Intuitionistic fuzzy rw-closed sets and intuitionistic fuzzy rw-continuity

S. S. Thakur and Jyoti Pandey Bajpai

Department of Applied Mathematics, Jabalpur Engineering College Jabalpur (M.P.) 482011, India Emails: samajh_singh@rediffmail.com, yk1305@gmail.com

Abstract: The aim of this paper is to introduce the new class of intuitionistic fuzzy closed sets called intuitionistic fuzzy rw-closed sets in ituitionistic fuzzy topological space. The class of all intuitionistic fuzzy rw-closed sets lies between the class of all intuitionistic fuzzy w-closed sets and class of all intuitionistic fuzzy rg-closed sets. We also introduce the concepts of intuitionistic fuzzy rw- open sets, intuitionistic fuzzy rw-continuity and intuitionistic fuzzy rw-open and intuitionistic fuzzy rw-closed mappings in intuitionistic fuzzy topological spaces.

Keywords: Intuitionistic fuzzy rw-closed sets, Intuitionistic fuzzy rw-open sets, Intuitionistic fuzzy rw-compactness, intuitionistic fuzzy rw-continuous mappings, Intuitionistic fuzzy rw-open mappings and intuitionistic fuzzy rw-closed mappings.

AMS Classification: 03E72

1 Introduction

After the introduction of fuzzy sets by Zadeh [28] in 1965 and fuzzy topology by Chang [5] in 1967, several researches were conducted on the generalizations of the notions of fuzzy sets and fuzzy topology. The concept of intuitionistic fuzzy sets (IFS) was introduced by Atanassov [1] as a generalization of fuzzy sets. In the last 25 years various concepts of fuzzy mathematics have been extended for IFS. In 1997 Coker [6] introduced the concept of IF topological spaces. Recently many fuzzy topological concepts such as fuzzy compactness [8], fuzzy connectedness [24], fuzzy separation axioms [3], fuzzy continuity [9], fuzzy g-closed sets [16], fuzzy g-continuity [17], fuzzy rg-closed sets [18] have been generalized for IF topological spaces. Recently authors of this paper introduced the concept of IF w-closed sets[20] in IF topology.

In the present paper we extend the concepts of rw-closed sets due to Benchalli and Walli [4] in IF topological spaces . The class of intuitionistic fuzzy rw-closed sets is properly placed between the class of IF w-closed sets and IF rg-closed sets. We also introduced the concepts of IF rw-open sets, IF rw-connectedness, IF rw-compactness and IF rw-continuity, and obtain some of their characterization and properties.

2 Preliminaries

Let X be a nonempty fixed set. An IFS A[1] in X is an object having the form A = { $\langle x, \mu_A(x), \gamma_A(x) \rangle$: $x \in X$ }, where the functions $\mu_A : X \rightarrow [0,1]$ and $\Upsilon_A : X \rightarrow [0,1]$ denotes the degree of membership $\mu_A(x)$ and the degree of non membership $\gamma_A(x)$ of each element $x \in X$ to the set A

respectively and $0 \le \mu_A(x) + \gamma_A(x) \le 1$ for each $x \in X$. The IFSs $\tilde{\mathbf{0}} = \{ \le x, 0, 1 \ge x \in X \}$ and $\tilde{\mathbf{1}} = \{ \langle x, 1, 0 \rangle : x \in X \}$ are respectively called empty and whole IFS on X. An IFS A = { $\langle x, \mu_A(x), \gamma_A(x) \rangle$: $x \in X$ } is called a subset of an IFS B = { $\langle x, \mu_B(x), \gamma_B(x) \rangle$: $x \in X$ } (for short A \subseteq B) if $\mu_A(x) \le \mu_B(x)$ and $\gamma_A(x) \ge \gamma_B(x)$ for each $x \in X$. The complement of an IFS A = { $\langle x, \mu_A(x), \gamma_A(x) \rangle$: $x \in X$ } is the IFS A^c = { $\langle x, \gamma_A(x), \mu_A(x) \rangle$: $x \in X$ }. The intersection (resp. union) of any arbitrary family of IFSs $A_i = \{\langle x, \mu_{Ai}(x), \gamma_{Ai}(x) \rangle : x \in X, (i \in \Lambda) \}$ of X be the IFS $\cap A_i = \{\langle x, \land \mu_{Ai}(x), \lor \gamma_{Ai}(x) \rangle : x \in X\}$ (resp. $\cup A_i = \{\langle x, \lor \mu_{Ai}(x), \land \gamma_{Ai}(x) \rangle : x \in X\}$). Two IFSs A = { $\langle x, \mu_A(x), \gamma_A(x) \rangle$: $x \in X$ } and B = { $\langle x, \mu_B(x), \gamma_B(x) \rangle$: $x \in X$ } are said be q-coincident (A_aB for short) if and only if there exists an element $x \in X$, such that $\mu_A(x) > \gamma_B(x)$ or $\gamma_A(x) < \mu_B(x)$. A family \Im of IFSs on a non empty set X is called an intuitionistic fuzzy topology [6] on X if the intuitionistic fuzzy sets $\tilde{\mathbf{0}}, \tilde{\mathbf{1}} \in \mathfrak{T}$, and \mathfrak{T} is closed under arbitrary union and finite intersection. The ordered pair (X, \mathfrak{I}) is called an intuitionistic fuzzy topological space and each intuitionistic fuzzy set in \Im is called an intuitionistic fuzzy open set. The compliment of an intuitionistic fuzzy open set in X is known as intuitionistic fuzzy closed set. The intersection of all intuitionistic fuzzy closed sets which contains A is called the closure of A. It is denoted by cl(A). The union of all intuitionistic fuzzy open subsets of A is called the interior of A. It is denoted by int(A) [6].

Lemma 2.1 [6]: Let A and B be any two IFS of an IF topological space (X, ℑ). Then:

(a) $(A_qB) \Leftrightarrow A \subseteq B^c$.

- (b) A is an intuitionistic fuzzy closed set in $X \Leftrightarrow cl(A) = A$
- (c) A is an intuitionistic fuzzy open set in $X \Leftrightarrow int(A) = A$.
- (d) $cl(A^c) = (int(A))^c$.
- (e) $int(A^c) = (cl(A))^c$.
- (f) $A \subseteq B \Rightarrow int(A) \subseteq int(B)$.
- (g) $A \subseteq B \Rightarrow cl(A) \subseteq cl(B)$.
- (h) $cl(A \cup B) = cl(A) \cup cl(B)$.
- (i) $int(A \cap B) = int(A) \cap int(B)$

Definition 2.1 [7]: Let X is a nonempty set and $c \in X$ a fixed element in X. If $\alpha \in (0, 1]$ and $\beta \in [0, 1)$ are two real numbers such that $\alpha + \beta \le 1$ then,

- (a) $c(\alpha,\beta) = \langle x, c_{\alpha}, c_{1-\beta} \rangle$ is called an IF point in X, where α denotes the degree of membership of $c(\alpha,\beta)$, and β denotes the degree of nonmembership of $c(\alpha,\beta)$.
- (b) $c(\beta) = \langle x, 0, 1-c_{1-\beta} \rangle$ is called a vanishing intuitionistic fuzzy point in X, where β denotes the degree of non membership of $c(\beta)$.

Definition 2.2 [8]: A family $\{G_i : i \in \land\}$ of IFSs in X is called an intuitionistic fuzzy open cover of X if $\cup \{G_i : i \in \land\} = \tilde{\mathbf{1}}$ and a finite subfamily of an intuitionistic fuzzy open cover $\{G_i : i \in \land\}$ of X which also an intuitionistic fuzzy open cover of X is called a finite sub cover of $\{G_i : i \in \land\}$.

Definition 2.3 [8]: An intuitionistic fuzzy topological space (X, \mathfrak{T}) is called intuitionistic fuzzy compact if every intuitionistic fuzzy open cover of X has a finite sub cover.

Definition 2.4 [24]: An intuitionistic fuzzy topological space X is called intuitionistic fuzzy connected if there is no proper intuitionistic fuzzy set of X which is both intuitionistic fuzzy open and intuitionistic fuzzy closed.

Definition 2.5 [9]: An IFS A of an intuitionistic fuzzy topological space (X, \mathfrak{I}) is called:

- (a) An intuitionistic fuzzy semi open of X if there is an intuitionistic fuzzy set O such that $O \subseteq A \subseteq cl(O)$.
- (b) An intuitionistic fuzzy semi closed if the compliment of A is an intuitionistic fuzzy semi open set.

