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1 Introduction

Charnes et al. [7] introduced the CCR-DEA model, which is a linear programming technique
designed to assess the relative efficiencies of DMUs. These DMUs can include various entities
such as hospitals, banks, educational institutes, police stations, libraries, and transportation services.
The DEA models are capable of measuring the relative efficiencies of DMUs with multiple inputs
and outputs. This enables the identification of both efficient and inefficient units, which allows
for the adjustment of input and output quantities to improve the inefficiency of a DMU. Banker
et al. [6] extended this concept to include a convexity constraint and discussed the nature of the
return to scale (RTS) for DMUs, which can be constant, decreasing, or increasing.

In DEA, the efficiency of decision-making units is evaluated using crisp data, which may
not be applicable in real-life problems where uncertainty is prevalent. To handle uncertainty,
the theories of fuzzy and intuitionistic fuzzy sets have been developed. Zadeh [16] introduced
fuzzy set (FS) theory. He originated the concept of membership function. For each element, the
membership function defines a value between 0 to 1 to define its level of presence in the set.

Additionally, the intuitionistic fuzzy set (IFS) theory proposed by Atanassov [4] addresses
acceptance, rejection and hesitation in decision-making and considers both membership and
non-membership values of an element, making it a more practical approach for real-life problems.

DMU’s main objective is to maximize profit with minimum use of resources or with minimum
expenses. Cost efficiency minimizes the use of input quantities while producing the same level
of outputs. Farrell [8] gave the concept of cost efficiency and Tone [14] presented the CE model
by evaluating DMUs in a cost-based production possibility set. In the CE model, precise data of
input-output and price of input entities should be known. But in real-life, data is imprecise and
fuzzy. Kao and Liu [10] proposed fuzzy efficiency measurement models in DEA. Jahanshahloo
et al. [9] took imprecise data for input-output and precise data for input price and developed a
fuzzy CE model. Bagherzadeh Valami [5] did the opposite, i.e., precise data for input and output
and imprecise data for the price (Triangular fuzzy number).

Puri and Yadav [12] gave a fully fuzzified CE model using TFNs. Aghayi [1] considered
three cases for CE measurement, (i) Fuzzy input and output and crisp input price vector (ii) Crisp
input and output and fuzzy input price vector (iii) Fuzzy input, output, and input price vector
using triangular and trapezoidal fuzzy numbers. The authors demonstrate the effectiveness of
their approach using data from a real-world case study.

Venkatesh and Kushwaha [15] investigated the efficiency of State Transport Undertakings
(STUs) in India over a 10-year period by assessing short-term and long-term efficiencies using
the cost variant of DEA with variable returns to scale. The study found that the variable cost
efficiency of STUs can be evaluated in the short run when some inputs cannot be varied. They
also concluded that some STUs perform poorly in the short run with low fleet size and are
cost-inefficient in the long run. Pourmahmoud and Sharak [11] proposed a method for evaluating
fuzzy cost efficiency using the α-level approach with triangular fuzzy numbers and developed
a new method for ranking DMUs based on fuzzy cost efficiency. Sarab et al. [13] developed an
algorithm to maintain cost efficiency despite any variation in input prices using a two-step method
applied to Persian sugar mills in 2014. The first step involves locating the convex cone formed
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by the intersection of convex cones created by comparing the new input prices of efficient DMUs
and the adjacent extreme efficient DMUs in the first quadrant, while the second step involves
obtaining the subset that preserves unit efficiency in the presence of annual inflation.

Here in this study, we considered all input-output data and costs as intuitionistic fuzzy (IF)
numbers, particularly triangular intuitionistic fuzzy numbers (TIFNs). Since IF is the most
generalized form of the crisp data, so the proposed intuitionistic fuzzy cost efficiency models
(IFCEMs) can be considered the most generalized models for estimating the cost-efficiency
performance of DMUs. Due to the generalized nature of the proposed IFCEMs, these can be
used for all types of data: crisp, fuzzy, and IF.

The present study involves the development of a CE model employing IF data. By means of
the α and β-cut methods, the issue at hand is reformulated into a linear programming problem. A
numerical example is illustrated by taking triangular IF data and evaluating their lower and upper
CEs for α-cut and β-cut separately.

This paper is structured as follows: An overview of the fundamental concept of IF is provided
in Section 2. In Section 3, the cost efficiency model in conventional DEA is presented. Proposed
Intuitionistic fuzzy cost-efficiency models are presented in Section 4. Section 5 presents the
methodology for solving IFCEMs. Section 6 illustrates a numerical example and results (lower
and upper-cost efficiencies) are shown in Tables 2 and 3. Section 7, contains the conclusion of
the study.

2 Preliminaries

Definition 1. (Intuitionistic fuzzy set, IFS) [4] The Intuitionistic Fuzzy Set (IFS) F̃ I is expressed
as F̃ I = {w, µF̃ I (w), νF̃ I (w) : w ∈ Ω}, where the domain of discussion is denoted by Ω. The
membership function µF̃ I : Ω → [0, 1] and non-membership function νF̃ I : Ω → [0, 1] are the
defining components of F̃ I .

In the context of IFS, the degree to which w belongs to F̃ I is known as the membership
function and is represented by µF̃ I (w). Similarly, the degree to which w does not belong to F̃ I is
called the non-membership function and is represented by νF̃ I (w). These functions are subject to
the constraint that their sum must be between 0 and 1, i.e., 0 ≤ µF̃ I (w) + νF̃ I (w) ≤ 1.

The degree of hesitation or indeterminacy regarding the inclusion of an element w in the IFS
F̃ I is referred to as the hesitation degree and denoted by πF̃ I (w). This degree is precisely defined
as follows:

(∀ w ∈ Ω)πF̃ I (w) = 1− µF̃ I (w)− νF̃ I (w),

0 ≤ πF̃ I (w) ≤ 1.

