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1 Introduction and definitions

Fuzzy set theory began with the work of Zadeh [21] in 1965 as an alternative approach to the
decision making problems in engineering. Since then, many researchers have been interested in
this new subject and many of them have tried to establish whether analogues of classical theories
are true or not in the fuzzy case.

In the last two decades, fuzzy logic finds application in different areas of science such as non-
linear dynamic system [10], control of chaos [8], quantum physics [14], etc. It has also many
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applications in different brances of mathematics; metric and topological spaces ([2, 6, 9, 11]) and
approximation theory [18], etc.

The notation of statistical convergence of real valued sequences is first defined by Fast and
Steinhaus in 1951 [7] and [20].

Let K be a subset of the set of positive natural numbers N and let K(n) denote the set
{k ≤ n, k ∈ K} = [0, n] ∩ K. Asymptotic (or natural) density of the subset K is defined
by

δ(K) = lim
n→∞

1

n
|K(n)|

(if this limit exists), where |K(n)| denotes the cardinality of the set K(n).

Definition 1. [7] A number sequence x = (xk) is said to be statistically convergent to the number
l if for each ε > 0 we have

δ(K) = lim
n

1

n
|{k ≤ n : k ∈ K}|.

Remark 1. We remark that every convergent sequence is statistically (l(S)) convergent, but not
conversely.

In 1932, R. P. Agnew [1] defined the deferred Cesaro mean Dp,q of a sequence x = (xn) by

(Dp,qx)n =
1

q(n)− p(n)

q(n)∑
k=p(n)+1

xk,

where {p(n)}n and {q(n)}n are sequences of positive natural numbers under which

p(n) < q(n) and q(n) −→∞. (1)

Definition 2. A sequence x = (xn) is called

1. deferred Cesaro convergence to L if

1

q(n)− p(n)

q(n)∑
k=p(n)+1

(xk − L) −→ 0;

2. strongly deferred Cesaro convergence to L if

1

q(n)− p(n)

q(n)∑
k=p(n)+1

|xk − L| −→ 0.

We denote limn→∞ xn = l(DS[p, q]).

Let K be an arbitrary subset of N and

Kp,q(n) = {p(n) < k ≤ q(n), k ∈ K}

be an associated set of K for the arbitrary sequences p(n) and q(n) satisfying (1).
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Definition 3. [13] Let K be an arbitrary subset of N. If the following limit

δp,q(K) = lim
n→∞

1

q(n)− p(n)
|Kp,q(n)|

exists, then δp,q(K) is called deferred density of the subset K.

Definition 4. A sequence x = (xk) is said to be deferred statistically convergent to l ∈ R if for
every ε > 0,

lim
n→∞

1

q(n)− p(n)
|{k, p(n) < k ≤ q(n) : |xk − l| ≥ ε}| = 0.

It is denoted by limn→∞ xn = l(D[p, q]).

The theory of intuitionistic fuzzy sets was introduced by Atanassov in [3, 4] as a general-
ization of fuzzy sets theory, and it has been extensively used in decision-making problems. The
concept of intuitionistic fuzzy metric space was introduced in [18]. Also, in [18] and [15], defi-
nition of intuitionistic fuzzy normed space has been given.

Definition 5. [19] A triangular norm (t-norm) is a continuous mapping ∗ : [0, 1] × [0, 1] −→
[0, 1], such that (S, ∗) is an Abelian monoid with unit one and c ∗ d ≤ a ∗ b if c ≤ a and d ≤ b,
for all a, b, c, d ∈ [0, 1].

Definition 6. [19] A binary operation � : [0, 1] × [0, 1] −→ [0, 1], is said to be a continuous
t-conorm if it satisfies the following conditions:

1. � is associative and commutative,

2. � is continuous,

3. a � 0 = a, for all a ∈ [0, 1],

4. c � d ≤ a � b if c ≤ a and d ≤ b, for all a, b, c, d ∈ [0, 1].

Using the continuous t-norm and t-conorm, Saadati and Park [18] have recently introduced
the concept of intuitionistic fuzzy normed space, as follows.