- (c) An intuitionistic fuzzy regular open of X if int(cl(A)) = A.
- (d) An intuitionistic fuzzy regular closed of X if cl(int(A)) = A.
- (e) An intuitionistic fuzzy pre open if $A \subseteq int(cl(A))$.
- (f) An intuitionistic fuzzy pre closed if $cl(int(A)) \subseteq A$

Definition 2.6 [22]: An intuitionistic fuzzy topological space (X, \Im) is called intuitionistic fuzzy regular semi open if there is a regular open set U such that $U \subseteq A \subseteq cl(U)$.

Theorem 2.1 [22]: Let(X,\Im) be an intuitionistic fuzzy topological spaces and A be an IFS in X then, the following conditions are equivalent:

- (a) A is intuitionistic fuzzy regular semi open
- (b) A is both intuitionistic fuzzy semi open and intuitionistic fuzzy semi closed.
- (c) A^c is intuitionistic fuzzy regular semi open

Definition 2.7 [9] If A is an IFS in intuitionistic fuzzy topological space(X, \Im) then

- (a) $scl(A) = \cap \{ F: A \subseteq F, F \text{ is intuitionistic fuzzy semi closed} \}$
- (b) $pcl(A) = \bigcap \{ F: A \subseteq F, F \text{ is intuitionistic fuzzy pre closed} \}$

Definition 2.8: An IFS A of an intuitionistic fuzzy topological space (X, \mathfrak{I}) is called:

- (a) Intuitionistic fuzzy g-closed if cl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy open.[16]
- (b) Intuitionistic fuzzy g-open if its complement A^c is intuitionistic fuzzy g-closed.[16]
- (c) Intuitionistic fuzzy rg-closed if $cl(A) \subseteq O$ whenever $A \subseteq O$ and O is intuitionistic fuzzy regular open.[18]
- (d) Intuitionistic fuzzy rg-open if its complement A^c is intuitionistic fuzzy rg-closed.[18]
- (e) Intuitionistic fuzzy w-closed if cl(A) ⊆ O whenever A ⊆ O and O is intuitionistic fuzzy semi open.[20]
- (f) Intuitionistic fuzzy w -open if its complement A^c is intuitionistic fuzzy w-closed.[20]
- (g) Intuitionistic fuzzy gpr-closed if $pcl(A) \subseteq O$ whenever $A \subseteq O$ and O is intuitionistic fuzzy regular open.[21]
- (h) Intuitionistic fuzzy gpr -open if its complement A^c is intuitionistic fuzzy gpr-closed.
 [21]

Remark 2.1: Every intuitionistic fuzzy closed set is intuitionistic fuzzy g-closed but its converse may not be true.[16]

Remark 2.2: Every intuitionistic fuzzy g- closed set is intuitionistic fuzzy rg-closed but its converse may not be true.[18]

Remark 2.3: Every intuitionistic fuzzy w-closed (resp. Intuitionistic fuzzy w-open) set is intuitionistic fuzzy g-closed (intuitionistic fuzzy g-open) but its converse may not be true.[20]

Remark 2.4: Every intuitionistic fuzzy g-closed (resp. Intuitionistic fuzzy g-open) set is intuitionistic fuzzy gpr-closed (intuitionistic fuzzy gpr-open) but its converse may not be true[21]

Definition 2.9 [6]: Let X and Y are two nonempty sets and f: $X \rightarrow Y$ is a function:

(a) If $B = \{\langle y, \mu_B(y), \gamma_B(y) \rangle : y \in Y\}$ is an intuitionistic fuzzy set in Y, then the pre image of B under f denoted by $f^{-1}(B)$, is the intuitionistic fuzzy set in X defined by

$$f^{-1}(B) = \langle x, f^{-1}(\mu_B)(x), f^{-1}(\gamma_B)(x) \rangle : x \in X \}.$$

(b) If $A = \{ \langle x, \lambda_A(x), \nu_A(x) \rangle : x \in X \}$ is an intuitionistic fuzzy set in X, then the image of A under f denoted by f(A) is the intuitionistic fuzzy set in Y defined by

 $f(A) = \{ \langle y, f(\lambda_A) (y), f(v_A) (y) \rangle : y \in Y \}$

Where $f(v_A) = 1 - f(1 - v_A)$.

Definition 2.10 [9]: Let (X, \mathfrak{I}) and (Y, σ) be two intuitionistic fuzzy topological spaces and let *f*: $X \rightarrow Y$ be a function. Then *f* is said to be

- (a) Intuitionistic fuzzy continuous if the pre image of each intuitionistic fuzzy open set of Y is an intuitionistic fuzzy open set in X.
- (b) Intuitionistic fuzzy closed if the image of each intuitionistic fuzzy closed set in X is an intuitionistic fuzzy closed set in Y.
- (c) Intuitionistic fuzzy open if the image of each intuitionistic fuzzy open set in X is an intuitionistic fuzzy open set in Y.

Definition 2.11 [27]: Let (X,\mathfrak{I}) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f: X \rightarrow Y$ be a function. Then f is said to be intuitionistic fuzzy almost continuous if inverse image of every intuitionistic fuzzy regular closed set of Y is intuitionistic fuzzy closed in X.

Definition 2.12 [23]: Let (X,\mathfrak{T}) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f: X \rightarrow Y$ be a function. Then f is said to be intuitionistic fuzzy almost irresolute if inverse image of every intuitionistic fuzzy regular semi open set of Y is intuitionistic fuzzy semi open in X.

Definition 2.13: Let (X,\mathfrak{I}) and (Y, σ) be two intuitionistic fuzzy topological spaces and let $f: X \rightarrow Y$ be a function. Then *f* is said to be

- (a) Intutionistic fuzzy g-continuous if the pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy g-closed in X.[17]
- (b) Intutionistic fuzzy w-continuous if the pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy w-closed in X.[20]
- (c) Intuitionistic fuzzy w-open if image of every open set of X is intuitionistic fuzzy w-open in Y.[20]
- (d) Intuitionistic fuzzy w-closed if image of every closed set of X is intuitionistic fuzzy wclosed in Y.[20]
- (e) Intutionistic fuzzy rg-continuous if the pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy rg-closed in X.[19]
- (f) Intutionistic fuzzy gpr-continuous if the pre image of every intuitionistic fuzzy closed set in Y is intuitionistic fuzzy gpr-closed in X.[21]

Remark 2.5: Every intuitionistic fuzzy continuous mapping is intuitionistic fuzzy gcontinuous, but the converse may not be true [17].

Remark 2.6: Every intuitionistic fuzzy w- continuous mapping is intuitionistic fuzzy g- continuous, but the converse may not be true [20].

Remark 2.7: Every intuitionistic fuzzy g-continuous mapping is intuitionistic fuzzy rg-continuous, but the converse may not be true [16].

Remark 2.8: Every intuitionistic fuzzy g-continuous mapping is intuitionistic fuzzy gprcontinuous, but the converse may not be true [21].

3 Intuitionistic fuzzy rw-closed set

Definition 3.1: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \mathfrak{I}) is called an intuitionistic fuzzy rw-closed if $cl(A) \subseteq O$ whenever $A \subseteq O$ and O is intuitionistic fuzzy regular semi open in X.

First we prove that the class of intuitionistic fuzzy rw-closed sets properly lies between the class of intuitionistic fuzzy w-closed sets and the class of intuitionistic fuzzy rg-closed sets.

Theorem 3.1: Every intuitionistic fuzzy w-closed set is intuitionistic fuzzy rw-closed.

Proof: The proof follows from the Definition 3.1 and the fact that every intuitionistic fuzzy regular semi open set is intuitionistic fuzzy semi open.

Remark 3.1: The converse of Theorem 3.1 need not be true as from the following example. **Example 3.1:** Let X = {a, b} and $\Im = \{\tilde{\mathbf{0}}, U \ \tilde{\mathbf{1}}, \}$ be an intuitionistic fuzzy topology on X, where U = {<a, 0.7, 0.2>, <b, 0.6, 0.3>}. Then the IFS A = {<a, 0.7, 0.2>, <b, 0.8, 0.1>} is intuitionistic fuzzy rw-closed but it is not intuitionistic fuzzy w-closed.

Theorem 3.2: Every intuitionistic fuzzy rw-closed set is intuitionistic fuzzy rg-closed. **Proof:** The proof follows from the Definition 3.1 and the fact that every intuitionistic fuzzy regular open set is intuitionistic fuzzy regular semi open.

