Twelfth Int. Conf. on IFSs, Sofia, 17-18 May 2008 NIFS Vol. 14 (2008), 1, 20-22

Inequalities with intuitionistic fuzzy topological and Gökhan Cuvalcioĝlu's operators

Boriana Doycheva

NBU, Sofia 1632, Bulgaria e-mail: juana@noxart.com

Abstract

In the present article the author will discuss some inequations with operators C_{μ} , C_{ν} , I_{μ} , I_{ν} , and G. Cuvalcioĝlu's operator $E_{\alpha,\beta}$.

Keywords: Inequality, Intuitionistic fuzzy set, Operator

Basic Concepts

Let set E be given. An intuitionistic fuzzy set (IFS, [1]) A in E is an object of the following form: $A = \{ \langle x, \mu_A(x) + \nu_A(x) \rangle | x \in E \},$

$$\mathbf{A} = \{ \langle \mathbf{X}, \, \boldsymbol{\mu}_{\mathbf{A}}(\mathbf{X}) + \boldsymbol{\nu}_{\mathbf{A}}(\mathbf{X}) \rangle | \, \mathbf{X} \in \mathbf{E} \},$$

where functions $\mu_A : E \to [0, 1]$ and $\nu_A : E \to [0, 1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$0 \le \mu A(x) + \nu A(x) \le 1.$$

Gökhan Cuvalcioĝlu's operator [2] $E_{\alpha,\beta}$ is defined as follows:

 $E_{\alpha,\beta}(A) = \{ \langle x, \beta(\alpha \mu_A(x) + 1 - \alpha), \alpha(\beta.\nu_A(x) + 1 - \beta) \rangle | x \in E \},\$ Where $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \leq 1$. In [3] Krassimir Atanassov introduced "closure" (C, C_{μ} and C_{ν}) and "intersection" (I, I_{μ} and I_{ν}) operators:

$$\begin{split} C(A) &= \{ \langle x, \, K, \, L \rangle | x \in E \}, \\ I(A) &= \{ x, \, k, \, b | x \in E \}, \\ C_{\mu}(A) &= \{ \langle x, \, K, \, min(1-K, \, \nu_A(x)) \rangle | x \in E \}, \\ C_{\nu}(A) &= \{ \langle x, \, \mu_A(x), \, L \rangle | x \in E \}, \\ I_{\mu}(A) &= \{ \langle x, \, k, \, \nu_A(x) \rangle | x \in E \}, \\ I_{\nu}(A) &= \{ \langle x, \, min(1-l, \, \mu_A(x)), \, b | x \in E \}, \end{split}$$

