LINEAR PROGRAMMING WITH INTUITIONISTIC FUZZY OBJECTIVE

Toader T. Buhaescu *

The notion of intuitionistic fuzzy set has originally been introduced by K. Atanassov [1] (1986) as a generalization of the notion of fuzzy set. Basically, we can identify an intuitionistic fuzzy set with a pair of mappings <A⁺,A⁻> defined on an universe E as membership and nonmembership functions.

In [2] and [3] we have investigated the convexity of intuitionistic fuzzy sets and some properties of intuitionistic fuzzy numbers.

<u>Definition 1.</u> An intuitionistic fuzzy set is an object of the form: $A = \{A^+, A^-\}$ where A^+ : $E \rightarrow [0,1]$, A^- : $E \rightarrow [0,1]$ and: $0 \le A^+(x) + A^-(x) \le 1$. The domain of consistency of IFS A is defined by:

 $D(A) = \{x \in E \mid A^{+}(x) \geq A^{-}(x)\}$

<u>Definition 2</u>. An IFS in R having the form $N = \{N^+, N^-\}$ where N^+ is a normal quasiconcave function and N^- is a normal quasiconvexe function is called an intuitionistic fuzzy number, if D(N) is finite. From definitions 1 and 2 we have:

$$N^{+}(x) = N^{-}(x) \le \frac{1}{2}, x \in D(N).$$

<u>Definition 3.</u> Let N = {N⁺,N⁻} be an IFN. The upper α-level and lower β-level of N are defined by:

$$N_{\alpha}^{+} = \{x \in R \mid N^{+}(x) \geq \alpha\}, \ N_{\beta}^{-} = \{x \in R \mid N^{-}(x) \leq \beta\}.$$

The sets D(N), N_{α}^{+} , N_{β}^{-} are convex sets in R, that is they are intervals in R. (see [3]). By the extension principle we have:

$$(N \oplus Q)(x) = \{ \sup_{y+z=x} \min(N^{+}(y), Q^{+}(z)), \inf_{y+z=x} \max(N^{-}(y), Q^{-}(z)) \}$$

$$(p \cdot N)(x) = \{N^{+}(\frac{x}{p}), N^{-}(\frac{x}{p})\}, p \neq 0$$

$$(\widetilde{\max}(N,Q))(x) = \{ \sup \min_{x = \max(y,z)} (N^{+}(y),Q^{+}(z)), \inf_{x = \max(y,z)} (N^{-}(y),Q^{-}(z)) \}$$

The N \oplus Q, p.N, max(N,Q) are INF too. (see [2])

In the following we shall consider the collection of INF with a single point of maximum (resp. Minimum) and N⁺ an upper semicontinuous function, N⁻ a lower

^{*} Universitatea "Dunarea de Jos" din Galati

semicontinuous function. We note this collection by $\mathcal{N}(R)$. If $N \in \mathcal{N}(R)$ then D(N), N_{α}^{+} , N_{β}^{-} are compact intervals in R, that is:

$$D(N) = [a,b], N_{\alpha}^{+} = [(N_{\alpha}^{+})^{i}, (N_{\alpha}^{+})^{s}], N_{\beta}^{-} = [(N_{\beta}^{-})^{i}, (N_{\beta}^{-})^{s}]$$

We assume a conventional system of nonfuzzy constraints of the form: $AX \le b$, $X \ge 0$, A_{mxn} , X_{nx1} , b_{mx1} and a fuzzy objective function:

$$f(x) = x_1 \cdot C_1 \oplus x_2 \cdot C_2 \oplus \ldots \oplus x_n \cdot C_n$$
, where $x = {}^tX$, and $c_i \in \mathcal{N}(R)$.

For every $x \in R$ the value f(x) is an IFN of the type $\mathfrak{N}(R)$ [see [2],[4]]. Hence, our linear program has an intuitionistic fuzzy objective. In the sequel we find $\max_{x \in U} f(x)$, where U is the set of feasible solutions of constraints. We propose to approximate $\max_{x \in U} f(x)$ by a piecewise intuitionistic fuzzy number obtained from α -level and β -level.

On the other hand we have [see [4]]:

$$\sup_{x \in U} (f(x))_{\alpha}^{+i} = \sup_{x \in U} (x_1 C_{1\alpha}^{+i} + x_2 C_{2\alpha}^{+i} + ... + C_{n\alpha}^{+i})$$

In this way for every $\alpha \ge \min[A^+(x) = A^-(x)]$ we obtain two classical linear programs and for every $\beta \le \max[A^+(x) = A^-(x)]$ two classical l.p. too.

For
$$\alpha_1 < \alpha_2 < ... < \alpha_m$$
 we have $[a^+_{\alpha_1}, b^+_{\alpha_1}] \supseteq [a^+_{\alpha_2}, b^+_{\alpha_2}] \supseteq ... \supseteq [a^+_{\alpha_m}, b^+_{\alpha_m}]$ and for $\beta_1 > \beta_2 > ... > \beta_m [a^-_{\beta_1}, b^-_{\beta_1}] \supseteq [a^-_{\beta_2}, b^-_{\beta_2}] \supseteq ... \supseteq [a^-_{\beta_m}, b^-_{\beta_m}].$

Uniting the points $(a_{\alpha_1}^+, \alpha_1), ..., (a_{\alpha_m}^+, \alpha_m)$ by straight line segments we obtain the graphic of the increasing side of the membership function of approximation. Similarly we obtain all sides of the membership and nonmembership function of approximation.

REFERENCES

- 1. K.T. Atanassov Intuitionistic fuzzy sets. Fuzzy Sets and Systems 20(1986) 87-96.
- 2. T.T.Buhaescu On the convexity of intuitionistic fuzzy sets;
 Itinerant Seminar on Functional Equations, Approx. and Convexity
 Cluj-Napoca (1988) 137-144;
- 3. T.T.Buhaescu Intuitionistic fuzzy numbers.
 Anal. Univ. Galati f. II, XIII(1990) 47-53;
- 4. T.T.Buhaescu A model of linear programming with fuzzy coefficients of objective function. SYS '95 Simposium. Brno 3-5 VII "95, vol 3 pg 133-138.