(s), νN(s))〉|x ∈ S}.

(iii) M ∩N = {〈s,min(µM(s), µN(s)),max(νM(s), νN(s))〉|s ∈ S}.

(iv) M ⊕N = {〈s, µM (s) + µN (s)− µM (s)µN (s), νM (s)νN (s)〉|s ∈ S}.

(v) M ⊗N = {〈s, µM (s)µN (s), νM (s) + νN (s)− νM (s)νN (s)〉|s ∈ S}.

Definition 2.5. [2] Let M and N be IFSs of S. Then,

M = N ⇔ µM(s) = µN(s) and νM(s) = νN(s) ∀s ∈ S,

and
M ⊆ N ⇔ µM(s) ≤ µN(s) and νM(s) ≥ νN(s) ∀s ∈ S.

We say M ⊂ N ⇔ M ⊆ N and M 6= N . Also, M and N are comparable to each other if
M ⊆ N and N ⊆M .

Definition 2.6. [2] SupposeM ∈ IFS(S). Then, the level/ground set or support ofM is defined
by

M∗ = {s ∈ S|µM(s) > 0, νM(s) < 1},

and the set M∗ is defined by

M∗ = {s ∈ S|µM(s) ≥ 0, νM(s) ≤ 1}.

Certainly, M∗ and M∗ are subsets of S.

Definition 2.7. Intuitionistic fuzzy pairs (IFPs) or intuitionistic fuzzy values (IFVs) is an object
in the form 〈x, y〉, where x, y ∈ [0, 1], and x+ y ≤ 1. IFPs are used for the evaluation of objects
or processes and which components (x and y) are interpreted as degrees of membership and non-
membership or degrees of validity and non-validity or degrees of correctness and non-correctness.

Example 2.8. Suppose M is a IFS of S = {s1, s2, s3, s4, s5}. Assume

M = {〈0.5, 0.4
s1
〉, 〈0.7, 0.2

s3
〉, 〈0.7, 0.2

s5
〉},

which is rewritten as

M = {〈0.5, 0.4
s1
〉, 〈0.0, 1.0

s2
〉, 〈0.7, 0.2

s3
〉, 〈0.0, 1.0

s4
〉, 〈0.7, 0.2

s5
〉}.

Then,
M∗ = {s1, s3, s5}

and
M∗ = {s1, s2, s3, s4, s5} = S.

IFPs are
s1 = 〈0.5, 0.4〉, s2 = 〈0.0, 1.0〉, s3 = 〈0.7, 0.2〉,

s4 = 〈0.0, 1.0〉, s5 = 〈0.7, 0.2〉.
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3 Correlation coefficients for intuitionistic fuzzy sets

In this section, some existing similar/triparametric correlation coefficient measures for IFSs are
presented. Subsequently, the new triparametric correlation coefficient measure for IFSs is given.
The comparative analysis of the existing ones and the proposed method is carried out to ascertain
the reasonability of the new method.

Foremostly, the axiomatic definition of correlation coefficient for IFSs is given thus.

Definition 3.1. Let M and N be IFSs of a nonempty set S. Then, the correlation coefficient
denoted by K(M,N) is a measuring function

K : IFS × IFS → [0, 1]

satisfying the following axioms;

(i) K(M,N) ∈ [0, 1],

(ii) K(M,N) = K(N,M),

(iii) K(M,N) = 1 if and only if M = N .

3.1 Correlation coefficient for intuitionistic fuzzy sets in [18]

The notion of correlation coefficient in intuitionistic fuzzy environment was initiated in [18], and
defined thus:

K1(M,N) =
C(M,N)√
T (M)

√
T (N)

, (8)

where M and N are IFSs of a nonempty set S, and C(M,N) is the correlation of IFSs, T (M)

and T (N) are informational energies of M and N , respectively defined as follows:

C(M,N) =
n∑
i=1

[µM(si)µN(si) + νM(si)νN(si)], (9)

T (M) =
n∑
i=1

[µ2
M(si) + ν2M(si)] (10)

and

T (N) =
n∑
i=1

[µ2
N(si) + ν2N(si)]. (11)