Definition 2. (Convex IFS) [3] An IFS F̃ I = {(w, µF̃ I (w), νF̃ I (w)) : w ∈ Ω} is a convex IFS if

(i) µF̃ I (λ1w1 + λ2w2) ≥ min(µF̃ I (w1), µF̃ I (w2)), ∀w1, w2 ∈ Ω, where λ1 + λ2 = 1 and
λ1, λ2 ≥ 0, i.e., µF̃ I is quasi-concave over Ω.

(ii) νF̃ I (λ1w1 + λ2w2) ≤ max(νF̃ I (w1), νP̃ I (w2)), ∀w1, w2 ∈ Ω, where λ1 + λ2 = 1 and
λ1, λ2 ≥ 0, i.e., νF̃ I is quasi-convex over Ω.
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Definition 3. (Intuitionistic fuzzy number, IFN) [3] An Intuitionistic Fuzzy Set (IFS) F̃ I =

{(w, µF̃ I (w), νF̃ I (w)) : w ∈ R} is called an IFN (i) if it is a convex set, (ii) there exists unique
w0 ∈ R such that µF̃ I (w0) = 1, and there exists w1 ∈ R such that νF̃ I (w1) = 1, w0 ̸= w1. w0 is
called the mean value of F̃ I .

Definition 4. (Triangular intuitionistic fuzzy number, TIFN) [3] The intuitionistic fuzzy
number F̃ I = {(w, µI

F̃
(w), νI

F̃
(w)) : w ∈ R} is called TIFN if

µF̃ I (w) =


w − fL

fM − fL
, fL < w ≤ fM ,

fU − w

fU − fM
, fM ≤ w < fU ,

0 , otherwise.

νF̃ I (w) =


fM − w

fM − f ′L , f
′L < w ≤ fM ,

w − fM

f ′U − fM
, fM ≤ w < f ′U ,

1 , otherwise.

where fL, fM , fU , f ′L, f ′U ∈ R such that f ′L ≤ fL < fM < fU ≤ f ′U . The TIFN as defined
above is represented by F̃ I = (fL, fM , fU ; f ′L, fM , f ′U).

The graphical portrayal is given in Figure 1.
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Figure 1. TIFN F̃ I = (fL, fM , fU ; f ′L, fM , f ′U)

Definition 5. (Arithmetic operations on TIFNs) [2] Let F̃ I = (fL, fM , fU ; f ′L, fM , f ′U) and
G̃I = (gL, gM , gU ; g′L, gM , g′U) be two TIFNs. The arithmetic operations on TIFNs are defined
as follows:

(i) Addition: F̃ I ⊕ G̃I = (fL + gL, fM + gM , fU + gU ; f ′L + g′L, fM + gM , f ′U + g′U).

(ii) Subtraction: F̃ I ⊖ G̃I = (fL − gU , fM − gM , fU − gL; f ′L − g′U , fM − gM , f ′U − g′L).

(iii) Multiplication: F̃ I ⊗ G̃I ≈ (fLgL, fMgM , fUgU ; f ′Lg′L, fMgM , f ′Ug′U),

where f ′L, g′L > 0.
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(iv) Division:
F̃ I

G̃I
≈

(
fL

gU
,
fM

gM
,
fU

gL
;
f ′L

g′U
,
fM

gM
,
f ′U

g′L

)
, where f ′L, g′L > 0.

(v) Scalar multiplication: If λ ∈ R, then

λF̃ I =

{
(λfL, λfM , λfU ;λf ′L, λfM , λf ′U), for λ ≥ 0,

(λfU , λfM , λfL;λf ′U , λfM , λf ′L), for λ < 0.

3 Cost efficiency (CE)

The cost efficiency (CE) of a DMU is defined as the quotient of its minimum cost to its actual
cost. Thus,

CE =
minimal cost
actual cost

.

CE-DEA models [8] estimate the cost-minimizing level of input quantities while producing the
same level of outputs.

Suppose that we have n DMUs and we have to evaluate their performance efficiencies. Let
each DMU have m inputs and s outputs. Then, for DMUk, k = 1, 2, . . . , n, the CE is defined as
follows:

CEk =

∑m
i=1 cikxi∑m
i=1 cikxik

Now we introduce CE-DEA Model [8].

Model 1. (CE-DEA Model): For DMUk,

minCEk =

∑m
i=1 cikxi∑m
i=1 cikxik

subject to
n∑

j=1

λjxij ≤ xi, i = 1, 2, . . . ,m,

n∑
j=1

λjyrj ≥ yrk, r = 1, 2, . . . , s,

λj, xi ≥ 0

where λj and xi are variables, xi = unknown quantity of the i-th input, cik = price of the i-th
input for DMUk, xik = actual value of the i-th input for DMUk, xij = actual value of the i-th
input for DMUj , yrj = actual value of the r-th output for DMUj .

