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Abstract

In this article we propose two ways of assigning the parameters for intuitionistic fuzzy
sets: by asking experts, and from relative frequency distributions (histograms).

1 Introduction

Intutionistic fuzzy sets, with independent memberships and non-memberships, are general-
ization of fuzzy sets. They make it possible to represent imperfect knowledge in a more
adequate way. But to use intuitionistic fuzzy sets one should be able to assign their parame-
ters. In this article we propose two ways of assigning the parameters for intuitionistic fuzzy
sets: by asking experts, and from relative frequency distributions (histograms).

2 Intuitionistic Fuzzy Set Theory

Let us start with basic concepts related to fuzzy sets.

Definition 1 A fuzzy set A
′

in X = {x} is given by (Zadeh [33]):

A
′

= {< x, µA(x) > |x ∈ X} (1)

where µA : X → [0, 1] is the membership function of the fuzzy set A
′

; µA ∈ [0, 1].

The intuitionistic fuzzy set (IFS) theory is based both on extensions of correspond-
ing definitions of fuzzy sets objects and definitions of new objects and their properties
(Atanassov [1, 2, 3, 4, 5]).
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Definition 2 An intuitionistic fuzzy set A in X is given by (Atanassov [1, 5]):

A = {< x, µA(x), νA(x) > |x ∈ X} (2)

where
µA : X → [0, 1]

νA : X → [0, 1]

with the condition
0<µA(x) + νA(x)<1 ∀x ∈ X

The numbers µA(x), νA(x) ∈ [0, 1] denote the degree of membership and non-membership of
x to A, respectively.

Obviously, each fuzzy set A
′

corresponds to the following intuitionistic fuzzy set:

A = {< x, µA(x), 1− µA(x) > |x ∈ X} (3)

For each intuitionistic fuzzy set in X, we will call

πA(x) = 1− µA(x)− νA(x) (4)

the intuitionistic fuzzy index (or a hesitation margin) of x in A and, it expresses a lack of
knowledge of whether x belongs to A or not (Atanassov [2, 3, 4, 5]).

It is obvious, that
0<πA(x)<1 for each x ∈ X

For each fuzzy set A
′

in X, evidently,

πA(x) = 1− µA(x)− [1− µA(x)] = 0, for each x ∈ X

In our further considerations we will use the notion of the complement elements, which
definition is a simple consequence of a complement set AC

AC = {< x, νA, µA > |x ∈ X} (5)

The application of intuitionistic fuzzy sets instead of fuzzy sets means the introduction
of another degree of freedom into a set description. Such a generalization of fuzzy sets gives
us an additional possibility to represent imperfect knowledge what leads to describing many
real problems in a more adequate way.

Intuitionistic fuzzy sets based models may be adequate mainly in the situations when we
face human testimonies, opinions, etc. involving answers of three types: yes, no, abstaining
i.e. which can not be classified (because of different reasons, eg. ”I do not know”, ”I am not
sure”, ”I do not want to answer”, ”I am not satisfied with any of the options” etc.).

Example 1 Let us assume that we have a set X of n individuals who vote for/against build-
ing of nuclear power plant (judges voting for/against acquittal, electors voting for/against a
given candidate or his opponent, consumers expressing/not expressing interest in buying a
product). Let us assume that each individual xi belongs to

• a set of individuals (judges, electors) voting for — to the extent µ(xi)
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• a set of individuals voting against — to the extent ν(xi)

It is worth noticing that by means of the fuzzy set theory we cannot consider the situation
in more details. By means of intuitionistic fuzzy set theory we can also point out

• a set of individuals who did not answer neither “yes” nor “no”— to the extent π(xi)
whereas: µA(x) + νA(x) + πA(x) = 1; π(xi) — an intuitionistic fuzzy index.

From the point of view of e.g. market analysts (election committees) it could be tempting
to assess the above data in terms of the possible final results of voting giving intervals
containing

• probability of voting for
Prfor ∈ [µ, µ+ π]

where:

µ =
1

n

n∑

i=1

µ (xi)

π =
1

n

n∑

i=1

π (xi)

• probability of voting against
Pragainst ∈ [ν, ν + π]

where:

ν =
1

n

n∑

i=1

ν (xi)

with the condition Prfor + Pragainst = 1.