3.2 Xu et al. [33] correlation coefficient for intuitionistic fuzzy sets

By modifying the method in [18], Xu et al. [33] proposed the following correlation coefficient for
IFSs:

K2(M,N) =
C(M,N)

max[
√
T (M),

√
T (N)]

, (12)
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where M and N are IFSs of a nonempty set S, and C(M,N) is the correlation of IFSs, T (M)

and T (N) are informational energies of M and N , respectively defined as follows:

C(M,N) =
n∑
i=1

[µM(si)µN(si) + νM(si)νN(si) + πM(si)πN(si)], (13)

T (M) =
n∑
i=1

[µ2
M(si) + ν2M(si) + π2

M(si)] (14)

and

T (N) =
n∑
i=1

[µ2
N(si) + ν2N(si) + π2

N(si)]. (15)

3.3 Garg [17] correlation coefficients in intuitionistic fuzzy environment

After Garg [17] pinpointed the limitations in [18, 33], the following correlation coefficient was
introduced which we present in intuitionistic fuzzy setting as follows:

K3(M,N) =
C(M,N)

max[T (M), T (N)]
, (16)

where M and N are IFSs of a nonempty set S, and

C(M,N) =
n∑
i=1

[µ2
M(si)µ

2
N(si) + ν2M(si)ν

2
N(si) + π2

M(si)π
2
N(si)], (17)

T (M) =
n∑
i=1

[µ4
M(si) + ν4M(si) + π4

M(si)] (18)

and

T (N) =
n∑
i=1

[µ4
N(si) + ν4N(si) + π4

N(si)]. (19)

3.4 New correlation coefficient for intuitionistic fuzzy sets

By synthesizing the correlation coefficients for IFSs in [33], a new correlation coefficient for IFSs
that generalizes the one in [33] is introduced.

Definition 3.2. Let M,N ∈ IFS(S) for S = {s1, s2, ..., sn}. Then, the generalized informa-
tional energies and correlation for M and N are given as:

T (M) =
n∑
i=1

[µkM(si) + νkM(si) + πkM(si)],

T (N) =
n∑
i=1

[µkN(si) + νkN(si) + πkN(si)]

and
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C(M,N) =
n∑
i=1

[µ
k
2
M(si)µ

k
2
N(si) + ν

k
2
M(si)ν

k
2
N(si) + π

k
2
M(si)π

k
2
N(si)],

where k = 2n− 1 for n = 1, 2.

Remark 3.3. Let M and N be IFSs of S. Then T (M) = T (M̄) and C(M,N) = C(N,M).

Remark 3.4. Let M and N be IFSs of S. Then, the following statements are equivalent:

(i) C(M,N) = C(M̄, N̄).

(ii) C(M̄, N̄) = C(N,M).

Proposition 3.5. Suppose M and N are IFSs of S. If M = N , then

(i) C(M,N) = T (M) or C(M,N) = T (N),

(ii) C(M,N) = max[T (M), T (N)],

(iii)
C(M,N)

max[T (M), T (N)]
= 1.

Proof. Assume that M = N . Then

(i)

C(M,N) =
n∑
i=1

[µ
k
2
M(si)µ

k
2
N(si) + ν

k
2
M(si)ν

k
2
N(si) + π

k
2
M(si)π

k
2
N(si)]

=
n∑
i=1

[µkM(si) + νkM(si) + πkM(si)]

= T (M).

The second alternative is straightforward.

(ii) C(M,N) = C(M,M) = T (M). Also, max[T (M), T (N)] = max[T (M), T (M)] =

T (M).

(iii) It follows from (ii) that
C(M,N)

max[T (M), T (N)]
= 1.

3.4.1 Limitation of Xu et al. [33] Correlation coefficient

The correlation coefficient proposed in [33] is not a reliable measure because it fails condition
(iii) in Definition 3.1, that is, K(M,N) = 1 if and only if M = N . To see this, recall Xu et
al. [33] correlation coefficient as follows:

K2(M,N) =
C(M,N)

max[
√
T (M),

√
T (N)]

.
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If M = N then T (M) = T (N). So,

K2(M,N) =
C(M,N)

max[
√
T (M),

√
T (N)]

=
C(M,M)

max[
√
T (M),

√
T (M)]

=
C(M,M)√
T (M)

=
T (M)√
T (M)

=
√
T (M) 6= 1.