Definition 6. (Cost efficiency) [8] Let (x∗
i , λ

∗
j), i = 1, 2, ...,m; j = 1, 2, ..., n be the optimal

value of (xi, λj) and CE∗
k be the optimal value of CEk. Then DMUk is said to be cost-efficient if

CE∗
k = 1, otherwise DMUk is said to be cost-inefficient.
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4 Proposed intuitionistic fuzzy cost efficiency model (IFCEM)

In this model, we take IF data for input, output and input cost. The Proposed IFCEM (Model 2)
is given as follows:

Model 2.

min ˜CEk
I
=

∑m
i=1 c̃

I
ikxi∑m

i=1 c̃
I
ikx̃

I
ik

subject to

n∑
j=1

λjx̃
I
ij ≤ xi, i = 1, 2, . . . ,m,

n∑
j=1

λj ỹ
I
rj ≥ ỹIrk, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Assume that IF input x̃I
ij , IF output ỹIrj and IF input price c̃Iij are TIFNs. Let

x̃I
ij = (xL

ij, x
M
ij , x

U
ij;x

′L
ij , x

M
ij , x

′U
ij ),

ỹIrj = (yLrj, y
M
rj , y

U
rj; y

′L
rj , y

M
rj , y

′U
rj ),

and
c̃Iij = (cLij, c

M
ij , c

U
ij; c

′L
ij , c

M
ij , c

′U
ij ).

Model 2 is converted to Model 3 in the following manner.

Model 3.

min ˜CEk
I
=

∑m
i=1

(
cLik, c

M
ik , c

U
ik; c

′L
ik , c

′M
ik , c′Uik

)
(xi, xi, xi;xi, xi, xi)∑m

i=1 (c
L
ik, c

M
ik , c

U
ik; c

′L
ik , c

′M
ik , c′Uik ) (x

L
ik, x

M
ik , x

U
ik;x

′L
ik , x

′M
ik , x′U

ik )

subject to

n∑
j=1

λj

(
xL
ij, x

M
ij , x

U
ij;x

′L
ij , x

′M
ij , x′U

ij

)
≤ (xi, xi, xi;xi, xi, xi), i = 1, 2, . . . ,m,

n∑
j=1

λj

(
yLrj, y

M
rj , y

U
rj; y

′L
rj , y

′M
rj , y

′U
rj

)
≥

(
yLrk, y

M
rk , y

U
rk; y

′L
rk, y

M
rk , y

′U
rk

)
, r = 1, 2, . . . , s,

λj, xi ≥ 0.
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5 Methodology for solving IFCEM

Figure 2. Development of models

Let S(x̃I
ij), S(ỹ

I
rj) and S(c̃Iik) denote the supports of x̃I

ij , ỹ
I
rj and c̃Iik respectively.

∀ i, j, S(x̃I
ij) =

{
xij | µx̃I

ij
(xij) > 0

}
,

∀ r, j, S(ỹIrj) =
{
yrj | µỹIrj

(yrj) > 0
}
,

∀ i, k, S(c̃Iik) =
{
cik | µc̃Iik

(cik) > 0
}
,

The α-cuts of x̃I
ij , ỹ

I
rj and c̃Iik are defined, respectively, as follows.

∀ i, j and 0 < α ≤ 1

(x̃I
ij)α =

{
xij ∈ S(x̃I

ij) | µx̃I
ij
(xij) ≥ α

}
=

[
(xij)

L
α, (xij)

U
α

]
=

[
min
xij

{
xij ∈ S(x̃I

ij) | µx̃I
ij
(xij) ≥ α

}
, max

xij

{
xij ∈ S(x̃I

ij) | µx̃I
ij
(xij) ≥ α

}]
.

∀ r, j and 0 < α ≤ 1

(ỹIrj)α =
{
yrj ∈ S(ỹIrj) | µỹIrj

(yrj) ≥ α
}
=

[
(yrj)

L
α, (yrj)

U
α

]
=

[
min
yrj

{
yrj ∈ S(ỹIrj) | µỹIrj

(yrj) ≥ α
}
, max

yrj

{
yrj ∈ S(ỹIrj) | µỹIrj

(yrj) ≥ α
}]

.
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and

∀i, k and 0 < α ≤ 1

(c̃Iik)α =
{
cik ∈ S(c̃Iik) | µc̃Iik

(cik) ≥ α
}
=

[
(cik)

L
α, (cik)

U
α

]
=

[
min
cik

{
cik ∈ S(c̃Iik) | µc̃Iik

(cik) ≥ α
}
, max

cik

{
cik ∈ S(c̃Iik) | µc̃Iik

(cik) ≥ α
}]

.

Further, using these α-cuts, IFCEM can be transformed into a crisp model. Owing to the input
and output data being intuitionistic fuzzy numbers, the efficiency score is also an intuitionistic
fuzzy number denoted by ˜CEk

I
with membership function µ ˜CEk

I . Let S( ˜CEk
I
) be the support of

˜CEk
I
:

∀ k, S( ˜CEk
I
) =

{
CEk | µ ˜CEk

I (CEk) > 0
}

and let the α-cut be

∀ k and 0 < α ≤ 1

( ˜CEk
I
)α =

{
CEk ∈ S( ˜CEk

I
) | µ ˜CEk

I (CEk) ≥ α
}
=

[
(CEk)

L
α, (CEk)

U
α

]
=

[
min
CEk

{
CEk ∈ S( ˜CEk

I
) | µ ˜CEk

I (CEk) ≥ α
}
,max

CEk

{
CEk ∈ S( ˜CEk

I
) | µ ˜CEk

I (CEk) ≥ α
}]

.

5.1 Model based on α-cut

Aghayi [1] developed CE models in fuzzy enviornment. Here, we propose CE models in the IF
enviornment. Next, using α-cut in the proposed Model 3, we obtain the lower and upper bound
CE-DEA models. Model 3 is reduced to Models 4 and 5.

Model 4.

(CEk)
L
α = min

(xij)
L
α≤xij≤(xij)

U
α

(yrj)
L
α≤yrj≤(yrj)

U
α

(cik)
L
α≤cik≤(cik)

U
α



minCEk =

∑m
i=1 cikxi∑m
i=1 cikxik∑n

j=1 λjxij ≤ xi, i = 1, 2, . . . ,m,∑n
j=1 λjyrj ≥ yrk, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Model 5.