Remark 3.2: The converse of Theorem 3.2 need not be true as from the following example. **Example 3.2**: Let $X = \{a, b, c, d\}$ and intuitionistic fuzzy sets O, U, V, W defined as follows

 $O = \{ <a, 0.9, 0.1 >, <b, 0, 1 >, <c, 0, 1 >, <d, 0, 1 > \}$

 $U = \{<\!\!a, 0, 1,\!\!>, <\!\!b, 0.8, 0.1\!\!>, <\!\!c, 0, 1\!\!>, <\!\!d, 0, 1\!\!>\}$

 $V = \{ <a, 0.9, 0.1 >, <b, 0.8, 0.1 >, <c, 0, 1 >, <d, 0, 1 > \}$

 $W = \{<\!\!a, 0.9, 0.1\!\!>, <\!\!b, 0.8, 0.1\!\!>, <\!\!c, 0.7, 0.2\!\!>, <\!\!d, 0, 1\!\!>\}$

 $\mathfrak{T} = \{\mathbf{\tilde{0}}, O, U, V, W \, \mathbf{\tilde{1}}, \}$ be an intuitionistic fuzzy topology on X. Then the intuitionistic fuzzy set A = {<a, 0, 1>, <b, 0, 1>, <c, 0.7, 0.2>, <d, 0, 1>} is intuitionistic fuzzy rg-closed but it is not intuitionistic fuzzy rw-closed.

Theorem 3.3: Every intuitionistic fuzzy rw-closed set is intuitionistic fuzzy gpr-closed. **Proof:** Let A is an intuitionistic fuzzy rw closed set in intuitionistic fuzzy topological space (X, \Im) Let A \subseteq O where O is intuitionistic fuzzy regular open in X. Since every intuitionistic fuzzy rw-closed set, we have cl(A) \subseteq O. Since every intuitionistic fuzzy closed set is intuitionistic fuzzy pre closed set, we have cl(A) \subseteq O. Since every intuitionistic fuzzy closed set is intuitionistic fuzzy pre closed set. Hence pcl(A) \subseteq O which implies that A is intuitionistic fuzzy gpr-closed.

Remark 3.3: The converse of Theorem 3.3 need not be true as from the following example. **Example 3.3**: Let $X = \{a, b, c, d, e\}$ and intuitionistic fuzzy sets O, U, V defined as follows

 $O = \{ <a, 0.9, 0.1 >, <b, 0.8, 0.1 >, <c, 0, 1 >, <d, 0, 1 >, <e, 0, 1 > \}$

 $U = \{ \langle a, 0, 1 \rangle, \langle b, 0, 1 \rangle, \langle c, 0.8, 0.1 \rangle, \langle d, 0.7, 0.2 \rangle, \langle e, 0, 1 \rangle \}$

 $V = \{ \langle a, 0.9, 0.1 \rangle, \langle b, 0.8, 0.1 \rangle, \langle c, 0.8, 0.1 \rangle, \langle d, 0.7, 0.2 \rangle, \langle e, 0, 1 \rangle \}$

Let $\Im = \{\mathbf{\tilde{0}}, \mathbf{O}, \mathbf{U}, \mathbf{V}, \mathbf{\tilde{1}}\}$ be an intuitionistic fuzzy topology on X. Then the intuitionistic fuzzy set A = {<a, 0.9, 0.1>, <b, 0, 1>, <c, 0, 1>, <d, 0, 1>, <e, 0, 1>} is intuitionistic fuzzy gpr-closed but it is not intuitionistic fuzzy rw-closed.

Remark 3.4: From Remarks 2.1, 2.2, 2.3, 2., 3.1, 3.2, 3.3 and Theorems 3.1, 3.2, 3.3 we reach at the following diagram of implications:

Theorem 3.1: Let (X,\mathfrak{T}) be an intuitionistic fuzzy topological space and A is an intuitionistic fuzzy set of X. Then A is intuitionistic fuzzy rw-closed if and only if $\neg(AqF) \Rightarrow \neg(cl(A)qF)$ for every intuitionistic fuzzy regular semi open set F of X.

Proof: Necessity: Let F be an intuitionistic fuzzy regular semi open set of X and $\neg(AqF)$. Then by Lemma 2.1(a) and Theorem 2.1, $A \subseteq F^c$ and F^c intuitionistic fuzzy regular semi open in X. Therefore $cl(A) \subseteq F^c$ by Definiton 3.1 because A is intuitionistic fuzzy rw-closed. Hence by Lemma 2.1(a), $\neg(cl(A)qF)$.

Sufficiency: Let O be an intuitionistic fuzzy regular semi open set of X such that $A \subseteq O$ i.e. $A \subseteq (O)^c)^c$. Then by Lemma 2.1(a), $\neg(A_qO^c)$ and O^c is an intuitionistic fuzzy regular semi open set in X. Hence, by hypothesis $\neg(cl(A)_qO^c)$. Therefore, by Lemma 2.1(a), $cl(A) \subseteq ((O)^c)^c$ i.e. $cl(A) \subseteq O$. Hence, A is intuitionistic fuzzy rw-closed in X.

Theorem 3.2: Let A be an intuitionistic fuzzy rw-closed set in an IF topological space (X, \mathfrak{I}) and $c(\alpha,\beta)$ be an IF point of X, such that $c(\alpha,\beta)_q cl(int(A))$ then $cl(int(c(\alpha,\beta))qA)$.

Proof: If $\neg cl(int(c(\alpha,\beta))_qA$ then by Lemma 2.1(a), $cl(int(c(\alpha,\beta) \subseteq A^c \text{ which implies that } A \subseteq (cl(c(\alpha,\beta)))^c$ and so $cl(A) \subseteq (cl(int(c(\alpha,\beta)))^c \subseteq (c(\alpha,\beta))^c$, because A is intuitionistic fuzzy rw-closed in X. Hence by Lemma 2.1(a), $\neg(c(\alpha,\beta)_q (cl(int(A))))$, a contradiction.

Theorem 3.3: Let A and B are two intuitionistic fuzzy rw-closed sets in an intuitionistic fuzzy topological space (X, \mathfrak{I}) , then A \cup B is intuitionistic fuzzy rw-closed.

Proof: Let O be an intuitionistic fuzzy regular semi open set in X, such that $A \cup B \subseteq O$. Then, $A \subseteq O$ and $B \subseteq O$. So, $cl(A) \subseteq O$ and $cl(B) \subseteq O$. Therefore, $cl(A) \cup cl(B) = cl(A \cup B) \subseteq O$. Hence $A \cup B$ is intuitionistic fuzzy rw-closed.

Remark 3.5: The intersection of two intuitionistic fuzzy rw-closed sets in an intuitionistic fuzzy topological space (X, \Im) may not be intuitionistic fuzzy rw-closed. For,

Example 3.4: Let X = {a, b, c, d } and intuitionistic fuzzy sets O,U, V,W defined as follows

 $O = \{ <a, 0.9, 0.1 >, <b, 0, 1 >, <c, 0, 1 >, <d, 0, 1 > \}$

 $U = \{<\!\!a, 0, 1,\!\!>, <\!\!b, 0.8, 0.1\!\!>, <\!\!c, 0, 1\!\!>, <\!\!d, 0, 1\!\!>\}$

 $V = \{ <a, 0.9, 0.1 >, <b, 0.8, 0.1 >, <c, 0, 1 >, <d, 0, 1 > \}$

 $W = \{ \langle a, 0.9, 0.1, \rangle, \langle b, 0.8, 0.1 \rangle, \langle c, 0.7, 0.2 \rangle, \langle d, 0, 1 \rangle \}$

 $\mathfrak{T} = \{\tilde{0}, O, U, V, W \,\tilde{1},\}$ be an intuitionistic fuzzy topology on X. Then the intuitionistic fuzzy set A = {<a, 0.9, 0.1>, <b, 0.8, 0.1>, <c, 0, 1>, <d, 0, 1>} and B = {<a, 0.9, 0.1>, <b, 0, 1>, <c, 0, 1>, <d, 0, 1>} and B = {<a, 0.9, 0.1>, <b, 0, 1>, <c, 0.7, 0.2>, <d, 0.9, 0.1>} are intuitionistic fuzzy rw-closed in (X, \mathfrak{T}) but A \cap B is not intuitionistic fuzzy rw-closed.

Theorem 3.4: Let A be an intuitionistic fuzzy rw-closed set in an intuitionistic fuzzy topological space (X, \mathfrak{I}) and $A \subseteq B \subseteq cl(A)$. Then B is intuitionistic fuzzy rw-closed in X.