Thus, K2 is not reliable. Hence, we proposed a new correlation coefficient measure for IFSs as
follows:

Definition 3.6. Let M and N be IFSs of S for S = {s1, s2, ..., sn}. Then, the new correlation
coefficient measure for M and N is

K(M,N) =
C(M,N)

max[T (M), T (N)]
, (20)

where C(M,N), T (M) and T (N) are as defined in Definition 3.2.

Thus, (20) could also be written as

K(M,N) =
C(M,N)

max[C(M,M), C(N,N)]
. (21)

Theorem 3.7. Suppose M and N are IFSs of S. Then, the function K(M,N) is a correlation
coefficient of M and N .

Proof. To show that K(M,N) is a correlation coefficient between M and N , we verify the
conditions in Definition 3.1. Firstly, K(M,N) ∈ [0, 1] implies 0 ≤ K(M,N) ≤ 1. That
is, K(M,N) ≥ 0 and K(M,N) ≤ 1. The first inequality is trivial since C(M,N) ≥ 0 and
[T (M), T (N)] > 0. Next, we show that K(M,N) ≤ 1. To establish this fact, let us assume
following:

n∑
i=1

µkM(si) = a,
n∑
i=1

µkN(si) = b,

n∑
i=1

νkM(si) = c,
n∑
i=1

νkN(si) = d,

n∑
i=1

πkM(si) = e,
n∑
i=1

πkN(si) = f.

But K(M,N) =
C(M,N)

max[T (M), T (N)]
. Using the Cauchy-Schwarz’s inequality, we have
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K(M,N) =

∑n
i=1[µ

k
2
M (si)µ

k
2
N (si) + ν

k
2
M (si)ν

k
2
N (si) + π

k
2
M (si)π

k
2
N (si)]

max[
∑n

i=1(µ
k
M (si) + νkM (si) + πk

M (si)),
∑n

i=1(µ
k
N (si) + νkN (si) + πk

N (si))]

=

∑n
i=1 µ

k
2
M (si)µ

k
2
N (si) +

∑n
i=1 ν

k
2
M (si)ν

k
2
N (si) +

∑n
i=1 π

k
2
M (si)π

k
2
N (si)

max[(
∑n

i=1 µ
k
M (si) +

∑n
i=1 ν

k
M (si) +

∑n
i=1 π

k
M (si)), (

∑n
i=1 µ

k
N (si) +

∑n
i=1 ν

k
N (si) +

∑n
i=1 π

k
N (si))]

≤
[
∑n

i=1 µ
k
M (si)

∑n
i=1 µ

k
N (si)]

1
2 + [

∑n
i=1 ν

k
M (si)

∑n
i=1 ν

k
N (si)]

1
2 + [

∑n
i=1 π

k
M (si)

∑n
i=1 π

k
N (si)]

1
2

max[(
∑n

i=1 µ
k
M (si) +

∑n
i=1 ν

k
M (si) +

∑n
i=1 π

k
M (si)), (

∑n
i=1 µ

k
N (si) +

∑n
i=1 ν

k
N (si) +

∑n
i=1 π

k
N (si))

=
(ab)

1
2 + (cd)

1
2 + (ef)

1
2

max[(a+ c+ e), (b+ d+ f)]
.

However,

K(M,N)− 1 ≤ (ab)
1
2 + (cd)

1
2 + (ef)

1
2

max[(a+ c+ e), (b+ d+ f)]
− 1

=
(ab)

1
2 + (cd)

1
2 + (ef)

1
2 −max[(a+ c+ e), (b+ d+ f)]

max[(a+ c+ e), (b+ d+ f)]

=
−{max[(a+ c+ e), (b+ d+ f)]− [(ab)

1
2 + (cd)

1
2 + (ef)

1
2 ]}

max[(a+ c+ e), (b+ d+ f)]

= −{max[(a+ c+ e), (b+ d+ f)]− [(ab)
1
2 + (cd)

1
2 + (ef)

1
2 ]}

max[(a+ c+ e), (b+ d+ f)]
≤ 0.