In terms of mass assignment (see Section 3) we could say that necessary support for is
equal to µ, necessary support against is equal to ν, whereas possible support for (the best
possible result) Pos+ is equal to µ + π, possible support against (the worst possible result)
Pos− is equal to ν + π.

Remark
In the above example we made a simplifying assumption assigning a sing of equality to prob-
abilities and memberships/non-memberships. This assumption is valid under the condition
that each value of membership/non-membership occurs with the same probability for each
xi. In this paper, for the sake of simpler notation, we follow this assumption. However, in
general, probabilities for intuitionistic fuzzy sets are calculated in the following way (Szmidt
and Kacprzyk [24, 25]):

Definition 3 Let us assign to every element of an intuitionistic fuzzy event A ⊂ E =
{x1, ..., xn} (where E is the elementary event space) its probability of occurrence, i.e. p (x1) , ...
..., p (xn).
Minimal probability pmin(A) of an intuitionistic fuzzy event A is equal to

pmin(A) =
n∑

i=1

p(xi)µ(xi)
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Table 1: The questions considered when changing a job

No Questions +/?/−
1 Is the job interesting +
2 Salaries −
3 Possibilities of promotion ?
4 Expected pension −
5 Number of hours spent in work ?
6 Holidays — how long +
7 Is the work safe +
8 Responsibility +
9 Time of the travel: home—work −
10 Social reputation +
11 Necessary creativity +
12 Connected stress +

Maximal probability of an intuitionistic fuzzy event A is equal to

pmax(A) = pmin(A) +
n∑

i=1

p(xi)π(xi)

so probability of an event A is a number from the interval [pmin(A), pmax(A)], or

p(A) ∈ [
n∑

i=1

pA(xi)µA(xi),
n∑

i=1

pA(xi)µA(xi) +
n∑

i=1

pA(xi)πA(xi)] (6)

and probability of a complement event AC is a number from the interval [pmin(A
C), pmax(A

C)],
or

p(AC) ∈ [
n∑

i=1

pA(xi)νA(xi),
n∑

i=1

pA(xi)νA(xi) +
n∑

i=1

pA(xi)πA(xi)] (7)

Applications of intuitionistic fuzzy sets to group decision making, negotiations and other
real situations are presented in (Szmidt and Kacprzyk [21, 22, 23, 26, 27, 28, 29, 30]).

The question arises how to assign the parameters.

2.1 Assigning the parameters by experts

Here we will illustrate the problem in the simplest case — when one person considers one
decision only (this simple case can be easily extended to more complicated situations - with
more persons and more decisions). Let us imagine that somebody considers a problem of
changing his/her job. To decide if a new job is interesting enough to give up a previous one it
seems reasonable to prepare a whole list of questions. The list would depend on the personal
preferences but in general the following questions presented in Table 1 seem to be important.

The immediate conclusion from Table 1 is how to evaluate the considered case (under the
condition that all the questions are equally important) - it is necessary to sum up

• all positive answers (7/12) - it is the value of the membership for the considered option,
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• all negative answers (3/12) - it is the value of the non-membership for the considered
option,

• all answers to which it was impossible to say ”yes” or ”not” (2/12) - it is the value of
the intuitionistic fuzzy index for the considered option.

It is important that employing of intuitionistic fuzzy sets just forces an individual to
consider both advantages (memberships) and disadvantages (non-memberships) of a consid-
ered solution. Next, the imprecise area is taken into account as well. The importance of
such an approach lies in the fact that most people concentrate usually on one or two “most
visible” aspects of a problem. They do not try to find out the contrary arguments or to
consider uncertain (in wide sense, i.e. not restricted to randomness) aspects of a situation
(cf. Sutherland [18]). Intuitionistic fuzzy sets with their structure make us consider a situa-
tion/problem more properly. We refer again an interested reader to (Szmidt and Kacprzyk
[21, 22, 23, 26, 27, 28, 29, 30]) where we exploit this fact - using intuitionistic fuzzy sets
to group decision making. In short, the problem boils down to selecting an option or a
set of options which are best accepted by most of the individuals. The options are consid-
ered in pairs. Employing intuitionistic fuzzy sets forces each individual to look at each pair
(i,j) of the options considering: advantages of the first option over the second one (mem-
bership function), disadvantages of the first option over the second one (non-membership
function), and taking into account lack of knowledge (intuitionistic fuzzy index) as far as the
two options are concerned. In other words, intuitionistic fuzzy sets force a user to explore
a problem from different points of view — including all important aspects which should be
taken into account but, unfortunately, are often omitted by people making decisions. This
fact, strongly connected with a phenomenon called by the Nobel Prize winner Kahneman (cf.
Kahneman [17]) ”bounded rationality”, caused among others by framing effect (explained in
terms of salience and anchoring playing a central role in treatments of judgements and choice)
places intuitionistic fuzzy sets among the up-to-date means of knowledge representation and
processing.