Proof: Let O be an intuitionistic fuzzy regular semi open set in X such that $B \subseteq O$. Then, $A \subseteq O$ and since A is intuitionistic fuzzy rw-closed, $cl(A) \subseteq O$. Now $B \subseteq cl(A) \Rightarrow cl(B) \subseteq cl(A) \subseteq O$. Consequently B is intuitionistic fuzzy rw-closed.

Theorem 3.5: If A is intuitionistic fuzzy regular open and intuitionistic fuzzy rw-closed set, then A is intuitionistic fuzzy regular closed and hence intuitionistic fuzzy clopen.

Proof: Suppose A is intuitionistic fuzzy regular open and intuitionistic fuzzy rw-closed set. As every intuitionistic fuzzy regular open set is intuitionistic fuzzy regular semi open and $A \subseteq A$, we have $cl(A) \subseteq A$. Also $A \subseteq cl(A)$. Therefore cl(A) = A. That means A is intuitionistic fuzzy closed. Since A is intuitionistic regular open, them A is intuitionistic fuzzy open. Now cl(int(A)) = cl(A) = A. Therefore, A is intuitionistic fuzzy regular closed and intuitionistic fuzzy closed.

Theorem 3.6: If A is an intuitionistic fuzzy regular open and intuitionistic fuzzy rg-closed in intuitionistic fuzzy topological space (X, \mathfrak{I}) , then A is intuitionistic fuzzy rw-closed in X.

Proof: Let A is an intuitionistic fuzzy regular open and intuitionistic fuzzy rg-closed in X. We prove that A is an intuitionistic fuzzy rw-closed in X. Let U be any intuitionistic fuzzy regular semi open set in X such that $A \subseteq U$. Since A is intuitionistic fuzzy regular open and intuitionistic fuzzy rg-closed, we have $cl(A) \subseteq A$. Then $cl(A) \subseteq A \subseteq U$. Hence A is intuitionistic fuzzy rw-closed in X.

Theorem 3.7: If A is an intuitionistic regular semi open and intuitionistic fuzzy rw-closed in intuitionistic fuzzy topological space (X, \mathfrak{I}) , then A is intuitionistic fuzzy closed in X.

Proof: Suppose A is both intuitionistic fuzzy regular semi open and intuitionistic fuzzy rwclosed set in X. Now $A \subseteq A$. Then $cl(A) \subseteq A$. Hence A is intuitionistic fuzzy closed in X.

Corollary 3.1: If A is an intuitionistic fuzzy regular semi open and intuitionistic fuzzy rwclosed in intuitionistic fuzzy topological space (X,\mathfrak{T}) . Suppose that F is intuitionistic fuzzy closed in X then A \cap F is intuitionistic fuzzy rw-closed in X.

Proof: Suppose A is both intuitionistic fuzzy regular semi open and intuitionistic fuzzy rwclosed set in X and F is intuitionistic fuzzy closed in X. By Theorem 3.7, A is intuitionistic fuzzy closed in X. So $A \cap F$ is intuitionistic fuzzy closed in X. Hence $A \cap F$ is intuitionistic fuzzy rw-closed in X.

Theorem 3.8: If A is both intuitionistic fuzzy open and intuitionistic fuzzy g-closed in intuitionistic fuzzy topological space (X, \Im) . Then A is intuitionistic fuzzy rw-closed set in X.

Proof: Let A is both intuitionistic fuzzy open and intuitionistic fuzzy g-closed in X. Let $A \subseteq U$, where U is intuitionistic fuzzy regular semi open in X. Now $A \subseteq A$. By hypothesis $cl(A) \subseteq A$. That is $cl(A) \subseteq U$. Thus, A is intuitionistic fuzzy rw-closed in X.

Definition 3.2: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \mathfrak{I}) is called intuitionistic fuzzy rw-open if and only if its complement A^c is intuitionistic fuzzy rw-closed.

Remark 3.6: Every intuitionistic fuzzy w-open set is intuitionistic fuzzy rw-open but its converse may not be true.

Example 3.5: Let $X = \{a, b\}$ and $\mathfrak{I} = \{\mathbf{\tilde{0}}, U, \mathbf{\tilde{1}}, \}$ be an intuitionistic fuzzy topology on X, where $U = \{\langle a, 0.7, 0.2 \rangle, \langle b, 0.6, 0.3 \rangle\}$. Then the intuitionistic fuzzy set $A = \{\langle a, 0.2, 0.7 \rangle, \langle b, 0.1, 0.8 \rangle\}$ is intuitionistic fuzzy rw-open in (X, \mathfrak{I}) but it is not intuitionistic fuzzy w-open in (X, \mathfrak{I}).

Theorem 3.9: An intuitionistic fuzzy set A of an intuitionistic fuzzy topological space (X, \mathfrak{I}) is intuitionistic fuzzy rw-open if $F \subseteq int(A)$ whenever F is intuitionistic fuzzy regular semi open and $F \subseteq A$.

Proof: Follows from Definition 3.1 and Lemma 2.1

Theorem 3.10: Let A be an intuitionistic fuzzy rw-open set of an intuitionistic fuzzy topological space (X, \mathfrak{I}) and $int(A) \subseteq B \subseteq A$. Then B is intuitionistic fuzzy rw-open.

Proof: Suppose A is an intuitionistic fuzzy rw-open in X and $int(A) \subseteq B \subseteq A$. $\Rightarrow A^c \subseteq B^c \subseteq (int(A))^c \Rightarrow A^c \subseteq B^c \subseteq cl(A^c)$ by Lemma 2.1(d) and A^c is intuitionistic fuzzy rw-closed it follows from Theorem 3.4 that B^c is intuitionistic fuzzy rw-closed. Hence, B is intuitionistic fuzzy rw-open.

Theorem 3.11: Let A be an intuitionistic fuzzy w-closed set in an intuitionistic fuzzy topological space (X,\mathfrak{T}) and f: $(X,\mathfrak{T}) \to (Y,\mathfrak{T}^*)$ is an intuitionistic fuzzy almost irresolute and intuitionistic fuzzy closed mapping then f (A) is an intuitionistic rw-closed set in Y.

Proof: Let A be an intuitionistic fuzzy w-closed set in X and f: $(X,\mathfrak{I}) \to (Y,\mathfrak{I}^*)$ is an intuitionistic fuzzy almost irresolute and intuitionistic fuzzy closed mapping. Let $f(A) \subseteq G$ where G is intuitionistic fuzzy regular semi open in Y then $A \subseteq f^{-1}(G)$ and $f^{-1}(G)$ is

intuitionistic fuzzy semi open in X because f is intuitionistic fuzzy almost irresolute. Now A be an intuitionistic fuzzy w-closed set in X, $cl(A) \subseteq f^{-1}(G)$. Thus, $f(cl(A)) \subseteq G$ and f(cl(A)) is an intuitionistic fuzzy closed set in Y (since cl(A) is intuitionistic fuzzy closed in X and f is intuitionistic fuzzy closed mapping). It follows that $cl(f(A) \subseteq cl(f(cl(A))) = f(cl(A)) \subseteq G$. Hence $cl(f(A)) \subseteq G$ whenever $f(A) \subseteq G$ and G is intuitionistic fuzzy regular semi open in Y. Hence f(A) is intuitionistic fuzzy rw-closed set in Y.

Theorem 3.12: Let(X, \mathfrak{T}) be an intuitionistic fuzzy topological space and IFRSO(X) (resp. IFC(X)) be the family of all intuitionistic fuzzy regular semi open (resp. intuitionistic fuzzy closed) sets of X. Then IFRSO(X) \subseteq IFC(X) if and only if every intuitionistic fuzzy set of X is intuitionistic fuzzy rw-closed.

Proof: Necessity: Suppose that IFRSO(X) \subseteq IFC(X) and let A be any intuitionistic fuzzy set of X such that $A \subseteq U \in$ IFRSO(X) i.e. U is intuitionistic fuzzy regular semi open. Then, $cl(A) \subseteq cl(U) = U$ because $U \in$ IFRSO(X) \subseteq IFC(X). Hence $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is intuitionistic fuzzy regular semi open. Hence A is rw-closed set.

Sufficiency: Suppose that every intuitionistic fuzzy set of X is intuitionistic fuzzy rw-closed. Let $U \in IFRSO(X)$, then since $U \subseteq U$ and U is intuitionistic fuzzy rw-closed, $cl(U) \subseteq U$ then $U \in IFC(X)$. Thus $IFRSO(X) \subseteq IFC(X)$.

Definition 3.3: An intuitionistic fuzzy topological space (X \Im) is called intuitionistic fuzzy rw-connected if there is no proper intuitionistic fuzzy set of X which is both intuitionistic fuzzy rw-open and intuitionistic fuzzy rw-closed.

