Inequalities with intuitionistic fuzzy topological and Gökhan Cuvalcioĝlu's operators

Boriana Doycheva

NBU, Sofia 1632, Bulgaria
e-mail: juana@noxart.com

Abstract

In the present article the author will discuss some inequations with operators $\mathrm{C}_{\mu}, \mathrm{C}_{\mathrm{v}}, \mathrm{I}_{\mu}, \mathrm{I}_{v}$, and G . Cuvalcioĝlu's operator $\mathrm{E}_{\alpha, \beta}$.

Keywords: Inequality, Intuitionistic fuzzy set, Operator

Basic Concepts

Let set E be given. An intuitionistic fuzzy set (IFS, [1]) A in E is an object of the following form:

$$
\mathrm{A}=\left\{\left\langle\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x})+v_{\mathrm{A}}(\mathrm{x})\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\},
$$

where functions $\mu_{\mathrm{A}}: \mathrm{E} \rightarrow[0,1]$ and $v_{\mathrm{A}}: \mathrm{E} \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in E$, respectively, and for every $x \in E$:

$$
0 \leq \mu \mathrm{A}(\mathrm{x})+\nu \mathrm{A}(\mathrm{x}) \leq 1 .
$$

Gökhan Cuvalcioĝlu's operator [2] $\mathrm{E}_{\alpha, \beta}$ is defined as follows:

$$
\mathrm{E}_{\alpha, \beta}(\mathrm{A})=\left\{\left\langle\mathrm{x}, \beta\left(\alpha \mu_{\mathrm{A}}(\mathrm{x})+1-\alpha\right), \alpha\left(\beta \cdot v_{\mathrm{A}}(\mathrm{x})+1-\beta\right)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\},
$$

Where $\alpha, \beta \in[0,1]$ and $\alpha+\beta \leq 1$.
In [3] Krassimir Atanassov introduced "closure" ($\mathrm{C}, \mathrm{C}_{\mu}$ and C_{v}) and "intersection" ($\mathrm{I}, \mathrm{I}_{\mu}$ and I_{v}) operators:

$$
\begin{gathered}
C(A)=\{\langle x, K, L\rangle \mid x \in E\}, \\
I(A)=\{x, k, l\rangle \mid x \in E\}, \\
C_{\mu}(A)=\left\{\left\langle x, K, \min \left(1-K, v_{A}(x)\right)\right\rangle \mid x \in E\right\}, \\
C_{v}(A)=\left\{\left\langle x, \mu_{A}(x), L\right\rangle \mid x \in E\right\}, \\
I_{\mu}(A)=\left\{\left\langle x, k, v_{A}(x)\right\rangle \mid x \in E\right\}, \\
I_{v}(A)=\left\{\left(x, \min \left(1-1, \mu_{A}(x)\right), 1\right\rangle \mid x \in E\right\},
\end{gathered}
$$

where

$$
\mathrm{K}=\sup _{\mathrm{y} \in \mathrm{E}} \mu_{\mathrm{A}}(\mathrm{y}), \mathrm{L}=\inf _{\mathrm{y} \in \mathrm{E}} v_{\mathrm{A}}(\mathrm{y})
$$

and

$$
k=\inf _{y \in E}(y), 1=\sup _{y \in E}(y) .
$$

Main Results

Theorem 1: For every IFS A and for every $\alpha, \beta \in[0,1]$ and $\alpha+\beta \leq 1$:

$$
\mathrm{I}_{v} \mathrm{E}_{\alpha, \beta}(\mathrm{A}) \supseteq \mathrm{E}_{\alpha, \beta} \mathrm{I}_{v}(\mathrm{~A})
$$