Thus, K(M,N) ≤ 1. Hence, K(M,N) ∈ [0, 1].
Again, K(M,N) = 1⇔M = N ⇒

K(M,N) =
C(M,M)

max[T (M), T (M)]
=
T (M)

T (M)
= 1.

Certainly, K(M,N) = K(N,M), so details are omitted. Therefore, K(M,N) is a correlation
coefficient between M and N .

3.5 Numerical illustrations of the new correlation coefficient

We show the reliability of the new correlation coefficient over Garg’s maximum approach in [17]
and its all inclusiveness via numerical examples.

3.5.1 Example I

Assume there are two IFSs

M = {〈0.3, 0.6, 0.1
s1

〉, 0.5, 0.3, 0.2

s2
〉, 0.4, 0.5, 0.1

s3
〉}

and

N = {〈0.3, 0.6, 0.1
s1

〉, 0.5, 0.3162, 0.1838

s2
〉, 0.3873, 0.5, 0.1127

s3
〉}

of S where S = {s1, s2, s3}.
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Now, we find the correlation coefficient between M and N by employing (16) (which is the
valid existing maximum approach of measuring correlation coefficient) and the proposed method.
Using (16), we get

K3(M,N) = 0.2120.

By using the proposed method, we obtain the following:
For k = 1,

K(M,N) = 0.7051.

For k = 3,
K(M,N) = 0.2982.

3.5.2 Example II

Suppose there are two IFSs O and P of a set S = {s1, s2, s3} such that

O = {〈0.1, 0.2, 0.7
s1

〉, 〈0.2, 0.1, 0.7
s2

〉, 〈0.29, 0.0, 0.71

s3
〉}

and

P = {〈0.1, 0.3, 0.6
s1

〉, 〈0.2, 0.2, 0.6
s2

〉, 〈0.29, 0.1, 0.61

s3
〉}.

Using the proposed method, we obtain the following:
For k = 1

K(O,P ) = 0.9769.

For k = 3

K(O,P ) = 0.8104.

Using (16), we have
K3(O,P ) = 0.7426.

Correlation coefficients K K(M,N)

Garg [17] maximum approach 0.2120
Proposed method for k = 1 0.7051
Proposed method for k = 3 0.2982

Table 1: Numerical Output for Example I

Correlation coefficients K K(M,N)

Garg [17] maximum approach 0.7426
Proposed method for k = 1 0.9769
Proposed method for k = 3 0.8104

Table 2: Numerical Output for Example II
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3.5.3 Discussion

From Tables 1 and 2, K3 (Garg [17] maximum approach) shows that the correlation coefficient
between M and N , and O and P are 0.2120 and 0.7426. Whereas that of the proposed method
yields 0.7051, 0.2982 and 0.9769, 0.8104, respectively for k = 1, 3. The proposed method gives
a better correlation coefficient when compare to Garg [17] maximum approach. It is observed
that Garg [17] maximum approach is equivalent to the proposed method suppose k = 4. The
correlation coefficient measure for the proposed method decreases as k increases and it is very
reliable because it has two alternatives. That is, whenever one alternative fails to give a reasonable
measure, another alternative could be employed.

The possibility of k = 2 is excluded because it yields inconsistent results in Examples I
(0.4398) and II (1.0886). While Example I gives a valid correlation coefficient value within [0, 1],
Example II violents the condition.

4 Multi-criteria decision making problems
via the proposed method

MCDM deals with decisions that involve the choice of a best preference from several potential
alternatives subject to several criteria or attributes that may be concrete or imprecise. MCDM
problems in everyday life pose a huge challenge to the decision maker. In this section, some
MCDM problems in medical diagnosis and pattern recognition are discussed via the proposed
correlation coefficient for IFSs.