where

$$K = \sup_{y \in E} \mu_A(y), L = \inf_{y \in E} \nu_A(y)$$

and

 $k = \inf_{y \in E} (y), l = \sup_{y \in E} (y).$

Main Results

Theorem 1: For every IFS A and for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$: $I_{\nu}E_{\alpha,\beta}(A) \supseteq E_{\alpha,\beta}I_{\nu}(A)$ **Proof:** Let A be a given IFS. Then $I_{\nu}E_{\alpha,\beta}(A) = I_{\nu}\{\langle x, \beta(\alpha\mu_{A}(x) + 1 - \alpha), \alpha(\beta\nu_{A}(x) + 1 - \beta) \rangle | x \in E\}$ = { $\langle x, \min(1 - \sup(\beta(\alpha v_A(y) + 1 - \alpha)), \beta(\alpha \mu_A(x) + 1 - \alpha)), \sup \alpha(\beta v_A(y) + 1 - \beta) \rangle | x \in E$ } $\mathbf{y} \in \mathbf{E}$ v∈E $= \{ \langle x, \min(1 - \sup \alpha \beta v_A(y) - \beta(1 - \alpha), \alpha \beta \mu_A(x) + \beta(1 - \alpha)), \sup \alpha \beta v_A(y) + \alpha(1 - \beta) \rangle | x \in E \}$ v∈E $\mathbf{y} \in \mathbf{E}$ ={ $\langle x, \min(1 - \alpha\beta l - \alpha(1 - \beta), \alpha\beta\mu_A(x) + \beta(1 - \alpha)), \alpha\beta l + \alpha(1 - \beta) \rangle | x \in E$ } and $E_{\alpha,\beta}I_{\nu}(A) = E_{\alpha,\beta}\{\langle x, \min(1 - \sup \nu_A(y), \mu_A(x)), \sup \nu_A(y) \rangle | x \in E\}$ v∈E v∈E $= \{ \langle \mathbf{x}, \beta(\alpha \min(1 - \sup \nu_A(\mathbf{y}), \mu_A(\mathbf{x})) + 1 - \alpha), \alpha(\beta \sup \nu_A(\mathbf{y}) + 1 - \beta) \rangle | \mathbf{x} \in \mathbf{E} \}$ $\mathbf{y} \in \mathbf{E}$ v∈E $= \{ \langle \mathbf{x}, \min(\alpha\beta(1 - \sup \nu_A(\mathbf{y})), \alpha\beta\mu_A(\mathbf{x})) + \beta(1 - \alpha), \alpha\beta\sup \nu_A(\mathbf{y}) + \alpha(1 - \beta) \rangle | \mathbf{x} \in \mathbf{E} \}$ v∈E $\mathbf{y} \in \mathbf{E}$ = { $\langle x, \min(\alpha\beta(1-1), \alpha\beta\mu_A(x) + \beta(1-\alpha), \alpha\beta 1 + \alpha(1-\beta) \rangle | x \in E$ } To further study the relation between $I_{\nu}E_{\alpha,\beta}(A)$ and $E_{\alpha,\beta}I_{\nu}(A)$ their degrees of membership and non-membership should be compared, as it was defined in [1] that: For every two IFSs A and B: $A \subset B$ iff $(\forall x \in E) (\mu_A(x) \le \mu_B(x) \& \nu_A(x) \ge \nu_B(x).$ It is obvious that the degree of non-membership of $I_{\nu}E_{\alpha,\beta}(A)$ is equal to that of $E_{\alpha,\beta}I_{\nu}(A)$. Now we will compare the degrees of membership. First, let us mention that for X = min(a,b) - min(c,b).If $a \ge b$, then $X = b - \min(b,c) \ge 0$. If $a \le b$, then $X = a - \min(b,c)$; if $a \ge c$, then $X = a - \min(b,c) \ge 0$; if $a \le c$, then $X = a - \min(b,c) \le 0$. Therefore $1 - \alpha\beta l - \beta(1 - \alpha) - \alpha\beta\mu - \beta(1 - \alpha)$ $= 1 - \alpha\beta l - \beta + \alpha\beta - \alpha\beta\mu - \beta + \alpha\beta$ = $1 - \alpha\beta(1 - inf\mu) - \alpha + \alpha\beta - \alpha\beta\mu - \beta + \alpha\beta$ = $1 - \alpha\beta + \alpha\beta inf\mu - \alpha + 2\alpha\beta - \alpha\beta\mu - \beta$ $= 1 - \alpha\beta(1 + inf\mu - \mu) - \alpha - \beta$ 1 - μ + inf $\mu \ge 0$, so $1 + \alpha\beta(1 + inf\mu - \mu) - \alpha - \beta \ge 0$ and this leads to the conclusion that $I_{\nu}E_{\alpha,\beta}(A) \supseteq E_{\alpha,\beta}I_{\nu}.$ **Theorem 2:** For every IFS A and for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$: $I_{\mu}E_{\alpha,\beta}(A) = E_{\alpha,\beta}I_{\mu}(A).$ **Proof:** Let A be a given IFS. Then:

$$\begin{split} &I_{\mu}E_{\alpha,\beta}(A) = I_{\mu}\{\langle x, \beta(\alpha\mu_{A}(x) + 1 - \alpha), \alpha(\beta\nu_{A}(x) + 1 - \beta)\rangle | x \in E\} \\ &= \{\langle x, \sup \beta(\alpha\mu_{A}(y) + 1 - \alpha), \alpha(\beta\nu_{A}(x) + 1 - \beta)\rangle | x \in E\} \\ &= \{\langle x, \alpha\beta\sup_{y\in E} \mu_{A}(y) + \beta(1 - \alpha), \alpha\beta\nu_{A}(x) + \alpha(1 - \beta)\rangle | x \in E\} \\ &= \{\langle x, \beta(\alpha\sup_{y\in E} \mu_{A}(y) + 1 - \alpha), \alpha(\beta\nu_{A}(x) + 1 - \beta)\rangle | x \in E\} \\ &= E_{\alpha,\beta}I_{\mu}(A) = E_{\alpha,\beta}\{\langle x, \sup_{y\in E} \mu_{A}(y), \nu_{A}(x)\rangle | x \in E\} \\ &= Analogically we can prove: \end{split}$$

Theorem 3: For every IFS A and for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$: $C_{\mu}E_{\alpha,\beta}(A) \subseteq E_{\alpha,\beta}C_{\mu}(A)$

and

Theorem 4: For every IFS A and for every $\alpha, \beta \in [0, 1]$ and $\alpha + \beta \le 1$: $C_{\nu}E_{\alpha,\beta}(A) = E_{\alpha,\beta}C_{\nu}(A).$

References

- [1] Atanassov, K. Intuitionistic Fuzzy Sets, Springer Physica Verlag, Heidelberg, 1999.
- [2] Cuvalcioĝlu, G. Some properties of $E_{\alpha,\beta}$ operator. Advanced Studies on Contemporary Mathematics, Vol. 14, 2007, No. 2, 305-310.
- [3] Atanassov, K. Some properties of the operators from one type of intuitionistic fuzzy modal operators. Advanced Studies on Contemporary Mathematics, Vol. 15, 2007, No. 1, 13-20.