Definition 7. The five-tuple (X,µ, ν, ∗, �) is said to be an intuitionistic fuzzy normed space (for
short, IFNS) ifX is a vector space, ∗ is a continuous t-norm, � is a continuous t-conorm, and µ, ν
are fuzzy sets on X × (0, 1) satisfying the following conditions for every x, y ∈ X , and s, t > 0:

1. µ(x, t) + ν(x, t) ≤ 1,

2. µ(x, t) > 0,

3. µ(x, t) = 1 if and only if x = 0,

4. µ(αx, t) = µ(x, t
|α|), for each α 6= 0,

5. µ(x, t) ∗ µ(y, s) ≤ µ(x+ y, s+ t),
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6. µ(x, .) : (0,∞) −→ [0, 1] is continuous,

7. limt→∞ µ(x, t) = 1 and limt→0 µ(x, t) = 0,

8. ν(x, t) < 1,

9. ν(αx, t) = ν(x, t
α
), for each α 6= 0,

10. ν(x, t) � ν(y, s) ≥ ν(x+ y, s+ t),

11. limt→∞ ν(x, t) = 0 and limt→0 ν(x, t) = 1.

In this case (µ, ν) is called an intuitionistic fuzzy norm.

Example. Let (X, ‖.‖) be a normed space. If we take a ∗ b := a ∧ b, a � b := a ∨ b and

µ0(x, t) :=
t

t+ ‖x‖
and ν0(x, t) :=

‖x‖
t+ ‖x‖

for every x ∈ X . So, (X,µ0, ν0, ∗, �) is an IFNS.

Definition 8. Let (X,µ, ν, ∗, �) be an IFNS. Then, a sequence x = (xk) is said to be convergent
to l ∈ X with respect to the intuitionistic fuzzy norm (µ, ν) if for all ε ∈ (0, 1) and t > 0, there
exists n0 ∈ N such that

µ(xk − l, t) > 1− ε and ν(xk − l, t) < ε (2)

hold for all k ≥ k0. We denote (µ, ν)− limx = l or xk
(µ,ν)−→ l

Let us denote 1−µ(x, t) by µ̃(x, t). Hence, the first part of (2) in Definition 8 can be restated
as follows:

µ̃(xk − l, t) < ε

We are going to use this notation in the proofs of some theorems only for simplicity.

Definition 9. Let (X,µ, ν, ∗, �) be an IFNS and (xk) be a sequence of X . It is said that (xk) is a
Cauchy sequence if for all ε ∈ (0, 1) and t > 0 there is n0 ∈ N, such that µ(xk − xn, t) > 1− ε
and ν(xk − xn, t) < ε hold for all k, n ≥ n0.

Definition 10. Let (X,µ, ν, ∗, �) be an IFNS and (xk) be a sequence of X . It is said that (xk)
is a bounded sequence if there exists a positive real number M such that µ(xk, t) > 1 −M and
ν(xk, t) < M hold for all k ∈ N.

Definition 11. Let (X,µ, ν, ∗, �) be an IFSN. Then a sequence x = (xk) is said to be statistically
convergent to l ∈ X with respect to the intuitionistic fuzzy norm (µ, ν) if every ε ∈ (0, 1) and
t > 0,

δ(k ∈ N : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε) = 0.

Or equivently
δ(k ∈ N : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε) = 1.

In this case, we write
xk → l(S(µ, ν)).
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In the paper [12], the statistical convergence of sequences in IFNS is studied. Later in [16, 17],
lacunary statistical convergence and λ-statistical convergence of sequences in IFNS are defined
and some interesting results are given, respectively.

The main aim of this paper is to define deferred statistical convergence of sequence in IFNS
and to give a generalized version of the results from [12, 17, 16] and some others.

Definition 12. Let (X,µ, ν, ∗, �) be an IFSN and x = (xk) be a sequence ofX . Then the sequence
x = (xk) is said to be Dp,q-convergent to l with respect to the intuitionistic fuzzy norm (µ, ν) and
is denoted by xk → l(S(µ, ν)) if for every ε ∈ (0, 1) and t > 0, there exists n0 ∈ N such that

1

q(n)− p(n)

q(n)∑
k=p(n)+1

µ (xk − l, t) > 1− ε and
1

q(n)− p(n)

q(n)∑
k=p(n)+1

ν (xk − l, t) < ε

hold for all n > n0.

Definition 13. Let (X,µ, ν, ∗, �) be an IFSN and (xk) be a sequence of X . Then, the sequence
x = (xk) is said to be deferred statistically convergent to l, if for all ε ∈ (0, 1) and t > 0,

δqp(k ∈ N : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε) = 0

Or equivently
δqp(k ∈ N : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε) = 1

In this case, we write
xk → l(Dq

pS(µ, ν)).