(CEk)
U
α = max

(xij)
L
α≤xij≤(xij)

U
α

(yrj)
L
α≤yrj≤(yrj)

U
α

(cik)
L
α≤cik≤(cik)

U
α



minCEk =

∑m
i=1 cikxi∑m
i=1 cikxik∑n

j=1 λjxij ≤ xi, i = 1, 2, . . . ,m,∑n
j=1 λjyrj ≥ yrk, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Models 4 and 5 are employed for evaluating the lower and upper bounds of cost efficiency,
respectively, based on the α-cut. Therefore, the CE-DEA Model 6, presented below, determines
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the lower bound of CEk. Specifically, the input price for DMUk is adjusted at the lower bound
level in the objective function. In the constraints, the levels of inputs and outputs are tailored
against the DMU being assessed while supporting the other DMUs. Inputs are set at upper
bounds, and outputs are set at lower bounds for DMUk, while inputs are arranged at lower bounds
and outputs are arranged at upper bounds for other units. Hence, the lower bound CE-DEA Model
6 for DMUk is as follows.

Model 6.
min(CEk)

L
α =

∑m
i=1(cik)

L
αxi∑m

i=1(cik)
L
α(xik)Uα

subject to

n∑
j=1
j ̸=k

λj(xij)
L
α + λk(xik)

U
α ≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj(yrj)
U
α + λk(yrk)

L
α ≥ (yrk)

L
α, r = 1, 2, . . . , s,

λj, xi ≥ 0.

In the below-presented Model 7, the upper bound of CEk is evaluated using a CE-DEA
approach. The objective function adjusts the input price of DMUk at the upper bound level, while
the levels of inputs and outputs in the constraints are customized against the evaluated DMU and
in support of the other DMUs. For DMUk, the inputs are set at lower bounds and outputs at upper
bounds, whereas for other units, inputs are arranged at upper bounds and outputs at lower bounds.
In this way, the upper bound CE-DEA Model 7 for DMUk is obtained.

Model 7.
min(CEk)

U
α =

∑m
i=1(cik)

U
αxi∑m

i=1(cik)
U
α (xik)Lα

subject to

n∑
j=1
j ̸=k

λj(xij)
U
α + λk(xik)

L
α ≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj(yrj)
L
α + λk(yrk)

U
α ≥ (yrk)

U
α , r = 1, 2, . . . , s,

λj, xi ≥ 0.

The α-cuts of x̃I
ij, ỹ

I
rj and c̃Iik for α ∈ (0, 1] are given by

(x̃I
ij)α = [(xij)

L
α, (xij)

U
α ] =

[
αxM

ij + (1− α)xL
ij, αx

M
ij + (1− α)xU

ij

]
,

(ỹIrj)α = [(yrj)
L
α, (yrj)

U
α ] =

[
αyMrj + (1− α)yLrj, αy

M
rj + (1− α)yUrj

]
,
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(c̃Iik)α = [(cik)
L
α, (cik)

U
α ] =

[
αcMik + (1− α)cLik, αc

M
ik + (1− α)cUik

]
.

Using α-cuts, Models 6 and 7 are transformed into Models 8 and 9, respectively.

Model 8. For α ∈ (0, 1],

min(CEk)
L
α =

∑m
i=1

(
αcMik + (1− α)cLik

)
xi∑m

i=1 (αc
M
ik + (1− α)cLik) (αx

M
ik + (1− α)xU

ik)

subject to

n∑
j=1
j ̸=k

λj

(
αxM

ij + (1− α)xL
ij

)
+ λk

(
αxM

ik + (1− α)xU
ik

)
≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj

(
αyMrj + (1− α)yUrj

)
+λk

(
αyMrk + (1− α)yLrk

)
≥

(
αyMrk + (1− α)yLrk

)
, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Model 9. For α ∈ (0, 1],

min(CEk)
U
α =

∑m
i=1

(
αcMik + (1− α)cUik

)
xik∑m

i=1 (αc
M
ik + (1− α)cUik) (αx

M
ik + (1− α)xL

ik)

subject to

n∑
j=1
j ̸=k

λj

(
αxM

ij + (1− α)xU
ij

)
+ λk

(
αxM

ik + (1− α)xL
ik

)
≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj

(
αyMrj + (1− α)yLrj

)
+λk

(
αyMrk + (1− α)yUrk

)
≥

(
αyMrk + (1− α)yUrk

)
, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Definition 7. Efficient and inefficient DMU based on α-cut:

• If (CEk)
L∗
α = (CEk)

U∗
α = 1 for any α ∈ (0, 1], then DMUk is called α-based strongly

cost-efficient.

• If (CEk)
U∗
α = 1 and (CEk)

L∗
α < 1 for any α ∈ (0, 1], then DMUk is called α-based

weakly cost-efficient.

• If (CEk)
U∗
α < 1 and (CEk)

L∗
α < 1 for any α ∈ (0, 1], then DMUk is called α-based

cost-inefficient.

Axiom. (CEk)
L∗
α ≤ (CEk)

U∗
α ∀α ∈ (0, 1], i.e., The minimum achievable cost efficiency (CE) is

either lower or equal to the maximum achievable CE for the DMU being evaluated.
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5.2 Model based on β-cut

Now, using β-cut, we obtain the lower and upper bound CEDEA Models. Model 3 is reduced to
Models 10 and 11 as follows.

Model 10.

(CEk)
′L
β = min

(xij)
′L
β ≤xij≤(xij)

′U
β

(yrj)
′L
β ≤yrj≤(yrj)

′U
β

(cik)
′L
β ≤cik≤(cik)

′U
β



minCEk =

∑m
i=1 cikxi∑m
i=1 cikxik∑n

j=1 λjxij ≤ xi, i = 1, 2, . . . ,m,∑n
j=1 λjyrj ≥ yrk, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Model 11.