Theorem 3.13: Every intuitionistic fuzzy rw-connected space is intuitionistic fuzzy connected. **Proof:** Let (X, \mathfrak{I}) be an intuitionistic fuzzy rw-connected space and suppose that (X, \mathfrak{I}) is not intuitionistic fuzzy connected. Then there exists a proper IFS A $(A \neq \mathbf{0}, A \neq 1)$ such that A is both intuitionistic fuzzy open and intuitionistic fuzzy closed. Since every intuitionistic fuzzy open set (resp. intuitionistic fuzzy closed set) is intuitionistic rw-open (resp. intuitionistic fuzzy rw-connected, a contradiction.

Remark 3.7: Converse of Theorem 3.13 may not be true for

Example 3.6: Let $X = \{a, b\}$ and $\Im = \{\tilde{0}, U, \tilde{1}\}$ be an intuitionistic fuzzy topology on X, where $U = \{\langle a, 0.5, 0.5 \rangle, \langle b, 0.4, 0.6 \rangle\}$. Then, intuitionistic fuzzy topological space (X, \Im) is intuitionistic fuzzy connected but not intuitionistic fuzzy rw-connected because there exists a proper intuitionistic fuzzy set A= $\{\langle a, 0.5, 0.5 \rangle, \langle b, 0.5, 0.5 \rangle\}$ which is both intuitionistic fuzzy rw-closed and intuitionistic rw-open in X.

Theorem 3.14: An intuitionistic fuzzy topological (X, \Im) is intuitionistic fuzzy rw-connected if and only if there exists no non zero intuitionistic fuzzy rw-open sets A and B in X such that $A=B^{c}$.

Proof: Necessity: Suppose that A and B are intuitionistic fuzzy rw-open sets such that $A \neq \tilde{\mathbf{0}} \neq B$ and $A = B^c$. Since $A=B^c$, B is an intuitionistic fuzzy rw-open set which implies that $B^c = A$ is intuitionistic fuzzy rw-closed set and $B \neq \tilde{\mathbf{0}}$ this implies that $B^c \neq \tilde{\mathbf{1}}$ i.e. $A \neq \tilde{\mathbf{1}}$. Hence, there exists a proper intuitionistic fuzzy set $A(A \neq \tilde{\mathbf{0}}, A \neq \tilde{\mathbf{1}})$ such that A is both intuitionistic fuzzy rw-open and intuitionistic fuzzy rw-closed. But this is contradiction to the fact that X is intuitionistic fuzzy rw-connected.

Sufficiency: Let (X,\mathfrak{I}) is an intuitionistic fuzzy topological space and A is both intuitionistic fuzzy rw-open set and intuitionistic fuzzy rw-closed set in X such that $\mathbf{0} \neq A \neq \mathbf{1}$. Now take $B = A^c$. In this case B is an intuitionistic fuzzy rw-open set and $A \neq \mathbf{1}$. This implies that $B = A^c \neq \mathbf{0}$, which is a contradiction. Hence there is no proper IFS of X which is both intuitionistic fuzzy rw-closed. Therefore, intuitionistic fuzzy topological (X,\mathfrak{I}) is intuitionistic fuzzy rw-connected

Definition 3.3: Let (X, \mathfrak{I}) be an intuitionistic fuzzy topological space and A be an intuitionistic fuzzy set X. Then rw-interior and rw-closure of A are defined as follows.

 $rwcl(A) = \cap \{K: K \text{ is an intuitionistic fuzzy rw-closed set in X and A \subseteq K} \\ rwint(A) = \cup \{G: G \text{ is an intuitionistic fuzzy rw-open set in X and G \subseteq A} \}$

Remark 3.8: It is clear that $A \subseteq rwcl(A) \subseteq cl(A)$ for any intuitionistic fuzzy set A.

Theorem 3.15: An intuitionistic fuzzy topological space (X, \Im) is intuitionistic fuzzy rwconnected if and only if there exists no non zero intuitionistic fuzzy rw-open sets A and B in X such that $B = A^c$, $B = (rwcl(A))^c$, $A = (rwcl(B))^c$.

Proof: Necessity: Assume that there exists intuitionistic fuzzy sets A and B such that $A \neq \tilde{\mathbf{0}} \neq B$ in X such that $B = A^c$, $B = (rwcl(A))^c$, $A = (rwcl(B))^c$. Since $(rwcl(A))^c$ and $(rwcl(B))^c$ are intuitionistic fuzzy rw-open sets in X, which is a contradiction.

Sufficiency: Let A is both an intuitionistic fuzzy rw-open set and intuitionistic fuzzy rw-closed set such that $\tilde{\mathbf{0}} \neq A \neq \tilde{\mathbf{1}}$. Taking B= A^c, we obtain a contradiction.

Definition 3.4: An intuitionistic fuzzy topological space (X, \mathfrak{I}) is said to be intuitionistic fuzzy rw-T_{1/2} if every intuitionistic fuzzy rw-closed set in X is intuitionistic fuzzy closed in X.

Theorem 3.16: Let (X,\mathfrak{I}) be an intuitionistic fuzzy rw-T_{1/2} space, then the following conditions are equivalent:

(a) X is intuitionistic fuzzy rw-connected.

(b) X is intuitionistic fuzzy connected.

Proof: (a) \Rightarrow (b) follows from Theorem 3.13

(b) \Rightarrow (a): Assume that X is intuitionistic fuzzy rw-T_{1/2} and intuitionistic fuzzy rw-connected space. If possible, let X be not intuitionistic fuzzy rw-connected, then there exists a proper intuitionistic fuzzy set A such that A is both intuitionistic fuzzy rw-open and rw-closed. Since X is intuitionistic fuzzy rw-T_{1/2}, A is intuitionistic fuzzy open and intuitionistic fuzzy closed which implies that X is not intuitionistic fuzzy connected, a contradiction.

Definition 3.4: A collection $\{A_i : i \in \Lambda\}$ of intuitionistic fuzzy rw-open sets in intuitionistic fuzzy topological space (X, \mathfrak{I}) is called intuitionistic fuzzy rw-open cover of intuitionistic fuzzy set B of X if $B \subseteq \bigcup \{A_i : i \in \Lambda\}$

Definition 3.5: An intuitionistic fuzzy topological space (X, \mathfrak{I}) is said to be intuitionistic fuzzy rw-compact if every intuitionistic fuzzy rw-open cover of X has a finite sub cover.

Definition 3.6 : An intuitionistic fuzzy set B of intuitionistic fuzzy topological space (X, \mathfrak{I}) is said to be intuitionistic fuzzy rw-compact relative to X, if for every collection $\{A_i : i \in \Lambda\}$ of intuitionistic fuzzy rw-open subset of X such that $B \subseteq \bigcup \{A_i : i \in \Lambda\}$ there exists finite subset Λ_0 of Λ such that $B \subseteq \bigcup \{A_i : i \in \Lambda\}$ there exists finite subset Λ_0 of Λ such that $B \subseteq \bigcup \{A_i : i \in \Lambda_0\}$.

Definition 3.7: A crisp subset B of intuitionistic fuzzy topological space (X, \mathfrak{I}) is said to be intuitionistic fuzzy rw-compact if B is intuitionistic fuzzy rw-compact as intuitionistic fuzzy subspace of X.

Theorem 3.16: A intuitionistic fuzzy rw-closed crisp subset of intuitionistic fuzzy rw-compact space is intuitionistic fuzzy rw-compact relative to X.

Proof: Let A be an intuitionistic fuzzy rw-closed crisp subset of intuitionistic fuzzy rwcompact space (X, \Im). Then A^c is intuitionistic fuzzy rw-open in X. Let M be a cover of A by intuitionistic fuzzy rw-open sets in X. Then the family {M, A^c} is intuitionistic fuzzy rw-open cover of X. Since X is intuitionistic fuzzy rw-compact, it has a finite sub cover say {G₁, G₂, ..., Gn}. If this sub cover contains A^c, we discard it. Otherwise, leave the sub cover as it is. Thus we obtained a finite intuitionistic fuzzy rw-open sub cover of A. Therefore A is intuitionistic fuzzy rw-compact relative to X.

4 Intuitionistic fuzzy rw-continuity

Definition 4.1: A mapping $f : (X, \mathfrak{T})$. \rightarrow (Y, σ) is intuitionistic fuzzy rw-continuous if inverse image of every intuitionistic fuzzy closed set of Y is intuitionistic fuzzy rw-closed set in X.