3 Mass Assignment Theory and assigning the parame-

ters from relative frequency distributions (histograms)

The theory of mass assignment has been developed by Baldwin (Baldwin [7], Baldwin et
al. [10, 11]) to provide a formal framework for manipulating both probabilistic and fuzzy
uncertainty.

A fuzzy set can be converted into a mass assignment (Baldwin [6]). This mass assignment
represents a family of probability distributions.

Definition 4 (Mass Assignment)
Let A

′

be a fuzzy subset of a finite universe Ω such that the range of the membership
function of A

′

, is {µ1, ..., µn} where µi > µi+1. Then the mass assignment of A
′

denoted
mA

′ , is a probability distribution on 2Ω satisfying

mA
′ (Fi) = µi − µi+1 where Fi = {x ∈ Ω|µ(x) ≥ µi} for i = 1, ..., n (8)

The sets F1, ..., Fn are called the focal elements of mA
′ . The detailed introduction to mass

assignment theory is given by Baldwin at al. [10].
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Table 2: Equality of the the parameters for Baldwin’s voting model and IFS voting model

Baldwin’s voting model IFS voting model
voting in favour n µ
voting against 1− p ν
abstaining p− n π

Example 2 (Baldwin [8])
Let X = {x1, x2, x3, x4}
If A

′

= x1/1 + x2/0.7 + x3/0.4 + x4/0.3
then the associated mass assignment is
mA

′ = x1 : 0.3, {x1, x2} = 0.3, {x1, x2, x3} = 0.1, {x1, x2, x3, x4} = 0.3

Support Pairs (the basic representation of uncertainty in the language FRIL [Baldwin
at al. [10, 13]) are associated with mass assignments and represent an interval containing
an unknown probability. Support Pairs are used to characterize uncertainty in facts and
conditional probabilities in rules. A Support Pair (n, p) comprises a necessary and possible
support and can be interpreted as an interval in which the unknown probability lies. A voting
interpretation is also useful (Baldwin and Pilsworth [9]): the lower (necessary) support n
represents the proportions of a sample population voting in favour of a proposition, whereas
(1−p) represents the proportion voting against; (p−n) represents the proportion abstaining.

For intuitionistic fuzzy sets (cf. Section 2) we have

• the proportion of a sample population voting in favour of a proposition is equal to µ
(membership function),

• the proportion voting against is equal to ν (non-membership function),

• π represents the proportion abstaining.

In Table 2 equality of parameters from Baldwin’s voting model and from intuitionistic
fuzzy set (IFS) voting model is presented.

So we can represent a Support Pair (n, p) using notation of intuitionistic fuzzy sets in the
following way

(n, p) = (n, n+ p− n) = (µ, µ+ π) (9)

i.e.: a Support Pair in Baldwin’s voting model can be expressed by using notation of intu-
itionistic fuzzy sets.

It should be noted as well that the necessary support for the statement not being true is
one minus the possibility of the support for the statement being true, i.e. 1 − p. Similarly,
the possible support for the statement being not true is one minus the necessary support for
the statement being true i.e. 1− n. Taking into account the counterparts of the parameters,
we can express this fact using notation of intuitionistic fuzzy sets as

(1− p, 1− n) = (ν, ν + π)

Let us look at three Support Pairs (n, p) of special interests (Baldwin and Pilsworth [9])
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• (1, 1) which represents total support for the associated statement,

• (0, 0) which represents total support against and

• (0, 1) which characterizes complete uncertainty in the support.

