
73

12th Int. Workshop on Generalized Nets
Burgas, 17 June 2012, 73–78

Correctness of a formal generalized net project
of a class of an object-oriented program

Magdalina Todorova
Faculty of Mathematics and Informatics, Sofia University

5 “J. Bouchier” Str., Sofia, Bulgaria
e-mail: todorova_magda@hotmail.com

Abstract: The article defines formal generalized net project of a class, correctness of a formal
generalized net project of a class in respect to a defined for it specification and correspondence
of the formal generalized net project to the class realization. A theorem is formulated to define
criteria for correctness of a formal generalized net project of a class in respect to the defined
for it specification.
Keywords: Generalized nets, Object-oriented programming, Program correctness, Мodeling,
Verification.
AMS Classification: 68Q85, 68N19.

1 Introduction

An approach to verification of object-oriented programs (OOP) is described in [6]. It is based
on building generalized net (GN)-models [1, 2] of the programs (functions) and of the
specifications, according to which verification and checking of correspondence (consistency)
of the two models are performed. The algorithm for checking of correspondence is also defined
as a generalized net, which executes the models of the program and of the specification in
parallel. A choice has been made for the OOP to contain only one class, in order to simplify the
presentation.

An important component of the described approach of OOP verification is the model
‘design by contract’, [4, 5]. It includes description of specific statements (contracts), which
must hold in specific places of the programs. The contracts may describe: basic statements,
class invariants, preconditions and postconditions of general functions and member functions
of classes. They are also called specification of the program.

Class specification of an object-oriented program is given by defining the invariant of the
class, the preconditions and the postconditions of the member functions of the class. If the
member functions of the class use operators for a cycle, an invariant and a loop termination
function are also to be defined for each one of them. Each object of a class satisfies properties
that are defined by a predicate called class invariant. The class invariant must hold after the

74

execution of each constructor, as well as before and after the execution of each method of the
class.

Informally, a class is correct in respect to a defined for it specification when its realiz-
ation corresponds to the preconditions, postconditions and the class invariant. The correctness
is formulated more precisely in [4] as follows. Let C is a class, Inv is its invariant, and r is an
arbitrary member function of the class. Bodyr denotes the body of r, prer(xr) and postr(xr) are
the precondition and postcondition of r, with admissible arguments xr. DefaultC denotes a
statement which expresses implicit relations among data members of the class C.

Definition 1: Class C is correct in respect to its specification [4] if:
a) The Hoare’s triple

 { DefaultC ∧ prep(xp) } BodyP { postp(xp) ∧ Inv } (1)
holds for each class constructor P and for each admissible set of arguments xp.

b) The Hoare’s triple

 { prer(xr) ∧ Inv } Bodyr { postr(xr) ∧ Inv } (2)

holds for each member function r, different from the class constructor, with a set of
admissible arguments xr.

The specification, in respect to which the described in [6] OOP verification is performed,
defines some or all admissible sequences of calls to the member functions of the OOP class. It
is given via a generalized net and is also called a formal GN-project of the class. An important
moment after building the GN-model of the class, which defines the specification, is the
verification of its correctness. The latter is the research subject of this article.

2 Correctness of a formal GN-project of a class

Let a generalized net consists of one transition as presented in Figure 1 (а) and a set of
transitions as in Figure 1 (b).

(a) (b)

Figure 1: Definition of transitions of a generalized net, presenting a formal GN-project of a class

T1

…

R

B1

B2

Bp

T2

…

...

…

R1

R2

S1

S2

Sk

Sk+1

Sl

Sm

...

Sn
...

75

Here,
T1 = 〈{R}, {B1, B2, …, Bp}, 1t′ 〉

T2 = 〈{R1, R2, …}, {S1, S2, …, Sn}, 2t′ 〉

,
21

21
1

p

p

VVVR
BBB

t
K

K
=′

,

1212

1211

121
2

KKKKKKKKKKKK

KKKK

KKKK

KKKK

nmlkk

nmlkk

nmlkk

WWWWWWWR
WWWWWWWR
SSSSSSS

t

+

+

+=′

where

• Vs = “Member-function is the constructor Cs” ∧ “Condition Qs holds (1 ≤ s ≤ p)”
• Wi = “Member-function is f” ∧ “Condition Pi holds (1 ≤ i ≤ k)”
• Wj = “Member-function is g” ∧ “Condition Pj holds (k + 1 ≤ j ≤ l)”
• …
• Wt = “Member-function is h” ∧ “Condition Pt holds (m ≤ t ≤ n)”

The predicates P1, P2, …, Pk, as well as Pk+1, Pk+2, …, Pl and … Pm, Pm+1, …, Pn, which
refer to the application of one and the same member function of the class, are mutually
exclusive (only one of them can have a true value at a time). In addition, f, g, …, h are different
member functions of the class.

Each transition place of the formal GN project of a class presents a logical state in which
a class object can take. It is called a logical state of an object in a place, or a logical state of a
place. The logical state is given via a Boolean expression. The tokens in the GNC places
correspond to objects of the class. A set of data, defined by member data of the class, refers to
each class object. The token characteristic is given by a pair of the type (object, place). Here
object is an identification giving a name to the class object; and place is the name of the place
occupied by the token (object) in GNC. In addition to these two components, the data set of the
object is implicitly included in the token characteristic through the parameter object (called
also token data); the logical state of the object in the place is respectively included through the
parameter position.