Remark 2. It is clear that,

(a) If q(n) = n and p(n) = n− 1, then Definition 13 coincides with the Definition 9,

(b) If q(n) = n and p(n) = 0, then Definition 13 coincides with the Definition 11 given in [12],

(c) If q(n) = kn and p(n) = kn−1 (for any lacunary sequence of non-negative integers with
kn − kn−1 → ∞ as n → ∞), then Definition 13 turns to lacunary statistical convergence
in IFNS, given in [17],

(d) If q(n) = λn and p(n) = n−λn (where λn is a non-decreasing sequence of positive natural
numbers denting to∞ such that λn+1 ≤ λn+1, λ1 = 0), then Definition 13 coincides with
the definition in [16],

(e) If q(n) = λn and p(n) = 0 (where λn is a strictly increasing sequence of positive natural
numbers), then Definition 13 turned to λ-statistical convergence in IFNS (But this type of
convergence in IFNS has not been investigated until today).
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2 Dq
pS(µ, ν)-convergence in IFNS

Some work related to the convergence of sequences in several normed linear spaces in a fuzzy
setting can be found in [5]. In this part, we are going to give the main results about Dq

pS(µ, ν).

Theorem 1. Let (X,µ, ν, ∗, �) be an IFNS, (xk) be a sequence of X . Then, xk → l(µ, ν), implies

xk
(µ,ν)−→ l(Dq

p(µ, ν)).

Proof. For every ε ∈ (0, 1) and t > 0, there exists a number k0 ∈ N such that

µ(xk − l, t) > 1− ε and ν(xk − l, t) < ε (3)

hold for all k ≥ k0. If the inequalities in (3) are assumed from p(n)+1 to q(n), then the following
inequality is obtained:

q(n)∑
p(n)+1

µ(xk − l, t) > (1− ε)(q(n)− p(n)) and
q(n)∑
p(n)+1

ν(xk − l, t) < ε(q(n)− p(n)). (4)

If both sides of (4) are divided by (q(n)− p(n)), then the desired result is obtained.

Theorem 2. Let (X,µ, ν, ∗, �) be an IFNS, (xk) be a sequence of X . Then, xk → l(µ, ν) implies

xk
(µ,ν)−→ l(Dq

pS(µ, ν)).

Proof. By hypothesis, for every ε ∈ (0, 1) and t > 0 there exists a number k0 ∈ N such that
µ(xk − l, t) > 1− ε and ν(xk − l, t) < ε hold for all k ≥ k0.

This guarantees that the cardinality of the set

{k ∈ N : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}

is finite. So, immediately we see that

δqp({k ∈ N : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}) = 0

This gives the proof.

Remark 3. The converse of Theorem 2 is not true, in general.

In this case, let us consider (R, µ0, ν0, ∗, �) and

xk :=

1, k = m2, m ∈ N
0, otherwise.

For any ε > 0 and t > 0, consider the following set:

Kq
p(ε, t) = {p(n) + 1 ≤ k ≤ q(n) : µ0(xk − l, t) ≤ 1− ε or ν0(xk − l, t) ≥ ε}.
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It is clear that

Kq
p(ε, t) =

{
p(n) + 1 ≤ k ≤ q(n) |xk| ≥

εt

1− ε

}
=
{
p(n) + 1 ≤ k ≤ q(n) : k = m2, m ∈ N

}
and we have

δqp(K
q
p(ε, t)) ≤ lim

n→∞

√
q(n)−

√
p(n)

q(n)− p(n)
= 0.

The last inequality gives that xn → 0(Dq
pS(µ0, ν0)). But by Lemma 4.10 in [18], the sequence

(xn) is not (µ0, ν0) convergent to zero because it is not convergent to zero in (R, | . |).
From Definition 13, we can give following results without proof:

Lemma 1. Let (X,µ, ν, ∗, �) be an IFNS. Then, for all ε ∈ (0, 1) and t > 0, the following
statements are equivalent:

(i) xk
(µ,ν)−→ l(Dq

pS(µ, ν)),

(ii) δqp({k ∈ N : µ(xk − l, t) ≤ 1− ε}) = δqp({k ∈ N : ν(xk − l, t) ≥ ε}) = 0,

(iii) δqp({k ∈ N : µ̃(xk − l, t) ≥ ε}) = δqp({k ∈ N : ν(xk − l, t) ≥ ε}) = 0,

(iv) δqp({k ∈ N : µ̃(xk − l, t) < ε}) = δqp({k ∈ N : ν(xk − l, t) < ε}) = 1,

(v) µ̃(xk − l, t)→ 0(Dq
pS) and ν(xk − l, t)→ 0(Dq

pS).