Of course the above Support Pairs have exactly the same meaning in intuitionistic fuzzy
set model (under the assumption that we consider probabilities for intuitionistic fuzzy member-
ships/non-memberships as it was explained in Section 2):

• (1, 1) means that µ = 1 and π = 0, i.e. total support,

• (0, 0) means µ = 0 and π = 0 what involves ν = 1, i.e. total support against,

• (0, 1) means µ = 0 and π = 1 i.e.: complete uncertainty in the support.

In other words both Support Pairs and intuitionistic fuzzy set models give the same
intervals containing the probability of the fact being true, and the difference between the
upper and lower values of intervals is a measure of the uncertainty associated with the fact
[20], [19].

The mass assignment structure is best used to represent knowledge that is statistically
based such that the values can be measured, even if the measurements themselves are ap-
proximate or uncertain (Baldwin [12]).

Definition 5 (Least Prejudiced Distribution) [10]
For A′ a fuzzy subset of a finite universe Ω such that A′ is normalized, the least prejudiced
distribution of A′, denoted lpA′ , is a probability distribution on Ω given by

lpA′ (x) =
∑

Fi:x∈Fi

mA
′ (Fi)

|Fi|
(10)

Theorem 1 [14] Let P be a probability distribution on a finite universe Ω taking as a range

of values {p1, ..., pn} where 0<pi+1 < pi<1 and
n∑

i=1
pi = 1. Then P is the least prejudiced

distribution of a fuzzy set A′ if and only if A′ has a mass assignment given by

mA
′ (Fi) = µi − µi+1 for i = 1, ..., n− 1

mA
′ (Fn) = µn

where

Fi = {x ∈ Ω|P (x) ≥ pi}

µi = |Fi|pi +
n∑

j=i+1

(|Fj| − |Fj+1|)pj (11)

Proof (see Baldwin at al. [14] )
It is worth mentioning that the above algorithm is identical to the bijection method proposed
by Dubois and Prade [15] although the motivation in [14] is quite different. Also Yager [31]
considered a similar approach to mapping between probability and possibility. A further
justification for the transformation was given by Yamada [32].

In other words, Theorem 1 gives a general procedure converting a relative frequency
distribution into a fuzzy set, i.e. gives us means for generating fuzzy sets from data. As
non-memberships for a fuzzy set are univocally assigned by memberships, Theorem 1 gives
a full description of a fuzzy set.
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Example 3 [14] Let Ω= {a, b, c, d} and P be a probability distribution on Ω such that

P (a) = 0.15, P (b) = 0.6, P (c) = 0.2, P (d) = 0.05

so that p1 = 0.6, p2 = 0.2, p3 = 0.15, p4 = 0.05.
Hence if A

′

is a normalized fuzzy subset of Ω such that lpA′ = P then we can determine
A
′

as follows: Given the ordering constraint imposed by P we have that

mA
′ (F4) = µ4, mA

′ (F3) = µ3 − µ4, mA
′ (F2) = µ2 − µ3, mA

′ (F1) = 1− µ2

where
F4 = {a, b, c, d}, F3 = {a, b, c}, F2 = {b, c}, F1 = {b}

This implies that A
′

= b/1 + c/µ2 + a/µ3 + d/µ4 and using the formula from Theorem 1 we
obtain

µ4 = 4p4 = 4(0.05) = 0.2

µ3 = 3p3 + p4 = 3(0.15) + 0.05 = 0.5

µ2 = 2p2 + p3 + p4 = 2(0.2) + 0.15 + 0.05 = 0.6

Therefore, A
′

= b/1 + c/0.6 + a/0.5 + d/0.2

This way it was shown that using Theorem 1 we can convert the relative frequency
distributions into a fuzzy set.

But Theorem 1 gives also an idea how to convert the relative frequency distributions into
an intuitionistic fuzzy set.

When discussing intuitionistic fuzzy sets we consider memberships and independent non-
memberships (3)—(4), so Theorem 1 gives only a part of the description we look for. To
receive the full description of an intuitionistic fuzzy set (with independent memberships and
non-memberships), it is necessary to repeat the procedure as in Theorem 1 two times. In
result we obtain two fuzzy sets. To interpret them properly in terms of intuitionistic fuzzy
sets we recall first a semantic for membership functions.

Dubois and Prade [16] have explored three main semantics for membership functions -
depending on the particular applications. Here we apply the interpretation proposed by
Zadeh [34] when he introduced the possibility theory. Membership µ(x) is there the degree
of possibility that a parameter x has value µ.