(CEk)
′U
β = max

(xij)
′L
β ≤xij≤(xij)

′U
β

(yrj)
′L
β ≤yrj≤(yrj)

′U
β

(cik)
′L
β ≤cik≤(cik)

′U
β



minCEk =

∑m
i=1 cikxi∑m
i=1 cikxik∑n

j=1 λjxij ≤ xi, i = 1, 2, . . . ,m,∑n
j=1 λjyrj ≥ yrk, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Models 10 and 11 are applied for the purpose of assessing the lower and upper bounds of
cost efficiency with the assistance of the β-cut method. As a result, Model 12 (shown below) is
a variant of the CE-DEA model that quantifies the minimum possible CE (CEk) for DMUk by
utilizing β-cut. Within the objective function, the input price for DMUk is adjusted to the lower
limit level, while in the constraints, the input and output levels are customized to the highest and
lowest levels for DMUk, as well as the opposite arrangement for the other DMUs. Specifically,
inputs are set to the highest limit and outputs to the lowest limit for DMUk, while inputs are set to
the lowest limit and outputs to the highest limit for other units. Hence, the resultant lower bound
CE-DEA model for DMUk (Model 12) using β-cut can be represented as follows.

Model 12.

min(CEk)
′L
β =

∑m
i=1(cik)

′L
β xi∑m

i=1(cik)
′L
β (xik)′Uβ

subject to

n∑
j=1
j ̸=k

λj(xij)
′L
β + λk(xik)

′U
β ≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj(yrj)
′U
β + λk(yrk)

′L
β ≥ (yrk)

′L
β , r = 1, 2, . . . , s,

λj, xi ≥ 0.
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The following is Model 13, which is a variant of the CE-DEA model that assesses the maximum
achievable cost efficiency of DMUk by utilizing the β-cut approach. Within the objective function,
the input price for DMUk is adjusted to the upper limit level, while in the constraints, the input
and output levels are customized at their lowest and highest levels for DMUk, as well as the
opposite configuration for the other DMUs. Thus, the resulting upper bound CE-DEA model for
DMUk (Model 13) using β-cut can be represented as follows.

Model 13.

min(CEk)
′U
β =

∑m
i=1(cik)

′U
β xi∑m

i=1(cik)
′U
β (xik)′Lβ

subject to

n∑
j=1
j ̸=k

λj(xij)
′U
β + λk(xik)

′L
β ≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj(yrj)
′L
β + λk(yrk)

′U
β ≥ (yrk)

′U
β , r = 1, 2, . . . , s,

λj, xi ≥ 0.

The β-cuts of x̃I
ij, ỹ

I
rj and c̃Iik are given by

(x̃I
ij)β = [(xij)

′L
β , (xij)

′U
β ] =

[
βx′L

ij + (1− β)xM
ij , βx

′U
ij + (1− β)xM

ij

]
,

(ỹIrj)β = [(yrj)
′L
β , (yrj)

′U
β ] =

[
βy′Lrj + (1− β)yMrj , βy

′U
rj + (1− β)yMrj

]
,

(c̃Iik)β = [(cik)
′L
β , (cik)

′U
β ] =

[
βc′Lik + (1− β)cMik , βc

′U
ik + (1− β)xM

ik

]
.

Using β-cuts, Models 12 and 13 are transformed into Models 14 and 15, respectively.

Model 14. For β ∈ [0, 1),

min(CEk)
′L
β =

∑m
i=1

(
βc′Lik + (1− β)cMik

)
xi∑m

i=1 (βc
′L
ik + (1− α)cMik ) (βx

′U
ik + (1− β)xM

ik )

subject to

n∑
j=1
j ̸=k

λj

(
βx′L

ij + (1− β)xM
ij

)
+ λk

(
βx′U

ik + (1− β)xM
ik

)
≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj

(
βy′Urj + (1− β)yMrj

)
+λk

(
βy′Lrk + (1− β)yMrk

)
≥

(
βy′Lrk + (1− β)yMrk

)
, r = 1, 2, . . . , s,

λj, xi ≥ 0.
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Model 15. For β ∈ [0, 1),

min(CEk)
′U
β =

∑m
i=1

(
βc′Uik + (1− β)cMik

)
xi∑m

i=1 (βc
′U
ik + (1− β)cMik ) (βx

′L
ik + (1− β)xM

ik )

subject to
n∑

j=1
j ̸=k

λj

(
βx′U

ij + (1− β)xM
ij

)
+ λk

(
βx′L

ik + (1− β)xM
ik

)
≤ xi, i = 1, 2, . . . ,m,

n∑
j=1
j ̸=k

λj

(
βy′Lrj + (1− β)yMrj

)
+λk

(
βy′Urk + (1− β)yMrk

)
≥

(
βy′Urk + (1− β)yMrk

)
, r = 1, 2, . . . , s,

λj, xi ≥ 0.

Definition 8. Efficient and inefficient DMU based on β-cut:

• If (CEk)
′L∗
β = (CEk)

′U∗
β = 1 for any β ∈ [0, 1), then DMUk is called β-based strongly

cost-efficient.

• If (CEk)
′U∗
β = 1 and (CEk)

′L∗
β < 1 for any β ∈ [0, 1), then DMUk is called β-based

weakly cost-efficient.

• If (CEk)
′U∗
β < 1 and (CEk)

′L∗
β < 1 for any β ∈ [0, 1), then DMUk is called β-based

cost-inefficient.