Definition 2: The generalized net, as defined above, is a formal GN-project of a class, if the
following conditions hold for it:

i. The implication
 logical state of the place S =>
 preq (3)

holds for each place S of GNC, different from the input place. Here q is an arbitrary
member function of a class, which is part of the conditions of the transition for which S is
an input place.
The implication

 DefaultC => preCs (3')
holds for the input place of GNC, for each constructor Cs (1 ≤ s ≤ p).

76

ii. The implication
 logical state of the place S => Inv (4)

holds for each place S of GNC, different from the input place.

iii. For each pair at input and output positions (Ri, Sj) of a transition different from the one
realizing the constructor (constructors) of the class, with a transition condition

 Member-function is q ∧ Condition Pj holds,

the Hoare’s triple holds:
 { logical state of the place Ri ∧ Pj }

 Bodyq (5)
{ logical state of the place Sj }

For each pair at input and output positions (R, Bs) of the transition, realizing the
execution of the constructor (constructors) of the class with a transition condition

Member-function is the constructor Cs ∧ Condition Qs holds,

the Hoare’s triple holds:
 { DefaultC ∧ Qs }

BodyCs (5')
{ logical state of the place Bs }.

What follows from this definition is that: the places of GNC present the logical states in

which a class object can be; the transitions present the member functions, which can be
executed for the current values of the token data, as well as the conditions, under which these
member functions can be executed.

Conditions (3) and (3') provide the holding, in the input positions of GNC transitions, of
the preconditions of all member functions which the respective transition executes. Condition
(4) ensures the trueness of the class invariant for the current values of the token data in each
place of the net, different from the input one. Conditions (5) and (5') ensure keeping the
trueness of the predicate logical state of a place for the current values of the token data.

Let GNC is the formal net project of the class C. We choose the specification of class C
for a specification of GNC.

Definition 3: The formal net project GNC of the class C is correct in respect to its specification if:

а) For transition T1 (Figure 1a) realizing the execution of the class constructor (con-
structors), the following holds:

For each pair (R, Bs) at input and output positions of the transition with a condition

Member-function is the constructor Cs ∧ Condition Qs holds,
a Hoare’s triple holds:

 { DefaultC ∧ preCs (xCs) ∧ Qs } BodyCs { postCs (xCs) ∧ Inv } (6)

Here xCs is the set of admissible arguments of the constructor Cs and the rest of the
denotes correspond to Definition 1 a).

77

b) For each transition of the type T2 (Figure 1b), different from the transition that realizes
the execution of the class constructor (constructors), the following holds:

 For each pair (R′, S′) at input and output positions of T2 with a transition condition

Member-function is q ∧ Condition P′ holds,

a Hoare’s triple holds:
 { preq(xq) ∧ Inv ∧ P′}

Bodyq (7)
{ postq(xq) ∧ Inv }.

Here xq is the set of admissible arguments of the member function q.

Conditions (6) and (7) are respective analogues of conditions (1) and (2) from Definition 1.

Theorem: If class C is correct in respect to its specification, the formal GN-project GNC of the
class C is also correct according to its respective specification.
Proof: The proof of the theorem is a result of the application of the rule

 .
}{ }{

 ' },'{ }'{ ,'
QSP

QQQSPPP ⇒⇒

Definition 4. The formal GN-project GNC of the class C corresponds to the realization of the
class C if the former is correct in respect to the specification of C.

The formal GN-project of a class gives some or all sequences of admissible executions of

the class member functions. If it is correct in respect to its specification, it gives some or all
sequences of correct executions of the class member functions.

Completion of a transition execution of a formal GN-project of C, which is correct in
respect to the class C specification, provides a correct execution of the respective member
function, as well as the trueness of the predicate logical state of a place for the token data in
the respective output position. The trueness of the class invariant Inv, as well as the pre-
condition of each member function whose execution is modeled by the next transition follows
from the trueness of logical state of a place predicate.

3 Conclusion

From the definitions of a formal GN-project of a class and of its correctness, as well as from
the theorem as formulated above, it follows that the checking if a GN-model of a class
corresponds to the class implementation reduces to: checking if the model is a formal GN-
project of the class, e.g. if conditions i), ii) and iii) of Definition 2 hold, as well as if the class
realization is correct in respect to the specification defined for it. Building GN-models of OOP
classes and researching on these models is an important part of investigation OOP correctness.

78

The task is additionally complicated in the cases of a large number of OOP classes and
when these classes are connected in complex hierarchies. The next step is to define and
research the formal GN-projects in these cases, and to study their full compliance with the
requirements, [3].

Acknowledgments

This research is supported by contract 127/2012 of Sofia University Research Fund – 2012.

References

[1] Atanassov, K., Generalized Nets, World Scientific, Singapore, 1991.

[2] Atanassov, K., On Generalized Nets Theory, “Prof. Marin Drinov” Academic Publishing
House, Sofia, 2007.

[3] Kaloyanova, K., Design from data: how to use requirements for better information
system analysis and design, Proc. of the Int. Conference Informatics in Scientific
Knowledge, Varna, Bulgaria, June 26–29, 2012, 189–197.

[4] Meyer, B., Applying Design by Contract, IEEE Computer 25(10), Oct. 1992, pp. 40–51.

[5] Meyer, B., Object-Oriented Software Construction, 2nd edition, ISE Inc. Santa Barbara,
California, 1997.

[6] Todorova, M., Construction of Correct Object-Orientated Programs via Building their
Generalized Nets Models, Annual of “Informatics” Section, Union of Scientists in
Bulgaria, Vol. 4, 2011, 1–28.