In effect of repeating the procedure as in Theorem 1 two times (first — for data representing
memberships, second — for data representing non-memberships), and taking into account
interpretation that the obtain values are the degrees of possibility we receive the following
results.

• First time we perform the steps from Theorem 1 for the relative frequencies connected
to memberships. In effect we obtain (fuzzy) possibilities Pos+(x)= µ(x) + π(x) that x
has value Pos+.

Pos+(x) (left side of the above equation) mean the values of a membership function
for a fuzzy set (possibilities). In terms of intuitionistic fuzzy sets (right side of the
above equation) these possibilities are equal to possible (maximal) memberships of an
intuitionistic fuzzy set, i.e.

µ(x) + π(x), where µ(x) — the values of the membership function for an intuitionistic
fuzzy set, and µ(x) ∈ [µ(x), µ(x) + π(x)].
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• Second time we perform the steps from Theorem 1 for the (independent) relative
frequencies connected to non-memberships. In effect we obtain (fuzzy) possibilities
Pos−(x)= ν(x) + π(x) that x has not value Pos−.

Pos−(x) (left side of the above equation) mean the values of a membership function for
another (than in the previous step) fuzzy set (possibilities). In terms of intuitionistic
fuzzy sets (right side of the above equation) these possibilities are equal to possible
(maximal) non-memberships, i.e.

ν(x)+π(x), where ν(x)— the values of the non-membership function for an intuitionistic
fuzzy set, and ν(x) ∈ [ν(x), ν(x) + π(x)]

The algorithm of assigning the parameters of intuitionistic fuzzy sets

1. From Theorem 1 we calculate the values of the left sides of the equations:

Pos+(x) = µ(x) + π(x) (12)

and

Pos−(x) = ν(x) + π(x) (13)

2. From (12)—(13), and taking into account (4) we obtain the values π(x)

Pos+(x) + Pos−(x) = µ(x) + π(x) + ν(x) + π(x) = 1 + π(x) (14)

π(x) = Pos+(x) + Pos−(x)− 1 (15)

3. Having the values π(x), from (12) and (13) we obtain for each x: µ(x), and ν(x).

This way, starting from relative frequency distributions, and using Theorem 1, we receive
full description of an intuitionistic fuzzy set.

Example 4 The problem consists in classifying products (taking into account presence of
10 different levels of an element) as legal and illegal. The data descibing relative frequencies
for legal and illegal products are respectively

• relative frequencies p+(i) for legal productss (for each i-th level of the presence of the
conidered element), i = 1, . . . , 10

p+(1) = 0., p+(2) = 0., p+(3) = 0.034, p+(4) = 0.165, p+(5) = 0.301,

p+(6) = 0.301, p+(7) = 0.165, p+(8) = 0.034, p+(9) = 0., p+(10) = 0. (16)

• relative frequencies p−(i) for illegal products (for each i-th level of the presence of the
conidered element), i = 1, . . . , 10

p−(1) = 0.125, p−(2) = 0.128, p−(3) = 0.117, p−(4) = 0.08, p−(5) = 0.05,

p−(6) = 0.05, p−(7) = 0.08, p−(8) = 0.117, p−(9) = 0.128, p−(10) = 0.125(17)
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From Theorem 1 and the data (16) we obtain possibilities Pos+(i) for legal products

Pos+(1) = 0., Pos+(2) = 0., Pos+(3) = 0.205, Pos+(4) = 0.727, Pos+(5) = 1.,

Pos+(6) = 1., Pos+(7) = 0.727, Pos+(8) = 0.205, Pos+(9) = 0., Pos+(10) = 0.(18)

From Theorem 1 and the data (17) we obtain possibilities Pos−(i) for illegal products

Pos−(1) = 1., Pos−(2) = 1., Pos−(3) = 0.961, Pos−(4) = 0.737, Pos−(5) = 0.503,

Pos−(6) = 0.503, Pos−(7) = 0.737, Pos−(8) = 0.961, Pos−(9) = 1., Pos−(10) = 1. (19)

From (18), (19), and (15), we obtain the following values π(i)

π(1) = 0., π(2) = 0., π(3) = 0.166, π(4) = 0.464, π(5) = 0.503,

π(6) = 0.503, π(7) = 0.464, π(8) = 0.166, π(9) = 0., π(10) = 0. (20)