Axiom. (CEk)
′L∗
β ≤ (CEk)

′U∗
β ∀ β ∈ [0, 1), i.e., the lower limit of cost efficiency for the DMU

under consideration is less than or equal to its upper limit of cost efficiency.

The overall methodology is presented in the flowchart on Figure 3.

6 Numerical example

This section presents an illustrative numerical instance to explicate the proposed models. The
case examined in this instance involves five DMUs, each with two IF inputs and two IF outputs,
along with IF input prices corresponding to these two IF inputs, all presented as Triangular
Intuitionistic Fuzzy Numbers (TIFNs). The IF input-output data and IF input prices for all 5
DMUs are presented in Table 1.

The efficiencies of DMUs are calculated using the proposed models. The problem is formulated
for each DMU by using the proposed IFCEM (Model 2) and solved by using the Models 8, 9, 14
and 15.

The step-by-step solution process is presented below:

• Problem Formulation: In this step, the problem for each DMU is formulated using the
proposed Model 2. For illustration, we will formulate and solve the problem for DMUA.
Similarly, the problem can be formulated and solved for all other DMUs also. The problem
for DMUA can be formulated as follows.
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Table 1. IF input-output data and IF input prices for DMUs (Source: Self-generated)

IF Inputs IF Outputs Input Prices
DMU (xL

1 , x
M
1 , xU

1 ;x
′L
1 , xM

1 , x′U
1 ) (yL1 , y

M
1 , yU1 ; y

′L
1 , yM1 , y′U1 ) (cL1 , c

M
1 , cU1 ; c

′L
1 , cM1 , c′U1 )

A (49.4, 53, 56.6; 42.3, 53, 62) (70, 77.5, 85; 62, 77.5, 80.5) (4.7, 5, 5.3; 4, 5, 8)
B (20, 25, 30; 18.5, 25, 31.5) (41.5, 49.6, 57.7; 36.5, 49.6, 53) (3.5, 5, 6.5; 3.1, 5, 7.9)
C (11.5, 18, 24.5; 10.5, 18, 25.2) (21.6, 26.5, 31.4; 20.6, 26.5, 38.6) (7.2, 8, 8.8; 7, 8, 11)
D (12.1, 18, 23.9; 11.6, 18, 25.5) (34.2, 37.5, 40.8; 28, 37.5, 45.5) (7.2, 9, 10.8; 6.5, 9, 15.2)
E (29.1, 32, 34.9; 28.4, 32, 36.6) (59.2, 64, 68.8; 56, 64, 72) (6.8, 7, 7.2; 6, 7, 7.3)

DMU (xL
2 , x

M
2 , xU

2 ;x
′L
2 , xM

2 , x′U
2 ) (yL2 , y

M
2 , yU2 ; y

′L
2 , yM2 , y′U2 ) (cL2 , c

M
2 , cU2 ; c

′L
2 , cM2 , c′U2 )

A (40.5, 45, 49.5; 38.3, 45, 50.2) (28.8, 35.4, 42; 28.5, 35.4, 42) (4.5, 5, 5.5; 2.2, 5, 9.2)
B (41.6, 46.5, 51.4; 40, 46.5, 52.5) (28.9, 34.7, 40.5; 27, 34.7, 42) (4.5, 6, 7.5; 4.3, 6, 11.7)
C (11.9, 15.7, 19.5; 10.5, 15.7, 20.6) (29.4, 37.6, 45.8; 28.5, 37.6, 47.5) (6.3, 7, 7.7; 6.2, 7, 12)
D (20.1, 25.5, 30.9; 18.6, 25.5, 31.5) (40.9, 47.5, 54.1; 39.5, 47.5, 55) (5, 5.5, 6; 3, 5.5, 10.5)
E (20.3, 25, 29.7; 19.5, 25, 28) (72.9, 76.4, 79.9; 68, 76.4, 82) (1.75, 2, 2.25; 1.25, 2, 3.7)

• Cost efficiency evaluation for DMUA:

min ˜CEA
I
=

∑2
i=1 c̃

I
iAxi∑2

i=1 c̃
I
iAx̃

I
iA

subject to 5∑
j=1

λjx̃
I
ij ≤ xi, i = 1, 2,

5∑
j=1

λj ỹ
I
rj ≥ ỹIrA, r = 1, 2,

x1, x2, λ1, ..., λ5 ≥ 0.

Now, we will solve the above IFCEM for DMUA using the proposed models. To determine
the lower and upper bound CE efficiency scores, we will utilize Models 8 and 9 for the
α-cut and Models 14 and 15 for the β-cut.

Models based on α-cut:∀α ∈ (0, 1]

• Lower bound cost efficiency for DMUA

min (CEA)
L
α =

(5α+ 4.7(1− α))x1 + (5α+ 4.5(1− α))x2

(5α+ 4.7(1− α)) (53α+ 56.6(1− α)) + (5α+ 4.5(1− α)) (45α+ 49.5(1− α))

subject to

x1 ≥ λ1 (53α + 56.6(1− α)) + λ2 (25α + 20(1− α)) + λ3 (18α + 11.5(1− α))

+ λ4 (18α + 12.1(1− α)) + λ5 (32α + 29.1(1− α)) ,

x2 ≥ λ1 (45α + 49.5(1− α)) + λ2 (46.5α + 41.6(1− α)) + λ3 (15.7α + 11.9(1− α))

+ λ4 (25.5α + 20.1(1− α)) + λ5 (25α + 20.3(1− α)) ,
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(77.5α + 70(1− α)) ≤ λ1 (77.5α + 70(1− α)) + λ2 (49.6α + 57.7(1− α))

+ λ3 (26.5α + 31.4(1− α)) + λ4 (37.5α + 40.8(1− α))

+ λ5 (64α + 68.8(1− α)) ,

(35.4α + 28.8(1− α)) ≤ λ1 (35.4α + 28.8(1− α)) + λ2 (34.7α + 40.5(1− α))

+ λ3 (37.6α + 45.8(1− α)) + λ4 (47.5α + 54.1(1− α))

+ λ5 (76.4α + 79.9(1− α)) ,

x1, x2, λ1, λ2, λ3, λ4, λ5 ≥ 0.