Theorem 4.1: A mapping $f: (X,\mathfrak{I}) \to (Y,\sigma)$ is intuitionistic fuzzy rw-continuous if and only if the inverse image of every intuitionistic fuzzy open set of Y is intuitionistic fuzzy rw-open in X.

Proof: It is obvious because $f^{-1}(U^c) = (f^{-1}(U))^c$ for every intuitionistic fuzzy set U of Y.

Remark 4.1 Every intuitionistic fuzzy w-continuous mapping is intuitionistic fuzzy rwcontinuous, but converse may not be true. For,

Example 4.1 Let $X = \{a, b\}$, $Y = \{x, y\}$ and intuitionistic fuzzy sets U and V are defined as follows:

$$U = \{ \langle a, 0.7, 0.2 \rangle, \langle b, 0.6, 0.3 \rangle \}$$

$$V = \{ \langle x, 0.7, 0.2 \rangle, \langle y, 0.8, 0.1 \rangle \}$$

Let $\mathfrak{T} = \{\tilde{0}, \mathbf{U}, \tilde{1}\}$ and $\sigma = \{\tilde{0}, \mathbf{V}, \tilde{1}\}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping $f : (X, \mathfrak{T})$. \rightarrow (Y, σ) defined by f(a) = x and f(b) = y is intuitionistic fuzzy rw-continuous but not intuitionistic fuzzy continuous.

Remark 4.2 Every intuitionistic fuzzy rw-continuous mapping is intuitionistic fuzzy rgcontinuous, but converse may not be true. For,

Example 4.2: Let $X = \{a, b, c, d\}$ $Y = \{p, q, r, s\}$ and intuitionistic fuzzy sets O,U,V,W,T are defined as follows:

$$\begin{split} & O = \{ <a, 0.9, 0.1 > , <b, 0, 1 > , <c, 0, 1 > , <d, 0, 1 > \} \\ & U = \{ <a, 0, 1, > , <b, 0.8, 0.1 > , <c, 0, 1 > , <d, 0, 1 > \} \\ & V = \{ <a, 0.9, 0.1 > , <b, 0.8, 0.1 > , <c, 0, 1 > , <d, 0, 1 > \} \\ & W = \{ <a, 0.9, 0.1 > , <b, 0.8, 0.1 > , <c, 0.7, 0.2 > , <d, 0, 1 > \} \\ & T = \{ <p, 0, 1 > , <q, 0, 1 > <r, 0.7, 0.2 > , <s, 0, 1 > \} \\ \end{split}$$

Let $\mathfrak{T} = \{\mathbf{\tilde{0}}, O, U, V, W, \mathbf{\tilde{1}}\}\$ and $\sigma = \{\mathbf{\tilde{0}}, T, \mathbf{1}\}\$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping $f : (X, \mathfrak{T}) \to (Y, \sigma)$ defined by f(a) = p, f(b) = q, f(c) = r, f(d) = s is intuitionistic fuzzy rg-continuous but not intuitionistic fuzzy rw-continuous.

Remark 4.3 Every intuitionistic fuzzy rw-continuous mapping is intuitionistic fuzzy gprcontinuous, but converse may not be true. For,

Example 4.3: Let $X = \{a, b, c, d, e\}$ $Y = \{p, q, r, s, t\}$ and intuitionistic fuzzy sets O,U,V,W are defined as follows:

$$\begin{split} & O = \{ <a, 0.9, 0.1 >, <b, 0.8, 1 >, <c, 0, 1 >, <d, 0, 1 >, <e, 0, 1 > \} \\ & U = \{ <a, 0, 1, >, <b, 0, 1 >, <c, 0.8, 1 >, <d, 0.7, 0.2 >, <e, 0, 1 > \} \\ & V = \{ <a, 0.9, 0.1 >, <b, 0.8, 0.1, >, <c, 0.8, 0.1 >, <d, 0.7, 0.2 >, <e, 0, 1 > \} \\ & W = \{ <a, 0.9, 0.1 >, <b, 0.8, 0.1 >, <c, 0.8, 0.1 >, <d, 0.7, 0.2 >, <e, 0, 1 > \} \\ & W = \{ <a, 0.9, 0.1, >, <b, 0, 1 >, <c, 0.8, 0.1 >, <d, 0.7, 0.2 >, <e, 0, 1 > \} \\ \end{aligned}$$

Let $\mathfrak{T} = \{ \mathbf{\tilde{0}}, \mathbf{O}, \mathbf{U}, \mathbf{V}, \mathbf{\tilde{1}} \}$ and $\sigma = \{ \mathbf{\tilde{0}}, \mathbf{W}, \mathbf{\tilde{1}} \}$ be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping $f: (X, \mathfrak{I}) \to (Y, \sigma)$ defined by $f(\mathbf{a}) = \mathbf{p}$, $f(\mathbf{b}) = \mathbf{q}$, $f(\mathbf{c}) = \mathbf{r}$, $f(\mathbf{d}) = \mathbf{s}$, $f(\mathbf{e}) = \mathbf{t}$ is intuitionistic fuzzy gpr-continuous but not intuitionistic fuzzy rw-continuous.

Remark 4.3: From the Remarks 2.5, 2.6, 2.7, 2.8, 4.1, 4.2, 4.3 we reach the following diagram of implications:

Theorem 4.2: If $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rw- continuous then for each intuitionistic fuzzy point $c(\alpha,\beta)$ of X and each intuitionistic fuzzy open set V of Y such that $f(c(\alpha,\beta)) \subseteq V$ there exists a intuitionistic fuzzy rw-open set U of X such that $c(\alpha,\beta) \subseteq U$ and $f(U) \subseteq V$.

Proof: Let $c(\alpha,\beta)$ be intuitionistic fuzzy point of X and V be a intuitionistic fuzzy open set of Y such that $f(c(\alpha,\beta)) \subseteq V$. Put $U = f^{-1}(V)$. Then by hypothesis U is intuitionistic fuzzy rworen set of X such that $c(\alpha,\beta) \subseteq U$ and $f(U) = f(f^{-1}(V)) \subseteq V$.

Theorem 4.3: Let $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-continuous then for each intuitionistic fuzzy point $c(\alpha,\beta)$ of X and each intuitionistic fuzzy open set V of Y such that $f(c(\alpha,\beta))qV$, there exists a intuitionistic fuzzy rw-open set U of X such that $c(\alpha,\beta)qU$ and $f(U) \subseteq V$.

Proof: Let $c(\alpha,\beta)$ be intuitionistic fuzzy point of X and V be a intuitionistic fuzzy open set of Y such that $f(c(\alpha,\beta))q$ V. Put $U = f^{-1}(V)$. Then by hypothesis U is intuitionistic fuzzy rw-open set of X such that $c(\alpha,\beta)q$ U and $f(U)=f(f^{-1}(V)) \subseteq V$.

Theorem 4.4: If $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-continuous, then $f(\operatorname{rwcl}(A) \subseteq \operatorname{cl}(f(A)))$ for every intuitionistic fuzzy set A of X.

Proof: Let A be an intuitionistic fuzzy set of X. Then cl(f(A)) is an intuitionistic fuzzy closed set of Y. Since *f* is intuitionistic fuzzy rw-continuous, $f^{-1}(cl(f(A)))$ is intuitionistic fuzzy rw-closed in X. Clearly $A \subseteq f^{-1}(cl((A)))$. Therefore $wcl(A) \subseteq wcl(f^{-1}(cl(f(A)))) = f^{-1}(cl(f(A)))$. Hence $f(rwcl(A) \subseteq cl(f(A)))$ for every intuitionistic fuzzy set A of X.

Theorem 4.5: If $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-continuous and $g: (Y, \sigma) \to (Z, \mu)$ is intuitionistic fuzzy continuous. Then $gof: (X, \mathfrak{I}) \to (Z, \mu)$ is intuitionistic fuzzy rw-continuous.

Proof: Let A is an intuitionistic fuzzy closed set in Z. then $g^{-1}(A)$ is intuitionstic fuzzy closed in Y because g is intuitionistic fuzzy continuous. Therefore $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is intuitionistic fuzzy rw-closed in X. Hence gof is intuitionistic fuzzy rw-continuous.

Theorem 4.6: If $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-continuous and $g: (Y, \sigma) \to (Z, \mu)$ is intuitionistic fuzzy g-continuous and (Y, σ) is IF $T_{1/2}$ then $gof: (X, \mathfrak{I}) \to (Z, \mu)$ is intuitionistic fuzzy rw-continuous.