Finally, from (18) and (20) we obtain µ(i)

µ(1) = 0., µ(2) = 0., µ(3) = 0.039, µ(4) = 0.263, µ(5) = 0.497,

µ(6) = 0.497, µ(7) = 0.263, µ(8) = 0.039, µ(9) = 0., µ(10) = 0. (21)

and from (19) and (20) we obtain ν(i)

ν(1) = 1., ν(2) = 1., ν(3) = 0.795, ν(4) = 0.273, ν(5) = 0.,

ν(6) = 0., ν(7) = 0.273, ν(8) = 0.795, ν(9) = 1., ν(10) = 1. (22)

This way starting from relative frequencies we have obtained the values µ (21), ν (22), and
π (20) characterizing the counterpart intuitionistic fuzzy set.

It is worth noticing a strong difference as far as our approach is concern, and the incorrect
method of expressing an intuitinistic fuzzy set via two fuzzy sets constructed in a such way
that memberships of the first fuzzy set are treated as the memberships of the intuitionistic
fuzzy set, and memberships of the second fuzzy set are treated as the non-memberships of
the same intuitionistic fuzzy set.

4 Conclusions

Two approaches to assigning parameters for intuitionistic fuzzy sets were presented. The
first approach is via asking the experts. The second approach is automatic - starting from
relative frequency distributions.

Both approaches seems to be useful. But the second one — the automatic, and mathe-
matically justified method assigning the functions describing intuitinistic fuzzy sets seems to
be especially important in the context of analysing information in big data bases.

References

[1] Atanassov K. (1983), Intuitionistic Fuzzy Sets. VII ITKR Session. Sofia (Deposed in Centr.
Sci.-Techn. Library of Bulg. Acad. of Sci., 1697/84) (in Bulgarian).

10



[2] Atanassov K. (1986), Intuitionistic Fuzzy Sets. Fuzzy Sets and Systems, 20, 87—96.

[3] Atanassov K. (1989), More on intuitionistic fuzzy sets, Fuzzy Sets and Systems 33, 37—46.

[4] Atanassov K. (1994), New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets and
Systems 61, 137—142.

[5] Atanassov K. (1999), Intuitionistic Fuzzy Sets: Theory and Applications. Springer-Verlag.

[6] Baldwin. J.F. (1991), Combining Evidences for Evidential Reasoning. International Journal of
Intelligent Systems, 6, 569—616.

[7] Baldwin J.F. (1992b), The Management of Fuzzy and Probabilistic Uncertainties for Knowl-
edge Based Systems. In Encyclopaedia of AI (ed. S.A. Shapiro), John Wiley (2nd ed.) 528—537.

[8] Baldwin J.F. (1994), Mass assignments and fuzzy sets for fuzzy databases. In. Advances in the
Dempster-Shafer theory of evidence. Ed. R. Yager at al. John Wiley, 577—594.

[9] Baldwin J.F., Pilsworth B.W. (1990), Semantic Unification with Fuzzy Concepts in Fril.
IPMU’90, Paris.

[10] Baldwin J.F., T.P. Martin, B.W. Pilsworth (1995) FRIL — Fuzzy and Evidential Reasoning in
Artificial Intelligence. John Wiley.

[11] Baldwin J.F., Lawry J., Martin T.P.(1995a), A Mass Assignment Theory of the Probability of
Fuzzy Events. ITRC Report 229, University of Bristol, UK.

[12] Baldwin J.F., Coyne M.R., Martin T.P.(1995b), Intelligent Reasoning Using General Knowl-
edge to Update Specific Information: A Database Approach. Journal of Intelligent Information
Systems, 4, 281—304.

[13] Baldwin J.F., T.P. Martin (1996), FRIL as an Implementation Language for Fuzzy Information
Systems. IPMU’96, Granada, 289—294.

[14] Baldwin J.F., J. Lawry, T.P. Martin (1998), The Application of generalized Fuzzy Rules to
Machine Learning and Automated Knowledge Discovery. Internationa Journal of Uncertainty,
Fuzzyness and Knowledge-Based Systems, Vol. 6, No. 5, 459—487.

[15] Dubois D. and Prade H. (1983) Unfair coins and necessity measures: towards a possibilistic
interpretation of histograms. Fuzzy Sets and Systems 10 (1983) 15—20.