4.1 Medical diagnosis problem

Assume a patient P visits a given medical laboratory for diagnosis. Suppose the patient has the
following symptoms viz; temperature, headache, stomach pain, cough, and chest pain. That is,
the set of symptoms S is

S = {s1, s2, s3, s4, s5},

where s1 = temperature, s2 = headache, s3 = stomach pain, s4 = cough, s5 = chest pain.
After the sample collected from P was analyzed, we have the following result represented in

IFVs:

P = {〈0.8, 0.1, 0.1〉
s1

,
〈0.6, 0.1, 0.3〉

s2
,
〈0.2, 0.8, 0.0〉

s3
,
〈0.6, 0.1, 0.3〉

s4
,
〈0.1, 0.6, 0.3〉

s5
}.

Suppose the set of diseases Di (for i = 1, 2, 3, 4, 5) which P is suspected to be suffering from
are

D = {D1, D2, D3, D4, D5},

where D1 = viral fever, D2 = malaria fever, D3 = typhoid fever, D4 = stomach problem, and
D5 = heart problem.
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The diseases Di are represented by the following IFVs:

D1 = {〈0.4, 0.0, 0.6〉
s1

,
〈0.3, 0.5, 0.2〉

s2
,
〈0.1, 0.7, 0.2〉

s3
,
〈0.4, 0.3, 0.3〉

s4
,
〈0.1, 0.7, 0.2〉

s5
}

D2 = {〈0.7, 0.0, 0.3〉
s1

,
〈0.2, 0.6, 0.2〉

s2
,
〈0.0, 0.9, 0.1〉

s3
,
〈0.7, 0.0, 0.3〉

s4
,
〈0.1, 0.8, 0.1〉

s5
}

D3 = {〈0.3, 0.3, 0.4〉
s1

,
〈0.6, 0.2, 0.2〉

s2
,
〈0.3, 0.7, 0.0〉

s3
,
〈0.2, 0.6, 0.2〉

s4
,
〈0.1, 0.9, 0.0〉

s5
}

D4 = {〈0.1, 0.7, 0.2〉
s1

,
〈0.2, 0.4, 0.4〉

s2
,
〈0.8, 0.0, 0.2〉

s3
,
〈0.2, 0.7, 0.1〉

s4
,
〈0.2, 0.7, 0.1〉

s5
}

D5 = {〈0.1, 0.8, 0.1〉
s1

,
〈0.0, 0.8, 0.2〉

s2
,
〈0.2, 0.8, 0.0〉

s3
,
〈0.2, 0.8, 0.0〉

s4
,
〈0.8, 0.1, 0.1〉

s5
}.

The goal is to find the disease that the patient P is suffering from by computing the correlation
coefficient between P and Di. By deploying the proposed method for k = 3, we obtain the
following outputs:

K(P,D1) = 0.6554, K(P,D2) = 0.7870, K(P,D3) = 0.7173,

K(P,D4) = 0.3084, K(P,D5) = 0.2745.

From the computations, one can conclude that the patient P is suffering from malaria fever
since

K(P,D2) > K(P,D3) > K(P,D1) > K(P,D4) > K(P,D5).

4.2 Pattern recognition problem

Suppose there is a set of some known mineral fields C = {C1, C2, C3} represented by the follow-
ing IFVs in a given finite universe S = {s1, s2, s3} as

C1 = {〈1.0, 0.0, 0.0〉
s1

,
〈0.8, 0.0, 0.2〉

s2
,
〈0.7, 0.1, 0.2〉

s3
}

C2 = {〈0.8, 0.1, 0.1〉
s1

,
〈1.0, 0.0, 0.0〉

s2
,
〈0.9, 0.1, 0.0〉

s3
}

C3 = {〈0.6, 0.2, 0.2〉
s1

,
〈0.8, 0.0, 0.2〉

s2
,
〈1.0, 0.0, 0.0〉

s3
}.

Also, consider an unknown mineral field Q represented by IFVs as

Q = {〈0.5, 0.3, 0.2〉
s1

,
〈0.6, 0.2, 0.2〉

s2
,
〈0.8, 0.1, 0.1〉

s3
}

that is supposed to be classified into any of the above mineral fields.
The aim of this problem is to classify the unknown mineral field Q into one of the classes

C1, C2 and C3. Using the proposed correlation coefficient measure K for k = 3, we compute the
correlation coefficient from Q to Ci (for i = 1, 2, 3) thus:

K(C1, Q) = 0.5967, K(C2, Q) = 0.5961, K(C3, Q) = 0.7095.