Theorem 3. Let (X,µ, ν, ∗, �) be an IFNS, (xk) be a sequence of X . Then, the Dq
pS(µ, ν) limit

of (xn) is unique.

Proof. Let us assume that xn → l1(D
q
pS(µ, ν)) and xn → l2(D

q
pS(µ, ν)). For an arbitrary ε > 0,

let us choose r < 0 such that (1− r) ∗ (1− r) > 1− ε and r � r < ε. Then, from the assumption
for every t > 0, we have

δqp(Kµ,1(ε, t)) = δqp(Kν,1(ε, t)) = 0 and δqp(Kµ,2(ε, t)) = δqp(Kν,2(ε, t)) = 0,

where

Kµ,1(ε, t) := {p(n) < k ≤ q(n) : µ(xk − l1, t) ≤ 1− ε},
Kµ,2(ε, t) := {p(n) < k ≤ q(n) : µ(xk − l2, t) ≤ 1− ε}

and

Kν,1(ε, t) := {p(n) < k ≤ q(n) : ν(xk − l1, t) ≥ ε},
Kν,2(ε, t) := {p(n) < k ≤ q(n) : ν(xk − l2, t) ≥ ε}.

If we denote the set

Kµ,ν(ε, t) = {Kµ,1(ε, t) ∪Kµ,2(ε, t)} ∩ {Kν,1(ε, t) ∪Kν,2(ε, t)},
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then it is enough to show that δqp(Kµ,ν(ε, t)) = 0, which implies that δqp(N−Kµ,ν(ε, t)) = 1.
Now, let k ∈ N−Kµ,ν(ε, t), then there are two cases:

k ∈ N− {Kµ,1(ε, t) ∪Kµ,2(ε, t)} or k ∈ N− {Kν,1(ε, t) ∪Kν,2(ε, t)}.

Firstly, assume that k ∈ N− {Kµ,1(ε, t) ∪Kµ,2(ε, t)}. From Definition 7-(e), we have

µ(l1 − l2, t) ≥ µ(xk − l1,
t

2
) ∗ µ(xk − l2,

t

2
) > (1− r) ∗ (1− r)

and
µ(l1 − l2, t) > 1− ε (5)

holds. Since ε is arbitrary in (5), then µ(l1−l2) > 1 holds. Hence, from Definition 7-(c) it follows
that l1 = l2.
Secondly, assume that k ∈ N − {Kν,1(ε, t) ∪ Kν,2(ε, t)}. From the assumption and Definition
7-(k), we have

ν(l1 − l2, t) ≤ ν(xk − l1,
t

2
) � µ(xk − l2,

t

2
) < r � r.

By using the fact r � r < ε,
ν(l1 − l2, t) < ε (6)

is obtained. Since ε is arbitrary in (6), then l1 = l2 is obtained. Therefore, the limit of the
sequence is unique.

Theorem 4. Let (X,µ, ν, ∗, �) be an IFNS and (xn) be a sequence of X . If a sequence (xn) is
Dq
pS(µ, ν)-convergent, then it is Dq

pS(µ, ν)-Cauchy sequence in IFNS.

Proof. Assume that the sequence (xn) is Dq
pS(µ, ν)-convergent to l ∈ X . Let us choose s > 0

so that (1− ε) ∗ (1− ε) > 1− s and ε � ε < s hold for any ε > 0. Then, for any t > 0, we have

δqp

({
k ∈ N : µ

(
xk − l, t,

t

2

)
≤ 1− ε or ν

(
xk − l,

t

2

)
≥ ε

})
= 0

and this implies that

δqp

({
k ∈ N : µ

(
xk − l, t,

t

2

)
> 1− ε or ν

(
xk − l,

t

2

)
< ε

})
= 0

Let m ∈
{
k ∈ N : µ

(
xk − l, t,

t

2

)
> 1− ε or ν

(
xk − l,

t

2

)
< ε

}
be an arbitrary element.