[16] Dubois D. and Prade H. (1997) The three semantics of fuzzy sets. Fuzzy Sets and Systems,
Vol. 90, 141 — 150.

[17] Kahneman D. (2002) Maps of bounded rationality: a perspective on intuitive judgment and
choice. Nobel Prize Lecture, December 8, 2002.

[18] Sutherland S. (1994) Irrationality. The Enemy Within. Penguin Books.

[19] Szmidt E. and Baldwin J. (2003) New Similarity Measure for Intuitionistic Fuzzy Set Theory
and Mass Assignment Theory. Notes on IFSs, Vol. 9, No. 3, 60—76.

[20] Szmidt E. and Baldwin J. (2004) Entropy for Intuitionistic Fuzzy Set Theory and Mass As-
signment Theory. Notes on IFSs, Vol. 10, No. 3, 15—28.

11



[21] Szmidt E. and Kacprzyk J. (1996a) Intuitionistic fuzzy sets in group decision making. Notes
on IFS, Vol. 2, 15—32.

[22] Szmidt E. and Kacprzyk J. (1996c) Remarks on some applications of intuitionistic fuzzy sets
in decision making. Notes on IFS, Vol.2, No.3, 22—31.

[23] Szmidt E. and Kacprzyk J. (1998a) Group Decision Making under Intuitionistic Fuzzy Prefer-
ence Relations. Proc. IPMU’98, 172—178.

[24] Szmidt E. and Kacprzyk J. (1999). Probability of Intuitionistic Fuzzy Events and their Ap-
plications in Decision Making. Proc. of EUSFLAT-ESTYLF Conf. 1999. Palma de Mallorca,
457—460.

[25] Szmidt E. and Kacprzyk J. (1999b) - A Concept of a Probability of an Intuitionistic Fuzzy
Event. Proc. of FUZZ-IEEE’99 - 8th IEEE International Conference on Fuzzy Systems, August
22-25, 1999 Seoul, Korea, III 1346—1349.

[26] E.Szmidt and J. Kacprzyk (2000b) On Measures of Consensus Under Intuitionistic Fuzzy
relations. Proc. IPMU’2000, Madrid, July 3-7, 641—647.

[27] E.Szmidt and J. Kacprzyk (2002a) — Analysis of Agreement in a Group of Experts via Distances
Between Intuitionistic Fuzzy Preferences. Proc. IPMU’2002, Annecy, France, 1-5 July, 1859—
1865.

[28] E.Szmidt and J. Kacprzyk (2002b) An Intuitionistic Fuzzy Set Based Approach to Intelligent
Data Analysis (an application to medical diagnosis). In A. Abraham, L. Jain, J. Kacprzyk
(Eds.): Recent Advances in Intelligent Paradigms and Applications. Springer-Verlag, 57—70.

[29] E.Szmidt and J. Kacprzyk (2002c) Evaluation of Agreement in a Group of Experts via Dis-
tances Between Intuitionistic Fuzzy Sets. Proc. IS’2002 — Int. IEEE Symposium: Intelligent
Systems, Varna, Bulgaria, IEEE Catalog Number 02EX499, 166—170.

[30] Szmidt E. and Kacprzyk J. (2005) A New Concept of a Similarity Measure for Intuitionistic
Fuzzy Sets and its Use in Group Decision Making. In V. Torra, Y. Narukawa, S. Miyamoto
(Eds.): Modelling Decisions for Artificial Intelligence. LNAI 3558, Springer 2005, 272—282.

[31] Yager R.R. (1979) Level sets for membership evaluation of fuzzy subsets. Tech. Rep. RRY-
79-14, Iona Colledge, New York. Also in: R.Yager, Ed., Fuzzy Set and Possibility Theory —
Recent Developments. Pergamon Press, Oxford 1982, 90—97.

[32] Yamada K. (2001) Probability—Possibility Transformation Based on Evidence Theory. Proc.
IFSA—NAFIPS’2001, 70—75.

[33] Zadeh L.A. (1965) Fuzzy sets. Information and Control, 8, 338—353.

[34] Zadeh L.A. (1978) Fuzzy Sets as the Basis for a Theory of Possibility. Fuzzy Sets and Systems,
1, 3—28.

12