Hence, from the computational results, it follows that the unknown mineral field Q belongs
to the mineral field C3 since K(C3, Q) is the greatest.
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5 Conclusion

In this paper, a new correlation coefficient for IFSs which modified and generalized the one in [33]
was introduced and characterized. The weakness of the similar existing correlation coefficients
for IFSs have also been highlighted in the article. It was proven that the maximum approach of
correlation coefficient in [33] is not a reliable measure because it failed the axiomatic description
of correlation coefficient for IFSs. Mathematically, it was shown that the new correlation coeffi-
cient for IFSs satisfied the axiomatic description of correlation coefficient for IFSs unlike the one
in [33]. It was observed that the maximum approach of correlation coefficient in [17] extended
to intuitionistic fuzzy settting can be effectively recovered from the new version if k = 4. Some
numerical illustrations were given to validate the superiority of the new correlation coefficient in
situations where the similar existing correlation coefficients for IFSs could not give an appropri-
ate interrelationship. To establish the application of the proposed method, some cases of MCDM
problems such as medical diagnosis and classification of mineral fields were discussed. From
the study, it was concluded that the new correlation coefficient for IFSs gives a reliable result
when compare to the similar existing ones and hence, can appropriately solve MCDM problems
effectively. Some novel areas of application could be established in further research using the
proposed correlation coefficient for IFSs.

References

[1] Atanassov, K. T. (1986). Intuitionistic fuzzy sets, Fuzzy Sets and Systems, 20, 87–96.

[2] Atanassov, K. T. (1994). New operations defined on intuitionistic fuzzy sets, Fuzzy Sets and
Systems, 61, 137–142.

[3] Atanassov, K. T. (1999). Intuitionistic Fuzzy Sets: Theory and Applications. Physica-Verlag,
Heidelberg, 1999.

[4] Atanassov, K. T. (2012). On Intuitionistic Fuzzy Sets Theory. Springer, Berlin.

[5] Chiang, D. A. & Lin, N. P. (1999). Correlation of fuzzy sets, Fuzzy Sets and Systems, 102
(2), 221–226.

[6] Davvaz, B. & Sadrabadi, E. H. (2016). An application of intuitionistic fuzzy sets in
medicine, International Journal of Biomathematics, 9 (3), 1650037 (15 pages).

[7] De, S. K., Biswas, R. & Roy, A. R. (2001). An application of intuitionistic fuzzy sets in
medical diagnosis, Fuzzy Sets and Systems, 117 (2), 209–213.

[8] Dumitrescu, D. (1977). A definition of an informational energy in fuzzy set theory, Studia
Univ. Babes-Bolyai Mathematics, 22, 57–59.

[9] Dumitrescu, D. (1978). Fuzzy correlation, Studia Univ. Babes-Bolyai Mathematics, 23, 41–
44.

20



[10] Ejegwa, P. A. (2015). Intuitionistic fuzzy sets approach in appointment of positions in an
organization via max-min-max rule, Global Journal of Science Frontier Research: F Math-
ematics and Decision Science, 15 (6), 1–6.

[11] Ejegwa, P. A. & Adamu, I. M. (2019). Distances between intuitionistic fuzzy sets of second
type with application to diagnostic medicine, Notes on Intuitionistic Fuzzy Sets, 25 (3), 53–
70.

[12] Ejegwa, P. A., Akubo, A. J. & Joshua, O. M. (2014). Intuitionistic fuzzy set and its applica-
tion in career determination via normalized Euclidean distance method, European Scienttific
Journal, 10 (15), 529–536.

[13] Ejegwa, P. A., Akubo, A. J. & Joshua, O. M. (2014). Intuitionistic fuzzzy sets in career
determination, Journal of Information and Computing Science, 9 (4), 285–288.

[14] Ejegwa, P. A. & Modom, E. S. (2015). Diagnosis of viral hepatitis using new distance mea-
sure of intuitionistic fuzzy sets, International Journal of Fuzzy Mathematical Archive, 8 (1),
1–7.