Proof: Let A be a given IFS. Then

```
\(\mathrm{I}_{v} \mathrm{E}_{\alpha, \beta}(\mathrm{A})=\mathrm{I}_{v}\left\{\left\langle\mathrm{x}, \beta\left(\alpha \mu_{\mathrm{A}}(\mathrm{x})+1-\alpha\right), \alpha\left(\beta v_{\mathrm{A}}(\mathrm{x})+1-\beta\right)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
\(=\left\{\left\langle x, \min \left(1-\sup _{y \in \mathrm{E}}\left(\beta\left(\alpha v_{\mathrm{A}}(\mathrm{y})+1-\alpha\right)\right), \beta\left(\alpha \mu_{\mathrm{A}}(\mathrm{x})+1-\alpha\right)\right), \sup _{\mathrm{y} \in \mathrm{E}} \alpha\left(\beta v_{\mathrm{A}}(\mathrm{y})+1-\beta\right)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
\(=\left\{\left\langle x, \min \left(1-\sup _{y \in E} \alpha \beta v_{A}(y)-\beta(1-\alpha), \alpha \beta \mu_{A}(x)+\beta(1-\alpha)\right), \sup _{y \in E} \alpha \beta v_{A}(y)+\alpha(1-\beta)\right\rangle \mid x \in E\right\}\)
\(=\left\{\left\langle x, \min \left(1-\alpha \beta 1-\alpha(1-\beta), \alpha \beta \mu_{\mathrm{A}}(\mathrm{x})+\beta(1-\alpha)\right), \alpha \beta 1+\alpha(1-\beta)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
and
\(E_{\alpha, \beta} I_{v}(A)=E_{\alpha, \beta}\left\{\left\langle x, \min \left(1-\sup _{y \in E} v_{A}(y), \mu_{A}(x)\right), \sup _{y \in E} v_{A}(y)\right\rangle \mid x \in E\right\}\)
\(=\left\{\left\langle x, \beta\left(\alpha \min \left(1-\sup v_{\mathrm{A}}(\mathrm{y}), \mu_{\mathrm{A}}(\mathrm{x})\right)+1-\alpha\right), \alpha\left(\beta \sup v_{\mathrm{A}}(\mathrm{y})+1-\beta\right)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
    \(\mathrm{y} \in \mathrm{E} \quad \mathrm{y} \in \mathrm{E}\)
\(=\left\{\left\langle x, \min \left(\alpha \beta\left(1-\sup _{y \in E} v_{A}(y)\right), \alpha \beta \mu_{A}(x)\right)+\beta(1-\alpha), \alpha \beta \sup _{y \in E} v_{A}(y)+\alpha(1-\beta)\right\rangle \mid x \in E\right\}\)
\(=\left\{\left\langle x, \min \left(\alpha \beta(1-1), \alpha \beta \mu_{\mathrm{A}}(\mathrm{x})+\beta(1-\alpha), \alpha \beta 1+\alpha(1-\beta)\right\rangle\right| \mathrm{x} \in \mathrm{E}\right\}\)
```

To further study the relation between $\mathrm{I}_{v} \mathrm{E}_{\alpha, \beta}(\mathrm{A})$ and $\mathrm{E}_{\alpha, \beta} \mathrm{I}_{v}(\mathrm{~A})$ their degrees of membership and non-membership should be compared, as it was defined in [1] that:
For every two IFSs A and B:

$$
A \subset B \operatorname{iff}(\forall x \in E)\left(\mu_{A}(x) \leq \mu_{B}(x) \& v_{A}(x) \geq v_{B}(x) .\right.
$$

It is obvious that the degree of non-membership of $\mathrm{I}_{v} \mathrm{E}_{\alpha, \beta}(\mathrm{A})$ is equal to that of $\mathrm{E}_{\alpha, \beta} \mathrm{I}_{v}(\mathrm{~A})$.
Now we will compare the degrees of membership.
First, let us mention that for

$$
X=\min (a, b)-\min (c, b) .
$$

If $\mathrm{a} \geq \mathrm{b}$, then $\mathrm{X}=\mathrm{b}-\min (\mathrm{b}, \mathrm{c}) \geq 0$.
If $a \leq b$, then $X=a-\min (b, c)$;
if $\mathrm{a} \geq \mathrm{c}$, then $\mathrm{X}=\mathrm{a}-\min (\mathrm{b}, \mathrm{c}) \geq 0$;
if $\mathrm{a} \leq \mathrm{c}$, then $\mathrm{X}=\mathrm{a}-\min (\mathrm{b}, \mathrm{c}) \leq 0$.
Therefore
$1-\alpha \beta 1-\beta(1-\alpha)-\alpha \beta \mu-\beta(1-\alpha)$
$=1-\alpha \beta 1-\beta+\alpha \beta-\alpha \beta \mu-\beta+\alpha \beta$
$=1-\alpha \beta(1-\inf \mu)-\alpha+\alpha \beta-\alpha \beta \mu-\beta+\alpha \beta$
$=1-\alpha \beta+\alpha \beta \inf \mu-\alpha+2 \alpha \beta-\alpha \beta \mu-\beta$
$=1-\alpha \beta(1+\inf \mu-\mu)-\alpha-\beta$
$1-\mu+\inf \mu \geq 0$, so
$1+\alpha \beta(1+\inf \mu-\mu)-\alpha-\beta \geq 0$
and this leads to the conclusion that
$\mathrm{I}_{v} \mathrm{E}_{\alpha, \beta}(\mathrm{A}) \supseteq \mathrm{E}_{\alpha, \beta} \mathrm{I}_{v}$.
Theorem 2: For every IFS A and for every $\alpha, \beta \in[0,1]$ and $\alpha+\beta \leq 1$:

$$
\mathrm{I}_{\mu} \mathrm{E}_{\alpha, \beta}(\mathrm{A})=\mathrm{E}_{\alpha, \beta} \mathrm{I}_{\mu}(\mathrm{A}) .
$$

Proof: Let A be a given IFS. Then:

```
\(\mathrm{I}_{\mu} \mathrm{E}_{\alpha, \beta}(\mathrm{A})=\mathrm{I}_{\mu}\left\{\left\langle\mathrm{x}, \beta\left(\alpha \mu_{\mathrm{A}}(\mathrm{x})+1-\alpha\right), \alpha\left(\beta v_{\mathrm{A}}(\mathrm{x})+1-\beta\right)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
\(=\left\{\left\langle x, \sup \beta\left(\alpha \mu_{\mathrm{A}}(\mathrm{y})+1-\alpha\right), \alpha\left(\beta v_{\mathrm{A}}(\mathrm{x})+1-\beta\right)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
    \(y \in E\)
\(=\left\{\left\langle\mathrm{x}, \alpha \beta \sup \mu_{\mathrm{A}}(\mathrm{y})+\beta(1-\alpha), \alpha \beta v_{\mathrm{A}}(\mathrm{x})+\alpha(1-\beta)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
    \(\mathrm{y} \in \mathrm{E}\)
\(=\left\{\left\langle\mathrm{x}, \beta\left(\alpha \sup \mu_{\mathrm{A}}(\mathrm{y})+1-\alpha\right), \alpha\left(\beta v_{\mathrm{A}}(\mathrm{x})+1-\beta\right)\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
    \(y \in E\)
\(=\mathrm{E}_{\alpha, \beta} \mathrm{I}_{\mu}(\mathrm{A})=\mathrm{E}_{\alpha, \beta}\left\{\left\langle\mathrm{x}, \sup _{\mathrm{y} \in \mathrm{E}} \mu_{\mathrm{A}}(\mathrm{y}), v_{\mathrm{A}}(\mathrm{x})\right\rangle \mid \mathrm{x} \in \mathrm{E}\right\}\)
```

Analogically we can prove:
Theorem 3: For every IFS A and for every $\alpha, \beta \in[0,1]$ and $\alpha+\beta \leq 1$:

$$
\mathrm{C}_{\mu} \mathrm{E}_{\alpha, \beta}(\mathrm{A}) \subseteq \mathrm{E}_{\alpha, \beta} \mathrm{C}_{\mu}(\mathrm{A})
$$

and
Theorem 4: For every IFS A and for every $\alpha, \beta \in[0,1]$ and $\alpha+\beta \leq 1$:

$$
\mathrm{C}_{v} \mathrm{E}_{\alpha, \beta}(\mathrm{A})=\mathrm{E}_{\alpha, \beta} \mathrm{C}_{\mathrm{v}}(\mathrm{~A}) .
$$

References

[1] Atanassov, K. Intuitionistic Fuzzy Sets, Springer Physica - Verlag, Heidelberg, 1999.
[2] Cuvalcioĝlu, G. Some properties of $\mathrm{E}_{\alpha, \beta}$ operator. Advanced Studies on Contemporary Mathematics, Vol. 14, 2007, No. 2, 305-310.
[3] Atanassov, K. Some properties of the operators from one type of intuitionistic fuzzy modal operators. Advanced Studies on Contemporary Mathematics, Vol. 15, 2007, No. 1, 13-20.