Let us denote B(ε, t) :=

{
k ∈ N : µ

(
xk − xm, t,

t

2

)
≤ 1− ε or ν

(
xk − xm,

t

2

)
≥ ε

}
. It is

enough to show that

B(ε, t) ⊂
{
k ∈ N : µ

(
xk − l, t,

t

2

)
≤ 1− ε or ν

(
xk − l,

t

2

)
≥ ε

}
.

Let k ∈ B(ε, t)−
{
k ∈ N : µ

(
xk − l, t,

t

2

)
≤ 1− ε or ν

(
xk − l,

t

2

)
≥ ε

}
.
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Then, we have µ(xk−xm, t) ≤ 1−ε and µ(xk−l,
t

2
) ≤ 1−ε, in particular µ(xm−l,

t

2
) > 1−ε.

Hence,

1− s ≥ µ(xk − xm, t) ≥ µ(xk − l,
t

2
) ∗ µ(xm − l,

t

2
) > (1− ε) ∗ (1− ε) > 1− s,

which is not possible. On the other hand, ν(xk − xm, t) ≥ s and ν(xk − l,
t

2
) < ε, in particular

ν(xm − l,
t

2
) < ε. Then,

s ≥ ν(xk − xm, t) ≤ ν(xk − l,
t

2
) ∗ ν(xm − l,

t

2
) < ε � ε) < s,

which is not possible. This proves our claim.

Theorem 5. Let (X,µ, ν, ∗, �) be an IFNS and (xk) be a sequence of X . Then, (xn) →
l(Dq

pS(µ, ν)) if and only if there exists a set K = {ji : i ∈ N} ⊂ N such that δqp(K) = 1

and (xn)n∈K → l(µ, ν).

Proof. Necessity part: Assume that (xn) → l(Dq
pS(µ, ν)). Denote the following sets for any

t > 0 and s = 1, 2, . . . .

M q
p (s, t) =

{
p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) > 1− 1

s
and ν(xk − l, t) <

1

s

}
and

Kq
p(s, t) =

{
p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) ≤ 1− 1

s
and ν(xk − l, t) ≥

1

s

}
.

Then, δqp(K
q
p(s, t)) = 0 holds because of (xn)→ l(Dq

pS(µ, ν). Hence, we have

M q
p (s, t) ⊃M q

p (s+ 1, t)

and
δqp(M

q
p (s, t)) = 1 (7)

for any t > 0 and s = 1, 2, . . . . The last step of the proof of this part is to show for n ∈M q
p (s, t)

(xn)→ l(µ, ν).

Suppose that this is not true, i.e., (xn) 9 l(µ, ν). From this assumption, there is α > 0 and a
positive natural number k0 such that for all k ≥ k0,

µ(xk − l, t) ≤ 1− α or ν(xk − l, t) ≥ α

holds. It means that µ(xk − l, t) > 1− α or ν(xk − l, t) < α holds for all k < k0. Therefore, we
have

δqp({k ∈ N : µ(xk − l, t) > 1− α or ν(xk − l, t) < α}) = 0.

Since α >
1

s
, then δqp(M

q
p (s, t)) = 0. This is a contradiction of xn → l(Dq

pS(µ, ν).
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Sufficiency part: Let K = {kj : j ∈ N} ⊂ N such that δqp(K) = 1 and xkj → l(µ, ν). Hence,
there exists kj0 ∈ N such that for all α > 0 and t > 0,

µ(xkj − l, t) > 1− α or ν(xkj − l, t) < α

holds for all kj ≥ kj0 . Also, a simple calculation gives that the following inclusion

{k ∈ N : µ(xk − l, t) ≤ 1− α or ν(xk − l, t) ≥ α} ⊂ N− {kj0 , kj0 + 1, kj0 + 2, . . .}

holds. So, we have

δqp({k ∈ N : µ(xk − l, t) ≤ 1− α or ν(xk − l, t) ≥ α})
≤ δqp(N)− δqp({kj0 , kj0 + 1, kj0 + 2, . . .}).

This inequality completes the proof of the theorem. Hence, (xn)→ l(Dq
pS(µ, ν).