[15] Ejegwa, P. A. & Onasanya, B. O. (2019). Improved intuitionistic fuzzy composite relation
and its application to medical diagnostic process, Notes on Intuitionistic Fuzzy Sets, 25 (1),
43–58.

[16] Ejegwa, P. A. & Onyeke, I. C. (2018). An object oriented approach to the application of
intuitionistic fuzzy sets in competency based test evaluation, Annals of Communications in
Mathematics, 1 (1), 38–47.

[17] Garg, H. (2016). A novel correlation coefficients between Pythagorean fuzzy sets and its
applications to decision making processes, International Journal of Intelligent Systems, 31
(12), 1234–1252.

[18] Gerstenkorn, T. & Manko, J. (1991). Correlation of intuitionistic fuzzy sets, Fuzzy Sets and
Systems, 44 (1), 39–43.

[19] Hung, W. L. (2001). Using statistical viewpoint in developing correlation of intuitionistic
fuzzy sets, International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
9 (4), 509–516.

[20] Hung, W. L. & Wu, J. W. (2002). Correlation of intuitionistic fuzzy sets by centroid method,
Information Sciences, 144 (1), 219–225.

[21] Iqbal, M. N. & Rizwan, U. (in press). Some applications of intuitionistic fuzzy sets us-
ing new similarity measure, Journal of Ambient Intelligence and Humanized Computing,
https://doi.org/10.1007/s12652-019-01516-7.

[22] Liu, B., Shen, Y., Mu, L., Chen, X. & Chen, L. (2016). A new correlation measure of the
intuitionistic fuzzy sets, Journal of Intelligent and Fuzzy Systems, 30 (2), 1019–1028.

21



[23] Mitchell, H. B. (2004). A correlation coefficient for intuitionistic fuzzy sets, International
Journal of Intelligent Systems, 19 (5), 483–490.

[24] Pavan, M. & Todeschini, R. (2009). Multi-criteria decision-making methods, Computational
Chemometric, 1, 591–629.

[25] Szmidt, E. & Kacprzyk, J. (2001). Intuitionistic fuzzy sets in some medical applications,
Notes on Intuitionistic Fuzzy Sets, 7 (4), 58–64.

[26] Szmidt, E. & Kacprzyk, J. (2004). Medical diagnostic reasoning using a similarity measure
for intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 10 (4), 61–69.

[27] Szmidt, E. & Kacprzyk, J. (2010). Correlation of intuitionistic fuzzy sets, In: Hullermeier,
E., Kruse, R. and Hoffmann, F. (eds.): Proc. of IPMU 2010, LNAI 6178, pp. 169–177,
Springer-Verlag Berlin Heidelberg.

[28] Thao, N. X. (2018). A new correlation coefficient of the intuitionistic fuzzy sets and its
application, Journal of Intelligent and Fuzzy Systems, 35 (2), 1959–1968.

[29] Thao, N. X., Ali, M. & Smarandache, F. (2019). An intuitionistic fuzzy clustering algorithm
based on a new correlation coefficient with application in medical diagnosis, Journal of
Intelligent and Fuzzy Systems, 36 (1), 189–198.

[30] Todorova, L., Atanassov, K. T., Hadjitodorov, S. & Vassilev, P. (2007). On an intuitionistic
fuzzy approach for decision-making in medicine (Part 1), International Electronic Journal
of Bioautomation, 6, 92–101.

[31] Todorova, L., Atanassov, K. T., Hadjitodorov, S. & Vassilev, P. (2007). On an intuitionistic
fuzzy approach for decision-making in medicine (Part 2), International Electronic Journal
of Bioautomation, 7, 64–69.

[32] Xu, Z. (2006). On correlation measures of intuitionistic fuzzy sets, In: Corchado, E. et al.
(eds.): Proc. of IDEAL 2006, LNCS 4224, pp. 16–24, Springer-Verlag Berlin Heidelberg.

[33] Xu, S., Chen, J. & Wu, J. J. (2008). Cluster algorithm for intuitionistic fuzzy sets, Informa-
tion Sciences, 178, 3775–3790.

[34] Zadeh, L. A. (1965). Fuzzy sets, Information and Control, 8, pp. 338–353.

22