• Upper bound cost efficiency for DMUA

min (CEA)
U
α =

(5α+ 5.3(1− α))x1 + (5α+ 5.5(1− α))x2

(5α+ 5.3(1− α)) (53α+ 49.4(1− α)) + (5α+ 5.5(1− α)) (45α+ 40.5(1− α))

subject to

x1 ≥ λ1 (53α + 49.4(1− α)) + λ2 (25α + 30(1− α)) + λ3 (18α + 24.5(1− α))

+ λ4 (18α + 23.9(1− α)) + λ5 (32α + 34.9(1− α)) ,

x2 ≥ λ1 (45α + 40.5(1− α)) + λ2 (46.5α + 51.4(1− α)) + λ3 (15.7α + 19.5(1− α))

+ λ4 (25.5α + 30.9(1− α)) + λ5 (25α + 29.7(1− α)) ,

(77.5α + 85(1− α)) ≤ λ1 (77.5α + 85(1− α) + λ2 (49.6α + 41.5(1− α))

+ λ3 (26.5α + 21.6(1− α)) + λ4 (37.5α + 34.2(1− α))

+ λ5 (64α + 59.2(1− α)) ,

(35.4α + 42(1− α)) ≤ λ1 (35.4α + 42(1− α)) + λ2 (34.7α + 28.9(1− α))

+ λ3 (37.6α + 29.4(1− α)) + λ4 (47.5α + 40.9(1− α))

+ λ5 (76.4α + 72.9(1− α)) ,

x1, x2, λ1, λ2, λ3, λ4, λ5 ≥ 0.

Models based on β-cut: ∀ β ∈ [0, 1)

• Lower bound cost efficiency for DMUA

min (CEA)
′L
β =

(4β + 5(1− β))x1 + (2.2β + 5(1− β))x2

(4β + 5(1− β)) (62β + 53(1− β)) + (2.2β + 5(1− β)) (50.2β + 45(1− β))

subject to

x1 ≥ λ1 (62β + 53(1− β)) + λ2 (18.5β + 25(1− β)) + λ3 (10.5β + 18(1− β))

+ λ4 (11.6β + 18(1− β)) + λ5 (28.4β + 32(1− β)) ,

x2 ≥ λ1 (50.2β + 45(1− β)) + λ2 (40β + 46.5(1− β)) + λ3 (10.5β + 15.7(1− β))

+ λ4 (18.6β + 25.5(1− β)) + λ5 (19.5β + 25(1− β)) ,
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(62β + 77.5(1− β)) ≤ λ1 (62β + 77.5(1− β)) + λ2 (53β + 49.6(1− β))

+ λ3 (38.6β + 26.5(1− β))

+ λ4 (45.5β + 37.5(1− β)) + λ5 (72β + 64(1− β)) ,

(28.5β + 35.4(1− β)) ≤ λ1 (28.5β + 35.4(1− β)) + λ2 (42β + 34.7(1− β))

+ λ3 (47.5β + 37.6(1− β))

+ λ4 (55β + 47.5(1− β)) + λ5 (82β + 76.4(1− β)) ,

x1, x2, λ1, λ2, λ3, λ4, λ5 ≥ 0.

• Upper bound cost efficiency for DMUA

min (CEA)
′U
β =

(8β + 5(1− β))x1 + (9.2β + 5(1− β))x2

(8β + 5(1− β)) (42.3β + 53(1− β)) + (9.2β + 5(1− β)) (38.3β + 45(1− β))

subject to

x1 ≥ λ1 (42.3β + 53(1− β)) + λ2 (31.5β + 25(1− β)) + λ3 (25.2β + 18(1− β))

+ λ4 (25.5β + 18(1− β)) + λ5 (36.6β + 32(1− β)) ,

x2 ≥ λ1 (38.3β + 45(1− β)) + λ2 (52.5β + 46.5(1− β)) + λ3 (20.6β + 15.7(1− β))

+ λ4 (31.5β + 25.5(1− β)) + λ5 (28β + 25(1− β)) ,

(80.5β + 77.5(1− β)) ≤ λ1 (80.5β + 77.5(1− β) + λ2 (36.5β + 49.6(1− β))

+ λ3 (20.6β + 26.5(1− β))

+ λ4 (28β + 37.5(1− β)) + λ5 (56β + 64(1− β)) ,

(42β + 35.4(1− β)) ≤ λ1 (42β + 35.4(1− β)) + λ2 (27β + 34.7(1− β))

+ λ3 (28.5β + 37.6(1− β))

+ λ4 (39.5β + 47.5(1− β)) + λ5 (68β + 76.4(1− β)) ,

x1, x2, λ1, λ2, λ3, λ4, λ5 ≥ 0.