By the proof of Theorem 5, the following result can be given for Cauchy sequences in IFNS:

Theorem 6. Let (X,µ, ν, ∗, �) be an IFNS and (xk) be a sequence of X . Then, (xn) is a
Dq
pSC(µ, ν) Cauchy sequence if and only if there exists a set K = {ji : i ∈ N} ⊂ N such

that δqp(K) = 1 and (xn)n∈K is Dq
pC(µ, ν).

3 Comparison of Dq
p(µ, ν) and Dq

pS(µ, ν)

In this section we deal with the relation betweenDq
p(µ, ν) andDq

pS(µ, ν) in an intuitionistic fuzzy
normed space.

Theorem 7. Let (X,µ, ν, ∗, �) be an IFNS and (xk) be a sequence ofX . Then, xk → l(Dq
p(µ, ν)),

implies xk → l(Dq
pS(µ, ν)).

Proof. Assume xk → l(Dq
pS(µ, ν)). That is; for any ε > 0 and t > 0, there exists n0 ∈ N such

that
1

q(n)− p(n)

q(n)∑
p(n)+1

µ̃(xk − l, t) < ε and
1

q(n)− p(n)

q(n)∑
p(n)+1

ν(xk − l, t) < ε

are satisfied for all n ≥ n0. From the simple calculation we have following facts:

1

q(n)− p(n)

q(n)∑
p(n)+1

µ̃(xk − l, t) ≥
|{p(n) + 1 ≤ k ≤ q(n) : µ̃(xk − l, t) ≥ ε}|

q(n)− p(n)
=: Aqp(n)

1

q(n)− p(n)

q(n)∑
p(n)+1

ν(xk − l, t) ≥
|{p(n) + 1 ≤ k ≤ q(n) : ν(xk − l, t) ≥ ε}|

q(n)− p(n)
=: Bq

p(n)

As a consequence of xk → l(Dq
p(µ, ν)) and the above inequalities, we have δqp(A

q
p(n)) = 0 and

δqp(B
q
p(n)) = 0. Therefore,

δqp({n : µ̃(xk − l, t) ≥ ε or ν(xk − l, t) ≥ ε} = 0.

It means that xk → l(Dq
pS(µ, ν)).
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Remark 4. The converse of Theorem 7 is not true, in general.

For to see this, let us consider the space (R, µ0, ν0, ∗, �) and the sequence x = (xk) as follows:

xk :=

k2,
[√

q(n)
]
−m0 < k <

[√
q(n)

]
, n = 1, 2, . . .

0, otherwise
,

where q(n) is a monotone increasing sequence of positive integers and m0 is a fixed positive
natural number. If we consider Dq

p for the sequence p(n) satisfying

0 < p(n) ≤
[√

q(n)
]
−m0,

then we have

1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n), µ0(xk, t) ≥ 1− ε or ν0(xk, t) ≥ ε}| =

=
1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n), |xk| ≥

tε

1− ε
}| = m0

q(n)− p(n)
,

which implies that xk → l(Dq
pS(µ, ν)). Also, the following inequality

1

q(n)− p(n)

q(n)∑
p(n)+1

ν(xk, t) =
1

q(n)− p(n)

q(n)∑
p(n)+1

|xk|
t+ |xk|

≥ 1

q(n)− p(n)

q(n)∑
p(n)+1

(
[√

q(n)
]
−m0)

2

t+
[√

q(n)
]2 ≥

(
[√

q(n)
]
−m0)

2[√
q(n)

]2
holds. It means that the sequence (xk) is not Dq

p(µ, ν)-convergent to zero because the left side of
the above inequality tends to 1 when n→∞.

Let us recall that `∞ is the set of all bounded sequences. The following result shows that the
converse of Theorem 7 is true for bounded sequences :

Theorem 8. Let (X,µ, ν, ∗, �) be an IFNS and (xk) be a sequence of X . If x = (xk) ∈ `∞, then
the convergence xk → l(Dq

pS(µ, ν)) implies that xk → l(Dq
p(µ, ν)).

Proof. Suppose that x = (xk) ∈ `∞ and xk → l(DS[p, q]). Under the assumption on (xk) there
exists a positive real number M , such that µ(xk − l, t) > 1 −M and ν(xk − l, t) < M hold for
all k.