Proof: Let A is an intuitionistic fuzzy closed set in Z, then $g^{-1}(A)$ is intuitionistic fuzzy g-closed in Y. Since Y is $T_{1/2}$, then $g^{-1}(A)$ is intuitionstic fuzzy closed in Y. Hence, $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is intuitionistic fuzzy rw-closed in X. Hence *gof* is intuitionistic fuzzy w-continuous.

Theorem 4.7: If $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rg-irresolute and $g: (Y, \sigma) \to (Z, \mu)$ is intuitionistic fuzzy rw-continuous. Then $gof: (X, \mathfrak{I}) \to (Z, \mu)$ is intuitionistic fuzzy rg-continuous.

Proof: Let A is an intuitionistic fuzzy closed set in Z, then $g^{-1}(A)$ is intuitionistic fuzzy rwclosed in Y, because g is intuitionistic fuzzy rw-continuous. Since every intuitionistic fuzzy rw-closed set is intuitionistic fuzzy rg-closed set, therefore $g^{-1}(A)$ is intuitionistic fuzzy rgclosed in Y. Then $(gof)^{-1}(A) = f^{-1}(g^{-1}(A))$ is intuitionistic fuzzy rg-closed in X, because f is intuitionistic fuzzy rg-irresolute. Hence $gof : (X,\mathfrak{I}) \to (Z,\mu)$ is intuitionistic fuzzy rgcontinuous.

Theorem 4.8: An intuitionistic fuzzy rw-continuous image of a intuitionistic fuzzy rw-compact space is intuitionistic fuzzy compact.

Proof: Let $f: (X,\mathfrak{T}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-continuous map from a intuitionistic fuzzy rw-compact space (X,\mathfrak{T}) onto a intuitionistic fuzzy topological space (Y, σ) . Let $\{Ai: i \in \Lambda\}$ be an intuitionistic fuzzy open cover of Y then $\{f^{-1}(Ai): i \in \Lambda\}$ is a intuitionistic fuzzy rw-open cover of X. Since X is intuitionistic fuzzy rw-compact it has finite intuitionistic fuzzy sub cover say $\{f^{-1}(A_1), f^{-1}(A_2), \dots, f^{-1}(A_n)\}$. Since f is onto $\{A_1, A_2, \dots, A_n\}$ is an intuitionistic fuzzy open cover of Y and so (Y, σ) is intuitionistic fuzzy compact.

Theorem 4.9: If $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-continuous surjection and X is intuitionistic fuzzy rw-connected then Y is intuitionistic fuzzy connected.

Proof: Suppose Y is not intuitionistic fuzzy connected. Then there exists a proper intuitionistic fuzzy set G of Y which is both intuitionistic fuzzy open and intuitionistic fuzzy closed. Therefore $f^{-1}(G)$ is a proper intuitionistic fuzzy set of X, which is both intuitionistic fuzzy rwoopen and intuitionistic fuzzy rwoclosed, because f is intuitionistic fuzzy rwocontinuous surjection. Hence, X is not intuitionistic fuzzy rwoconnected, which is a contradiction.

Definition 4.2: A mapping $f : (X, \mathfrak{T}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-open if the image of every intuitionistic fuzzy open set of X is intuitionistic fuzzy rw-open set in Y.

Remark 4.5: Every intuitionistic fuzzy w-open map is intuitionistic fuzzy rw-open but converse may not be true. For,

Example 4.4: Let $X = \{a, b\}$, $Y = \{x, y\}$ and the intuitionistic fuzzy set U and V are defined as follows :

U = {<a, 0.7, 0.2 >, <b, 0.8, 0.1>} V = {<x, 0.7, 0.2 >, <y, 0.6, 0.3>}

Then $\mathfrak{T} = \{\mathbf{\tilde{0}}, \mathbf{U}, \mathbf{\tilde{1}}\}\$ and $\sigma = \{\mathbf{\tilde{0}}, \mathbf{V}, \mathbf{1}\}\$ be intuitionistic fuzzy topologies on X and Y respectively. Then, the mapping $f : (X,\mathfrak{T}) \to (Y, \sigma)$ defined by f(a) = x and f(b) = y is intuitionistic fuzzy rw-open but it is not intuitionistic fuzzy w-open.

Theorem 4.10: A mapping $f: (X, \mathfrak{T}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-open if and only if for every intuitionistic fuzzy set U of X $f(int(U)) \subseteq rwint(f(U))$.

Proof: Necessity: Let f be an intuitionistic fuzzy rw-open mapping and U is an intuitionistic fuzzy open set in X. Now $int(U) \subseteq U$ which implies that $f(int(U) \subseteq f(U))$. Since f is an intuitionistic fuzzy rw-open mapping, f(Int(U)) is intuitionistic fuzzy rw-open set in Y such that $f(Int(U) \subseteq f(U))$ therefore $f(Int(U)) \subseteq rwint f(U)$.

Sufficiency: For the converse suppose that U is an intuitionistic fuzzy open set of X. Then $f(U) = f(Int(U) \subseteq rwint f(U)$. But $wint(f(U)) \subseteq f(U)$. Consequently f(U) = wint(U) which implies that f(U) is an intuitionistic fuzzy rw-open set of Y and hence *f* is an intuitionistic fuzzy rw-open.

Theorem 4.11: If $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is an IF rw-open map then $int(f^{-1}(G) \subseteq f^{-1}(rwint(G) \text{ for every IFS } G \text{ of } Y.$

Proof: Let G is an intuitionistic fuzzy set of Y. Then int $f^{-1}(G)$ is an intuitionistic fuzzy open set in X. Since f is intuitionistic fuzzy rw-open $f(\inf f^{-1}(G))$ is intuitionistic fuzzy rw-open in Y and hence $f(\operatorname{Int} f^{-1}(G)) \subseteq \operatorname{rwint}(f(f^{-1}(G))) \subseteq \operatorname{rwint}(G)$. Thus $\inf f^{-1}(G) \subseteq f^{-1}(\operatorname{rwint}(G)$.

Theorem 4.12: A mapping $f: (X,\mathfrak{T}) \to (Y,\sigma)$ is intuitionistic fuzzy rw-open if and only if for each IFS S of Y and for each intuitionistic fuzzy closed set U of X containing $f^{-1}(S)$ there is a intuitionistic fuzzy rw-closed V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Necessity: Suppose that f is an intuitionistic fuzzy rw-open map. Let S be the intuitionistic fuzzy closed set of Y and U is an intuitionistic fuzzy closed set of X such that $f^{-1}(S) \subseteq U$. Then $V = (f^{-1}(U^c))^c$ is intuitionistic fuzzy rw-closed set of Y such that $f^{-1}(V) \subseteq U$. Sufficiency: For the converse suppose that F is an intuitionistic fuzzy open set of X. Then

 $f^{-1}((f(F))^c \subseteq F^c$ and F^c is intuitionistic fuzzy closed set in X. By hypothesis there is an intuitionistic fuzzy rw-closed set V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$. Therefore $F \subseteq (f^{-1}(V))^c$. Hence $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$. Since V^c is intuitionistic fuzzy rw-open set of Y. Hence f(F) is intuitionistic fuzzy rw-open in Y and thus f is intuitionistic fuzzy rw-open map.

Definition 4.3: A mapping $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-closed if image of every intuitionistic fuzzy closed set of X is intuitionistic fuzzy rw-closed set in Y.

Remark 4.6: Every intuitionistic fuzzy closed map is intuitionistic fuzzy rw-closed but converse may not be true. For,

Example 4.5: Let $X = \{a, b\}, Y = \{x, y\}$

Then the mapping $f: (X, \mathfrak{I}) \to (Y, \sigma)$ defined in Example 4.4 is intuitionistic fuzzy rw-closed but it is not intuitionistic fuzzy w-closed.

Theorem 4.13: A mapping $f: (X, \mathfrak{T}) \to (Y, \sigma)$ is intuitionistic fuzzy rw-closed if and only if for each intuitionistic fuzzy set S of Y and for each intuitionistic fuzzy open set U of X containing $f^{-1}(S)$ there is a intuitionistic fuzzy rw-open set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

Proof: Necessity: Suppose that f is an intuitionistic fuzzy rw-closed map. Let S be the intuitionistic fuzzy closed set of Y and U is an intuitionistic fuzzy open set of X such that $f^{-1}(S) \subseteq U$. Then $V = Y - f^{-1}(U^c)$ is intuitionistic fuzzy rw-open set of Y such that $f^{-1}(V) \subseteq U$. Sufficiency: For the converse suppose that F is an intuitionistic fuzzy closed set of X. Then $(f(F))^c$ is an intuitionistic fuzzy set of Y and F^c is intuitionistic fuzzy open set in X such that $f^{-1}((f(F))^c) \subseteq F^c$. By hypothesis there is an intuitionistic fuzzy rw-open set V of Y such that $(f(F))^c \subseteq V$ and $f^{-1}(V) \subseteq F^c$. Therefore, $F \subseteq (f^{-1}(V))^c$. Hence, $V^c \subseteq f(F) \subseteq f((f^{-1}(V))^c) \subseteq V^c$ which implies $f(F) = V^c$. Since V^c is intuitionistic fuzzy rw-closed set of Y. Hence f(F) is intuitionistic fuzzy rw-closed in Y and thus f is intuitionistic fuzzy w-closed map.