The linear models are solved by Lingo software for different values of α and β, ranging from
0 to 1 with a step of 0.1. The lower and upper bound cost-efficiencies are presented in Table 2
(using Models 8 and 9) and Table 3 (using Models 14 and 15) for α-cut and β-cut respectively
for all DMUs.
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Table 2. The lower and upper cost-efficiencies based on α-cuts

DMU A B C D E
α ↓ [(CEA)

L
α, (CEA)

U
α ] [(CEB)

L
α, (CEB)

U
α ] [(CEC)

L
α, (CEC)

U
α ] [(CED)

L
α, (CED)

U
α ] [(CEE)

L
α, (CEE)

U
α ]

0 [0.474, 1] [0.346, 0.991] [0.388, 1] [0.473, 1] [0.589, 1]
0.1 [0.494, 0.993] [0.366, 0.942] [0.428, 1] [0.502, 1] [0.631, 1]
0.2 [0.514, 0.956] [0.387, 0.896] [0.472, 1] [0.534, 1] [0.675, 1]
0.3 [0.535, 0.921] [0.409, 0.851] [0.512, 1] [0.569, 1] [0.720, 1]
0.4 [0.557, 0.886] [0.432, 0.809] [0.549, 1] [0.607, 1] [0.768, 1]
0.5 [0.579, 0.853] [0.456, 0.769] [0.589, 1] [0.649, 1] [0.818, 1]
0.6 [0.602, 0.821] [0.481, 0.731] [0.631, 1] [0.691, 1] [0.870, 1]
0.7 [0.626, 0.79] [0.507, 0.694] [0.677, 1] [0.733, 1] [0.924, 1]
0.8 [0.651, 0.76] [0.535, 0.659] [0.726, 0.962] [0.777, 0.986] [0.981, 1]
0.9 [0.677, 0.732] [0.564, 0.626] [0.778, 0.896] [0.824, 0.929] [1, 1]
1 [0.704, 0.704] [0.594, 0.594] [0.835, 0.835] [0.875, 0.875] [1, 1]

Table 3. The lower and upper cost-efficiencies based on β-cuts

DMU A B C D E
β ↓ [(CEA)

′L
β , (CEA)

′U
β ] [(CEB)

′L
β , (CEB)

′U
β ] [(CEC)

′L
β , (CEC)

′U
β ] [(CED)

′L
β , (CED)

′U
β ] [(CEE)

′L
β , (CEE)

′U
β ]

0 [0.704, 0.704] [0.594, 0.594] [0.835, 0.835] [0.875, 0.875] [1, 1]
0.1 [0.662, 0.738] [0.554, 0.616] [0.802, 0.858] [0.846, 0.909] [1, 1]
0.2 [0.621, 0.774] [0.517, 0.638] [0.77, 0.882] [0.819, 0.945] [0.964, 1]
0.3 [0.584, 0.811] [0.481, 0.662] [0.739, 0.906] [0.794, 0.987] [0.905, 1]
0.4 [0.548, 0.851] [0.448, 0.688] [0.71, 0.929] [0.769, 1] [0.864, 1]
0.5 [0.515, 0.894] [0.416, 0.715] [0.683, 0.954] [0.746, 1] [0.824, 1]
0.6 [0.483, 0.938] [0.386, 0.743] [0.657, 0.982] [0.724, 1] [0.785, 1]
0.7 [0.432, 0.985] [0.358, 0.773] [0.632, 1] [0.703, 1] [0.748, 1]
0.8 [0.38, 1] [0.331, 0.804] [0.608, 1] [0.684, 1] [0.712, 1]
0.9 [0.334, 1] [0.306, 0.837] [0.586, 1] [0.665, 1] [0.678, 1]
1 [0.291, 1] [0.282, 0.872] [0.564, 1] [0.648, 1] [0.644, 1]

After examining Table 2 and 3; the DMUs can be classified into three groups, according to
Definitions 7 and 8, based on α-cut and β-cut techniques, respectively as shown in Table 4.

Table 4. Efficiency categorization

Efficiency strongly cost-efficient weakly cost-efficient cost-inefficient
Based on α-cut E A, C, D B
Based on β-cut E A, C, D B

So, based on the results of Table 2, 3 and 4 we can say that DMU E is strongly cost-efficient,
DMUs A, C and D are weakly cost-efficient and DMU B is a cost-inefficient DMU, based on
α- and β-cuts.
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7 Conclusion

The present study entails the expansion of the traditional DEA cost efficiency model to incorporate
the intuitionistic fuzzy nature of the data, in the context of DEA. The conventional CE-DEA
model is used for crisp data, but for all intents and purposes of real-life problems, we developed
IFCEMs. The proposed IFCEM is a fully intuitionistic fuzzy model that can be applied to all
types of data, i.e., we do not need any longer conventional CE-DEA models developed for crisp
and fuzzy data because every crisp and fuzzy number can be represented as IF numbers. This
study develops lower and upper IFCEMs based on α and β-cuts, respectively, by using arithmetic
operations on the conventional CE DEA model. The current work attempts to generalize the
conventional CE DEA models into IFCE DEA models and give new insight into solving IFCE
DEA models. However, the proposed models are developed by taking TIFNs.

The proposed IFCEMs are applied to a numerical example in which we have 5 DMUs, each
having two inputs, two outputs and inputs prices; all are taken as TIFNs. Using α and β-cuts of
IFCEMs, we obtained lower and upper-cost efficiencies of these 5 DMUs presented in Tables 2
and 3. By Definitions 7 and 8, we conclude that DMUs A,C and D are weakly cost-efficient,
DMU B is cost-inefficient and DMU E is strongly cost-efficient.

DMs can use trapezoidal fuzzy numbers (TrFNs), L-R type fuzzy numbers, or any other form
of IF numbers to represent the imprecision and hesitation in input-output and cost data. Second,
in the present work, the proposed IF CE-DEA approach is studied under constant returns to scale
(CRS), but this can be extended to the variable returns to scale (VRS) approach.

In the future, research can explore results from other DEA models in unfavorable settings,
such as stochastic and robust, and develop new models and approaches for the performance
evaluation of DMUs based on cost and revenue efficiencies.
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