Therefore, the following inequality

1

q(n)− p(n)

q(n)∑
p(n)+1

µ̃(xk − l, t) =
1

q(n)− p(n)


 q(n)∑

p(n)+1;
µ̃(xk−l,t)<ε

+

q(n)∑
p(n)+1;

µ̃(xk−l,t)≥ε

 µ̃(xk − l, t)

 <

< ε
1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n) : µ̃(xk − l, t) < ε}|+

+M.
1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n) : µ̃(xk − l, t) ≥ ε}|
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holds. If we take limit by considering xk → l(Dq
pS(µ, ν)), then it is obtained that

1

q(n)− p(n)

q(n)∑
p(n)+1

µ̃(xk − l, t) > ε.

This gives

1

q(n)− p(n)

q(n)∑
p(n)+1

µ̃(xk − l, t) < 1− ε. (8)

Also, the following inequality

1

q(n)− p(n)

q(n)∑
p(n)+1

ν(xk − l, t) =
1

q(n)− p(n)


 q(n)∑

p(n)+1;
µ̃(xk−l,t)<ε

+

q(n)∑
p(n)+1;

µ̃(xk−l,t)≥ε

 ν(xk − l, t)

 <

< ε
1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n) : ν(xk − l, t) < ε}|+

+M.
1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n) : ν(xk − l, t) ≥ ε}|

holds. This gives that

1

q(n)− p(n)

q(n)∑
p(n)+1

ν(xk − l, t) < ε. (9)

So, by considering (8) and (9), the proof of Theorem is completed.

Theorem 9. Let (X,µ, ν, ∗, �) be an IFNS, (xk) be a sequence ofX and the sequence
(

p(n)

q(n)− p(n)

)
is bounded. Then, xn → l(S(µ, ν)) implies xn → l(Dq

pS(µ, ν)).

Proof. Since limn→∞ q(n) =∞ and xn → l(S(µ, ν)), then

lim
n→∞

1

q(n)
|{k ≤ q(n) : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}| = 0

holds from Theorem 2.2.1 in [13]. Also, the following inclusion

{p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}
⊂ {k ≤ q(n) : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}

and the inequality

|{p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}|
≤ |{k ≤ q(n) : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}|

holds. So, we get

1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}|

≤ L(n).
1

q(n)
|{k ≤ q(n) : µ(xk − l, t) ≤ 1− ε or ν(xk − l, t) ≥ ε}|,

where L(n)
(

q(n)

q(n)− p(n)

)
. By taking limit when n→∞, we get xk → l(Dq

pS(µ, ν)).
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4 Comparison of Dq
pS(µ, ν) and Dh

rS(µ, ν)

In this section we assume that

p(n) ≤ r(n) < h(n) ≤ q(n) (10)

Theorem 10. Let r and h be two non-negative sequences satisfying (10), such that
{k, p(n) < k ≤ r(n)} and {k, h(n) < k ≤ q(n)} are finite sets for all n ∈ N. Then,
xk → Dh

rS(µ, ν) implies that xk → Dq
pS(µ, ν).

Proof. It is clear that

{p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε} =
= {p(n) ≤ k ≤ r(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}∪
∪{r(n) ≤ k ≤ h(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}∪
∪{h(n) ≤ k ≤ q(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}

is satisfied. Since the deferred density of a finite set is zero and xk → Dh
rS(µ, ν), then we get the

desired result.

The converse of this theorem takes place under some conditions on p, q, h and r.

Theorem 11. Assume that lim
n→∞

(
T (n) :=

q(n)− p(n)
h(n)− r(n)

)
= d > 0. Then, xk → l(Dq

pS(µ, ν))

implies that xk → l(Dh
rS(µ, ν)).

Proof. It is clear that the inclusion

{r(n) + 1 ≤ k ≤ h(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}∪
{p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}

is satisfied and we have

1

h(n)− r(n)
|{r(n) + 1 ≤ k ≤ h(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}|

≤ T (n)
1

q(n)− p(n)
|{p(n) + 1 ≤ k ≤ q(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}|.

Thus,

lim
n→∞

1

h(n)− r(n)
|{r(n) + 1 ≤ k ≤ h(n) : µ(xk − l, t) > 1− ε or ν(xk − l, t) < ε}| = 0,

which completes the proof.

5 Conclusion

Since every usual norm defines an intuitionistic fuzzy norm, the results given here are more
general than the results given in [13].

Also, some special cases of p(n) and q(n) in the method Dq
p(µ, ν) and Dq

pS(µ, ν) coincide
with the corresponding results in [12, 16, 17].
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