Theorem 4.14: If $f: (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy almost irresolute and intuitionistic fuzzy rw-closed map and A is an intuitionistic fuzzy w-closed set of X, then f(A) intuitionistic fuzzy rw-closed.

Proof: Let $f(A) \subseteq O$ where O is an intuitionistic fuzzy regular semi open set of Y. Since f is intuitionistic fuzzy almost irresolute therefore $f^{-1}(O)$ is an intuitionistic fuzzy semi open set of X such that $A \subseteq f^{-1}(O)$. Since A is intuitionistic fuzzy w-closed of X which implies that $cl(A) \subseteq (f^{-1}(O))$ and hence $f(cl(A)) \subseteq O$ which implies that $cl(f(cl(A))) \subseteq O$ therefore $cl(f((A))) \subseteq O$ whenever $f(A) \subseteq O$ where O is an intuitionistic fuzzy regular semi open set of Y. Hence f(A) is an intuitionistic fuzzy rw-closed set of Y.

Theorem 4.15: If $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy regular semi irresolute and intuitionistic fuzzy rw-closed map and A is an intuitionistic fuzzy rw-closed set of X, then f(A) is intuitionistic fuzzy rw-closed.

Proof: Let $f(A) \subseteq O$ where O is an intuitionistic fuzzy regular semi open set of Y. Since f is intuitionistic fuzzy regular semi irresolute therefore $f^{-1}(O)$ is an intuitionistic fuzzy regular semi open set of X such that $A \subseteq f^{-1}(O)$. Since A is intuitionistic fuzzy rw-closed of X which implies that $cl(A) \subseteq (f^{-1}(O))$ and hence $f(cl(A) \subseteq O)$ which implies that $cl(f(cl(A))) \subseteq O$ therefore $cl(f((A))) \subseteq O)$ whenever $f(A) \subseteq O$ where O is an intuitionistic fuzzy regular semi open set of Y. Hence f(A) is an intuitionistic fuzzy rw-closed set of Y.

Theorem 4.16: If $f : (X, \mathfrak{I}) \to (Y, \sigma)$ is intuitionistic fuzzy closed and $g : (Y, \sigma) \to (Z, \mu)$ is intuitionistic fuzzy rw-closed. Then $gof : (X, \mathfrak{I}) \to (Z, \mu)$ is intuitionistic fuzzy rw-closed. **Proof:** Let H be an intuitionistic fuzzy closed set of intuitionistic fuzzy topological space(X, \mathfrak{I}). Then f(H) is an intuitionistic fuzzy closed set of (Y, σ) because f is an inuituionistic fuzzy closed map. Now (gof)(H) = g(f(H)) is an intuitionistic fuzzy rw-closed set in the intuitionistic fuzzy topological space Z because g is an intuitionistic fuzzy rw-closed map. Thus, $gof : (X, \mathfrak{I}) \to (Z, \mu)$ is intuitionistic fuzzy rw-closed.

References

- [1] Atanassov, K., S. Stoeva. Intuitionistic Fuzzy Sets, In Polish Symposium on Interval and Fuzzy Mathematics, Poznan, 1983, 23–26.
- [2] Atanassov, K. Intuitionistic Fuzzy Sets, Fuzzy Sets and Systems, 20, 1985, 87–96.
- [3] Bayhan, S. On Separation Axioms in Intuitionistic Topological Spaces. Intern. Jour. Math. Math. Sci. 27, No.10, 2001, 621–630.
- [4] Benchalli, S. S., R. S. Wali. On RW-closed sets in Topological spaces, Bull. Malays. Math. Sci. Vol. 2, 2007, 99–110.
- [5] Chang, C. L. Fuzzy Topological Spaces, J. Math. Anal. Appl. Vol. 24, 1968, 182–190.
- [6] Çoker, D. An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets and Systems, Vol. 88, 1997, 81–89.
- [7] Çoker D., M. Demirci. On Intuitionistic Fuzzy Points. Notes on Intuitionistic Fuzzy Sets, Vol. 1, 1995, No. 2, 79–84.
- [8] Çoker, D. A. Es. Haydar. On Fuzzy Compactness in Intuitionistic Fuzzy Topological Spaces. The Journal of Fuzzy Mathematics, Vol. 3-4, 1995, 899–909.
- [9] Gurcay, H., D. Çoker, A. Es. Haydar. On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces. The Journal of Fuzzy Mathematics, Vol. 5, 1997, No. 2, 365–378.
- [10] Hdeib, H. Z. W-closed mappings, Revista Colombina de Mathematics, Vol. 16, 1982, No. 1, 65–78.
- [11] Hdeib, H. Z. W-continuous functions, Dirasat Journal, Vol. 16, 1989, No. 2, 136–153.
- [12] Levine, N. Generalized Closed Sets In Topology, Rend. Cerc. Mat. Palermo, Vol. 19, 1970, No. 2, 571–599.
- [13] Sakthivel, K. Intuitionistic fuzzy Alpha generalized continuous mappings and Intuitionistic fuzzy Alpha generalized irresolute mappings, Applied Mathematical Sciences, Vol. 4, 2010, No. 37,1831–1842.
- [14] Sundaram, P., J. M. Sheik. On w-closed set in topology, Acta Ciencia Indica, Vol. 4, 2000, 389–392.

- [15] Thakur, S. S., R. Malviya. Generalized Closed Sets in Fuzzy Topology, Math. Notae 38, 1995, 137–140.
- [16] Thakur S. S., R. Chaturvedi. Generalized closed set in intuitionistic fuzzy topology. The Journal of Fuzzy Mathematics, Vol. 16, 2008, No. 3, 559–572.
- [17] Thakur, S. S., R. Chaturvedi. Generalized Continuity in intuitionistic fuzzy topological spaces. Notes on Intuitionistic Fuzzy Sets. Vol. 12, 2006, No. 1, 38–44.
- [18] Thakur, S. S., R. Chaturvedi. Regular generalized closed sets in intuitionistic fuzzy topology, Studii Si Cercetari Stiintifice Seria Mathematica, Vol.16, 2010, 257–272.
- [19] Thakur, S. S., R. Chaturvedi. Intutionistic fuzzy rg-continuous mappings, Journal of Indian Academy of Mathematics, Vol. 29, 2007, No. 2, 467–473.
- [20] Thakur, S. S., Bajpai Pandey Jyoti. Intuitionistic Fuzzy w-closed sets and intuitionistic fuzzy w-continuity, International Journal of Contemporary Advanced Mathematics, Vol. 1, 2010, No. 1, 1–15.
- [21] Thakur, S. S., Bajpai Pandey Jyoti. On Intuitionistic fuzzy generalized pre regular sets in Intuitionistic fuzzy topological spaces. (submitted).
- [22] Thakur, S. S., M. Thakur. Regular semi open sets in Intuitionistic fuzzy topology. Vikram Mathematical Journal, Vol. 28, 2008 (in press).
- [23] Thakur, S. S., M. Thakur. Intuitionistic Fuzzy almost irresolute mappings. The Journal of Indian Academy Of Mathematics, Vol. 33, 2011, No. 1 (accepted).
- [24] Turnali, N., D. Çoker. Fuzzy Connectedness in Intuitionistic Fuzzy topological Spaces. Fuzzy Sets and Systems, Vol. 116, 2000, No. 3, 369–375.
- [25] Vadivel, A., K. Vairamanickam. Quasi rw-open and Quasi rw-closed function, Int. J. of Math. Analysis, Vol. 4, 2010, No. 9, 445–452.
- [26] Yalvac T. H. Semi interior and semi closure of fuzzy sets. J. Math. Anal Appl. Vol. 133, 1988, 356–364.
- [27] Young Bae Jun., Jong Kang, Seok Zun Song. Intuitionistic Fuzzy irresolute and continuous mapping. Far East J. Math. Sci., Vol. 17, 2005, 201–216.
- [28] Zadeh, L. A. Fuzzy Sets, Information and Control, Vol. 18, 1965, 338–353.